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ABSTRACT 
 
The United Kingdom Climate Impacts Program’s UKCP09 project makes high-
resolution forecasts of climate during the 21st century using state of the art global 
climate models. The aim of this paper is to introduce and analyze the methodology 
used and then urge some caution. Given the acknowledged systematic errors in all 
current climate models, treating model outputs as decision relevant probabilistic 
forecasts can be seriously misleading. This casts doubt on our ability, today, to make 
trustworthy, high-resolution predictions out to the end of this century.  
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1. Introduction 
 
There is now a widespread consensus that global warming is real and in large part due 
to human activities.1 But knowing that the climate is getting warmer on average is of 
limited use in designing detailed adaptation strategies.2 The impact of climate change 
on humans  occurs at a local scale, and so ideally we would like to know what 
changes we have to expect in our immediate environment, and  reliable answers 
would greatly aid decision  makers (Oreskes et al. 2010; Sexton et al. 2012; Smith and 
Stern 2011; Tang and Dessai 2012).  
 
The United Kingdom Climate Impacts Program’s UKCP09 project aims to answer 
exactly such questions by making high-resolution forecasts of 21st century climate.3 It 
generates its predictions using state of the art global climate models. The IPCC has 
confidence that these models have some skill at continental scales and above. This 
leaves open the question whether decision relevant high resolution predictions could 
be constructed with today’s models. 
 
The aim of this paper is to introduce and analyze the methodology used by UKCP09 
and then urge some caution. Given the acknowledged systematic errors in all current 
climate models, treating model outputs as the basis for decision relevant probabilistic 
forecasts can be seriously misleading (Stainforth et al. 2007). This casts doubt on our 
ability, today, to make trustworthy,4 high resolution predictions out to the end of this 
century.  
 
Herein we introduce the aims of UKCP09 (Section 2), outline the method used to 
generate predictions (Section 3), discuss the project’s handling of structural model 
error (Section 4), argue that crucial assumptions are untenable (Section 5), and then 
draw some conclusions (Section 6).   
 
                                                
1 The existence of a wide-spread a consensus is documented in (Oreskes 2007); the 
evidence for the warming being anthropogenic is documented in the last IPCC Report. 
Throughout ‘IPCC’ refers to (Solomon et al. 2007).  
2 It may well be enough for mitigation: knowing even roughly what is likely to 
happen may be reason enough not to go there. 
3 ‘UKCP’ stands for ‘United Kingdom Climate Projections’ and ‘09’ indicates that it 
was launched for public use in 2009. UKCP09 is documented in the Briefing Report 
(Jenkins et al. 2009), the Science Report (Murphy et al. 2010) and two recent papers, 
(Sexton et al. 2012) and (Sexton and Murphy 2012). The full set of predictions is at 
http://ukclimateprojections.defra.gov.uk/.  
4 In this paper we use the word ‘trustworthy’ to denote probability forecasts which 
one might rationally employ for decision making purposes using probability theory in 
the standard way. Such probability forecasts are expected to be robust and reliable, 
the kind a good Bayesian would make. We wish to avoid the kind of analysis that 
inspired Rubin’s remark that ‘a good Bayesian does better than a non-Bayesian, but a 
bad Bayesian gets clobbered’ (cited in Good 2009, 139). There may be many 
justifiable and interesting scientific reasons to construct probability forecasts, our 
criticism of them in this paper is only in regard to their direct use in decision support 
(as, for instance,  illustrated in the worked examples of UKCP09).  
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2. UKCP:  Aims and Results  
 
The declared aim of UKCP09 is to provide decision-relevant forecasts on which 
industry and policy makers can base their future plans:  
 

‘To adapt effectively, planners and decision-makers need as much good 
information as possible on how climate will evolve, and supplying this is the 
aim of […] UKCP09. They are one part of a UK government programme of 
work to put in place a new statutory framework on, and provide practical 
support for, adaptation.  
 
The projections have been designed as input to the difficult choices that 
planners and other decision-makers will need to make, in sectors such as 
transport, healthcare, water-resources and coastal defences, to ensure that UK is 
adapting well to the changes in climate that have already begun and are likely to 
grow in future.’ (Jenkins et al. 2009, 9) 

 
In a system as complex as the world’s climate, it is absurd to produce point forecasts 
(i.e. forecasts saying that a particular event will happen at a particular time with 
certainty). UKCP09 produces what they dub Bayesian probability forecasts, which 
‘assign a probability to different possible climate outcomes recognizing that […] 
giving a range of possible climate change outcomes is better, and can help with robust 
adaptation decisions, but would be of limited use if we could not say which outcomes 
are more or less likely than others.’ (ibid., 23)  

 
The challenges many decision makers have to address arise at a local level: flood 
barriers have to be built in a particular location and to a given height, and so on. For 
this reason, local user-relevant information about the impacts of climate change is the 
most useful, assuming of course that it is not mis-informative (Smith and Stern 2011).   
 
UKCP09 strives to meet the demand for decision-relevant information at the local 
level by producing highly specific information (Jenkins et al. 2009, 6-7). Probabilities 
are given for events on a 25km grid. Forecasts are made for finely defined specific 
events such as changes in the temperature of the warmest day of a summer and the 
precipitation of the wettest day of a winter. It is predicted, for instance, that under a 
medium emission scenario the probability for a 20-30% reduction in summer mean 
precipitation in central London in 2080 is 0.5 (ibid., 36). 
 
 
3. The Architecture of UKCP09  
 
These predictions are generated with a method involving both global climate models 
(GCM’s) and elaborate statistical techniques. In this section we outline the method, in 
five parts, with the aim of identifying key assumptions and making its architecture 
visible.5 
 
                                                
5 Our account of the method is based on (Murphy et al. 2010, Ch. 3).  
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Part 1 – Modelling.  The cornerstone of UKCP09 is HadCM3, a GCM developed at 
the Hadley Centre. The model consists of two coupled modules, one representing the 
earth’s atmosphere (including land surface processes and surface–atmosphere 
exchanges) and one representing the oceans. Our best descriptions of these fluids 
come from nonlinear partial differential equations (PDE’s), which define the 
evolution of continuous fields representing the atmosphere or ocean. It is neither 
possible to integrate PDE’s exactly, nor to measure the continuous fields required to 
initialize them. Instead they are discretized onto a grid in space and in time. Today’s 
computational constraints force climate models to use a relatively course grid; those 
used in UKCP09 have a typical resolution of around 300km. 
  
The model includes 10,000s of dynamical variables and 100s of parameters specifying 
the value of physical magnitudes, representing physical constants or controlling small 
scale processes which are not resolved explicitly. To aid the discussion let us 
introduce some notation. Let ...}),(),({)( 21 txtxtx =  be the vector of all dynamical 
variables and ...},,{ 21 ααα =  the vector of all parameters in the model; then let 

);( αφ xC
t  be time evolution of HadCM3, specifying the future value of the system’s 

dynamical variables given certain initial conditions and certain parameter values.  
 
Even state-of-the-art computers take a long time to make a run of  );( αφ xC

t , and so a 
simpler model is needed for most calculations (a ‘run’ is the calculation of the future 
value of x  given a particular initial condition and a set of parameter values). To this 
end the entire ocean module is eliminated and replaced by a so-called slab ocean. 
With no currents and a uniform effective depth this slab ocean is defined via simpler 
equations. The result is HadSM3.6 We write );( αφ xS

t  to denote the time evolution of 
this model, where we take it as understood that the vectors x  and α  vary with the 
model structure (HadSM3 having fewer variables and parameters than HadCM3).  
 
Part 2 – PPE. The problem in determining the future values of x  is that ‘the 
available information is seldom precise enough to allow the appropriate value of a 
given parameter to be accurately known’ (Murphy et al. 2010, 37).  Not knowing 
what value of α  to use in our calculations, assuming there is one, ‘gives rise to the 
parameter component of model error’ (ibid.).7  
 
The technique of a perturbed physics ensemble (PPE) is designed to address this 
difficulty.8 The idea of a PPE is to calculate future values of x  for a number of 
different values of α . If, for instance, modelers are uncertain about the reasonable 
value of parameter 2α  but believe that it lies between min,2a  and max,2a , they carry out 

                                                
6 Going from HadCM3 to HadSM3 roughly doubles the speed of the model. 
7 This assumption is controversial. Smith (Smith 2006 ) argues that for imperfect 
models appropriate values (leading to trustworthy forecasts)  may not exist.  For want 
of space we set these worries aside; for more on this point see (Smith and Stern 2011).  
8 We note in passing the lack of unanimity on whether the second ‘P’ of PPE stands 
for ‘parameter’, ‘parameterization’, or ‘physics’. For more on PPE’s see (Allen and 
Stainforth 2002). 
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calculations of x  for as many values in the interval ],[ max,2min,2 aa  as they can afford. 
The variability of the outcomes then gives them a sense of the sensitivity of the 
model. Calculating future x ’s for a number of different parameter values amounts to 
constructing a PPE because the variation of the parameter values amounts to 
perturbing the physics yet without changing the mathematical structure of the model 
(because all equations remain functionally unchanged).  
 
In a complex model like HadCM3 a single research center can only make a relatively 
small number of runs due to the limitation of computational resources. The question 
then is how to construct a PPE for a model with 100s of parameters if only a small 
number of runs can be made. UKCP09 solves this problem by first restricting 
attention to atmospheric parameters and then soliciting parametrisation experts to 
identify those parameters that control the crucial processes in the system and on 
which the future values of x  depend most sensitively. This process led to the 
identification of 31 crucial parameters and the definition of associated plausible 
intervals for them.  
 
To explore the uncertainty of future values of x  brought about by the variation in 
these 31 parameters, 280 runs were made with HadSM3. Information from 17 
HadCM3 runs was added later. 
 
Part 3 – Emulator. Unfortunately this number remains too small to provide a good 
understanding of the diversity of outcomes. An emulator is therefore built to provide 
values of x  corresponding to values of α  for which no runs were made. In other 
words, the emulator ‘fills the gaps’ between the 280 points obtained in Part 2. 
 
Part 4 – Probability. What is the uncertainty of future values of x  given the diversity 
in α ? Uncertainty is quantified by giving a probability distribution over the interval 
associated with α . The emulator correlates every value of α  with an outcome x , and 
these distributions are translated into probabilities for x . UKCP09 assumes that each 
value of α within the middle 75% of the interval is equally likely and that the 
probability linearly drops to zero at the minimum and maximum values. These 
probabilities are then adjusted by assigning relative weights to all values of α 
according to the emulator-implied ability of the model to represent observations when 
simulating a period similar to the past. 
 
Part 5 – Downscaling. The model calculations are done with a resolution near 300km 
but predictions are sought at 25km scale. To generate predictions at that level of detail 
the results are downscaled using simulations of a limited area regional climate model 
configured from HadCM3 and run at 25 km horizontal resolution.  
 
The endeavors of these five parts taken together produce the predictions we have seen 
in the last section.  
 
 
4. Structural Model Error  
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Each of these steps raises potentially significant conceptual and methodological 
questions. For want of space we can only deal with what we see as one central 
problem in Part 1: structural model error (SME). Like every model, HadCM3 has its 
imperfections. In order to specify );( αφ xC

t  a number of strongly idealising 
assumptions are made. These include distortion of the topography of the earth 
(mountain ranges like the Andes are systematically too smooth and too short, small 
volcanic islands chains with visible impacts on atmospheric circulation do not exist), 
and approximisations of the effects of cloud fields which cannot be  simulated 
realistically at the available resolution. Furthermore, solutions of the discretized PDE 
differ from those of the original PDE, and the PDE itself differs from what the true 
equations of the world would be (assuming such equations exist at all). In addition, 
there are limitations to our scientific understanding of the climate system and there 
may be relevant factors and processes about which we are simply unaware which 
would lead us to alter the equations of the model even under our current 
computational constraints.   
 
Inasmuch as SME is due to shortcomings in the equations of the model, the 
challenges it poses to forecasting cannot be resolved by varying the model’s 
parameters. If a model has SME this means that the  time evolution of an ensemble 
will, eventually, differ from  that of a better model and indeed reality itself, if a 
relevant distribution can be associated with reality. No adjustment of the parameters 
can remove this difference. The crucial question is: how soon do dramatic effects of 
SME manifest themselves in a given situation? And to what extent can a model with 
SME still be informative about the target system? On what timescales does the 
science (which underlies the model) suggest that a decision maker should ‘expect’ a 
big surprise if he took the model outputs as trustworthy? 
  
UKCP09 acknowledges the presence of SME and proposes a way to deal with it. The 
message is that the uncertainties due to SME can be estimated and taken into account 
in projections.9 In this section we outline their approach, and in the next we ask 
whether its use for the provision of quantitative decision support is justified.  
 
UKCP09 aims to capture the difference between the model and the real world with a 
so-called discrepancy term, which  
 

‘represents how informative the climate model is about the true climate, and it 
measures the difference between the climate model and the real climate that 
cannot be resolved by varying the model parameters. Such differences could 
arise from processes which are entirely missing from the climate model, or from 
fundamental deficiencies in the representation of processes which are included, 
through (say) limited resolution or the adoption of an erroneous assumption in 
the parameterisation scheme.’ (Sexton et al. 2012, 2515)10 

 

                                                
9 The UKCP09 science report calls the proposed method ‘an appropriate means of 
quantifying uncertainties in projected future changes’ (Murphy et al. 2010, 66).  
10 See also (Murphy et al. 2010, 63-64).  
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Assume, then, that we are interested in ‘the true climate’11 at a particular future instant 
of time *t  (for instance August 2080) and let c  be the true value of x  at *t  
(hereafter ‘target’). The relation between the model output and the target then is:12 
 

dxc S
t += *);( 0* αφ ,  

 
where *α  the set of parameter values that best simulates the target. The discrepancy 
d  is a vector in the system’s state space, and it can be interpreted as telling us ‘what 

the model output would be if all the inadequacies in the climate model were removed, 
without prior knowledge of the observed outcome’ (ibid.).  
 
Now follow two crucial assumptions. The first assumption is ‘that the climate model 
is informative about the real system and the discrepancy term can be seen as a 
measure of how informative our climate model is about the real world’ (ibid., original 
emphasis). The idea is that informativeness comes in degrees and is indirectly 
proportional to the length of d : the smaller d  the more informative the model. That 
the model is informative then amounts to assuming that d  is small. We call this the 
informativeness assumption. The second assumption concerns the discrepancy. While
d  is defined as a vector, in practice one cannot know the exact vector and so it is 

assumed that there is probability distribution ε  over d . This distribution is then 
assumed to be Gaussian (ibid.). We refer to the package of the two as the Core 
Assumption.  
 
With this assumption in place UKCP09 sets out to estimate the parameters of ε . Not 
being omniscient, one cannot just compare model outputs with the truth. The crucial 
move in UKCP09 is to use a multi model ensemble (MME) as a proxy for the truth: 
‘Our key assumption is that sampling the effects of structural differences between the 
model chosen for the PPE and alternative models provides a reasonable proxy for the 
effects of structural errors in the chosen model relative to the real world.’ (Sexton et 
al. 2012, 2516)13 
 
The MME in question contains 12 models (Sexton et al. 2012, 2519). The claim then 
is that measuring the average distance of HadSM3 to a set of different models yields a 
similar result as measuring its distance to the real world – hence, d  can be 
determined by measuring by how much HadSM3 diverges from those other models. 
We call the view that an MME is a trustworthy proxy for the real world the proxy 
assumption.   
 

                                                
11 There is, obviously, a serious confusion that we cannot clarify here: climate is a 
distribution, the state of the atmosphere at a given time (‘weather’) is a point. Our 
uncertainty in the ‘true’ (we would prefer ‘target’) value of x at time t does not 
correspond to the climate at time t.  
12 See (Sexton et al. 2012, 2521). Throughout we use our own notation, which differs 
from Sexton’s. 
13 See also (Sexton et al. 2012, 2526) and (Murphy et al. 2010, 64).  
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For each model in the ensemble *α , the best HadSM3 analogue, is determined. 
Having found the best analogue, the prediction error b is calculated; essentially the 
difference between the two model outputs. With these b ’s the mean and variance of 
ε  is determined.14 
 
Under the proxy assumption, this procedure quantifies the additional uncertainty due 
to model error. This uncertainty is now added to the uncertainty about values of x 
obtained in Part 4, yielding the total uncertainty. The uncertainty is expressed as a 
probability distribution; it is this distribution that is presented as guidance for decision 
makers. 
 
In the following section we argue that neither the core assumption nor the proxy 
assumption are well-founded. The restriction to these two assumptions is due to lack 
of space; other aspects of the approach also raise serious questions. 
 
 
5. The Assumptions Scrutinized  
 
Our discussion of the core assumption focuses on the informativeness.  It is an 
undisputed fact that systematic errors in the models in question lead to non-trivial 
macroscopic errors of simulation, of the past and of the future. Seager et al. (2008) 
have noted their inability to reproduce the dust bowl of the 1930’s even given the 
observed sea-surface temperatures. This is not a small inadequacy when one is 
focused on the resolution offered by UKCP09. Given these systematic errors, there 
are lead times at which the failure of the model to simulate realistic weather cause the 
climate of the model to differ from that of the planet (Smith and Stern 2011). 
Inasmuch as the models used are not close to the target, the informativeness 
assumption fails. The figure below shows model global mean temperatures over the 
last century of the 24 CMIP3 models.15 Note that while all models show warming 
between 1900 and 2000, their average temperatures vary tremendously. The 
magnitude of the error in the global mean in a hindcast of the last century casts 
significant doubt on the viability of the informativeness assumption on a 25 km 
forecast to the end of this century. 
 
 

                                                
14 See (Sexton et al. 2012, 2521-27). To be precise, what is determined is the 
covariance matrix. 
15 Thanks to Ana Lopez for producing the figure.  
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Even if one were to discard the above as undue pessimism and uphold the 
informativeness assumption, there is a further problem. An argument to uphold the 
informativeness assumption now must be based on the trustworthiness of the 
modeling assumptions, typically taking the form that if the model assumptions are 
close to the truth, then the model outputs must be close to the truth too. While this 
inference works in some specific applications, it is generally false for nonlinear 
models even if their SME is extremely small (Frigg et al. 2013). Since the relevant 
climate models are nonlinear, it follows that even if the model assumptions were close 
to the truth this would not automatically warrant trust in the model outputs. In fact, 
the outputs for relevant lead times fifty years from now could still be seriously 
misleading. 
 
The discussion of the proxy assumption is complicated by the fact that the literature 
on the subject exhibits a certain degree of schizophrenia. On the one hand the method 
is illustrated and advertised as delivering trustworthy results; on the other hand 
disclaimers that effectively undermine the crucial assumptions are also included, 
sometimes parenthetically, obscurely or deep within technical discussions.16 The 
documentation gives with one hand and takes back with the other. We now review the 
activities of both hands and conclude that the hand that takes back voids the 
trustworthiness of the forecasts for quantitative decision support. 
 

                                                
16 An example is (Murphy et al. 2010, 63-69). 
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The first reason cited in support of the proxy assumption is that multi model averages 
give a better representation of climate than any individual model: ‘Indeed, the 
multimodel ensemble mean has been shown to be a more skillful representation of the 
present-day climate than any individual member’ (Sexton et al. 2012, 2526). Yet it is 
also acknowledged that ‘systematic errors to all current climate models persist’ (ibid.) 
so even if one were to accept that such a multi-model mean were more skillful at 
representing the present day than individual models, is ‘more skillful’ close to being 
‘skillful’? Unfortunately there appears to be no evidence that ‘more skillful’ can be 
equated with ‘skillful’ for many variables of importance for future climate change.  
 
The second reason mentioned in support of the proxy principle is that ‘the structural 
errors in different models can be taken to be independent’ (Murphy et al. 2010, 66) 
and that therefore the ensemble samples uncertainty well. However, immediately after 
we are warned that   
 

‘Whilst there is evidence for a degree of independence […], there is also 
evidence that some errors are common to all models […], due to shared 
limitations such as insufficient resolution or the widespread adoption of an 
imperfect parameterisation scheme. From this perspective, our estimates of 
discrepancy can be viewed as a likely lower bound to the true level of 
uncertainty associated with structural model errors.’ (Murphy et al. 2010, 66) 

 
And then the conclusion is drawn that: ‘The main (and inevitable) limitation, 
however, is that it [the proxy assumption] does not account for the potential impacts 
of errors common to all climate models used in the prediction (Sexton et al. 2012, 
2516). 
 
One cannot have ones cake and eat it too. If there are common errors the proxy 
assumption fails. Indeed such common errors have been widely acknowledged (see, 
for instance, Parker 2011). Furthermore, the mathematical space of all possible 
climate models (if there is some such thing) is huge, and there is no reason to believe 
that the 12 models we de facto work with provide a representative sample.   
 
For these reasons, the assumption that the use of an MME will accurately quantify the 
distance to our true target is unjustified. It produces a distribution that is more 
consistent with the diversity of current models but need not reflect the uncertainty in 
our future. It is important to note that the fear is not so much that the width of the 
uncertainty distribution is too narrow, but rather that the distribution is simply in the 
wrong place; that the mean of the distribution will shift significantly if the model 
simulations become realistic.  
 
Echoing Murphy et al., we note that ‘[i]t is important to stress that our approach to the 
specification of discrepancy can only be expected to capture a subset of possible 
structural modelling errors and should be regarded as a lower bound’ (Murphy et al. 
2007, 2011). A lower bound need neither yield trustworthy forecasts nor provide a 
suitable basis for quantitative decision support. 
 
 
6. Conclusion 
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We have argued that there is little evidence for interpreting UKCP09’s predictions as 
trustworthy forecasts for quantitative decision support. Questioning the evidence, 
however, does not amount to proving it wrong. Our point is that the premises of the 
argument do not warrant trust in the results, and for decision support in the face of 
climate change this is the crucial aspect. 
 
To be fair to the scientists who worked very hard to make UKCP09 the best it could 
be, several points should be noted. First the deliverables of the project were defined 
before any viable approach to meet them was available in the peer-reviewed literature. 
Second, the United Kingdom Climate Impacts Program, which is much broader than 
UKCP09, faced the dilemma of motivating users to engage with the real challenges 
and risks posed by climate change in the face of deep uncertainty: the challenge of 
keeping users interested when the information they most desire lies beyond the reach 
of today’s science. And lastly, pointers to the fact that a naïve interpretation of 
UKCP09 probability distributions is untenable can indeed be found within the 
UKCP09 material. 
 
That said, the aim of UKCP09 was to provide trustworthy forecasts now, and this, we 
have argued, they fail to do.  Kelly’s 1979 plea holds today: climate prediction 
experiments remain essential, and they must ‘be conducted with scientific rigour and 
presented with an honest assessment of the uncertainties involved’ (Kelly 1979, 182) 
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