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We show that the deviation from power laws of the scaling of chaotic measures, such
as Lyapunov exponents and topological entropy, is periodic in the logarithm of the
distance from the accumulation of period doubling. Moreover, this periodic function is
asymptotically universal for each measure (for functions in the appropriate universality
class). This is related to the concept of lacunarity known to exist for scaling functions
describing the mass distribution of self-similar fractal sets.
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1. Lacunarity

In self-similar sets, lacunarity describes the way in which voids or lacunae are distributed at
all scales. The presence of these voids is reflected in scaling functions, which characterize
the spatial distribution of points. In self-similar sets, the regular appearance of voids results
in a periodic component of the scaling functions; such oscillations, however, are often
found in scaling quantities, an observation going back at least to DeBruin ([1], see [2] for
a historical review). Guckenheimer [3] suggests that the oscillations in scaling functions
seriously hamper numerical attempts to approximate scaling exponents, such as the capacity
of fractal sets. These arguments are supported by observations [4–7]. For a more recent
discussion, see [8] and references therein. In these studies, the effect of lacunarity is confined
to problems involving spatial structures; here we show how the same ideas are useful in
describing scaling behaviour in families of dynamical systems, where the (self-similar)
fractal structure occurs in parameter space rather than in state space. In particular, we
show that universal functions describe the asymptotic structure of quantities such as the
topological entropy of a map just after the accumulation of period-doubling.1

The source of the lacunarity described here is the existence of self-similar scaling
relations of the form af (x) = f (bx) for the quantities we describe. This equation has
general solution,

f (x) = ψ(log x)x
log a
log b ,

where ψ(log x) is periodic with period log b, and the lacunarity of the set is reflected in the
oscillation due to ψ .

∗Corresponding author. Email: p.a.glendinning@manchester.ac.uk

C© 2013 Taylor & Francis

D
ow

nl
oa

de
d 

by
 [

2.
10

0.
40

.8
7]

 a
t 1

4:
14

 1
0 

Fe
br

ua
ry

 2
01

3 

http://dx.doi.org/10.1080/14689367.2012.755496


2 P. Glendinning and L.A. Smith

As an introduction to lacunarity, we shall consider a simple example in which all the
functions involved can be calculated explicitly (see [9] for additional discussion). The
‘middle thirds’ Cantor set, �, is perhaps the most easy fractal set to work with, and the
periodic oscillation of the scaling function can be calculated explicitly. The set,

� =
{
x ∈ [0, 1]|x =

∞∑
i=1

ai

3i
, ai ∈ {0, 2}

}
, (1)

is a Cantor set since it is uncountable, closed, contains no intervals, and every point is an
accumulation point of the set. The standard construction of� is inductive: take the interval
[0, 1] and remove the middle third, ( 1

3 ,
2
3 ), leaving two intervals [0, 1

3 ] and [ 2
3 , 1]. Now

remove the middle third of each of these intervals and repeat the construction, removing
the middle third of each remaining interval at each stage. In the limit, this process defines
the Cantor set, �. Let N (ε) be the smallest number of ε-balls needed to cover �. The
dimension or capacity of �, C(�), is then defined as

C(�) = lim
ε→0

− logN (ε)

log ε
. (2)

At the nth stage of its construction, there are 2n intervals, each of length 3−n and � is
contained in these intervals. Hence,

N (ε) = 2n if
1

3n
≤ ε <

1

3n−1
. (3)

Furthermore,

N (ε) = 2N (3ε). (4)

This functional equation has solutions,

N (ε) = φ(log ε)ε− log 2
log 3 , (5)

where

φ(log ε) = φ(log ε + log 3), (6)

which gives C(�) = log 2
log 3 . Since N (ε) is known explicitly from Equation (3), we can

calculate φ to obtain the saw-tooth function (for ε < 1, i.e. log ε < 0),

logφ(log ε) = log 2

log 3
log ε + log 2, 0 > log ε ≥ −log 3 (7)

and φ(log ε − log 3) = φ(log ε). This function reflects two aspects of the Cantor set. First,
the self-similarity of the set is expressed in the periodicity of φ, and second, the non-
uniformity or bunched aspect of the set is expressed by deviations of φ from a constant
(hence the term lacunarity, referring to the holes or non-uniformity of the set). Numerically
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Dynamical Systems 3

computed estimates of logN (ε) against − log ε show periodic variations from a straight
line of slope log 2

log 3 and any attempt to measure the capacity of a set must take this into
account. Plots of the lacunarity oscillations of related scaling functions for a number of
different Cantor sets are given in [5]. Note that the modulation function, φ, of Equation (7)
is not what we would find in the standard numerical computations of φ.N (ε) is the smallest
number of ε-balls needed to cover �, whilst numerical computations do not, in general,
compute this minimal cover (see [11], and references thereof).

Similar effects arise in the fractal sets, which arise in deterministic dynamical systems
[7]. For example, the scaling behaviour of strange attractors near hyperbolic periodic points
can be studied in this way (examples from the Hénon map [12] are given [9] and [13]). In
this case, the stable eigenvalue of the periodic point determines the period of oscillation in
the (local) lacunarity.

The periodic oscillation observed here is due to the fact that there is only one scaling
between each level of the Cantor set. If there are two or more irrationally related scalings
as, for example, in some iterated function systems, the oscillation could be quasi-periodic.
If the scaling from one level to the next was random, but still resulting in a Cantor set with
a well-defined dimension, then there would still be oscillations about the line −d log ε (on
a logarithmic scale), but these would not be periodic.

2. Universality and period-doubling

The work mentioned above concentrates on the spatial structure of complex sets. It is
equally possible to find systems with complex dependence upon parameters and it is this
side of the problem that we wish to comment upon. To do this, we shall concentrate on
scaling behaviour associated with the cascades of period-doubling bifurcations, although
at the end of this note we suggest some further situations where the idea of parametric
lacunarity may be useful.

Period-doubling cascades in unimodal (or one-hump) maps such as the logistic map,
fμ(x) = μx(1 − x), have been studied extensively, both from a topological and a functional
point of view [14–16]. It has been observed (and understood theoretically) that the envelope
of quantities representing the complexity of solutions, such as the Lyapunov exponents,
scale in a characteristic manner. Indeed, the Lyapunov exponents of the attractor above the
point of accumulation of period-doubling in a typical family of unimodal maps, {fμ}, scales
like

λ ∼ |μ− μ∞| log 2
log δ (8)

as shown in Figure 1(a), where μ∞ is the accumulation value and δ is a constant (the
Feigenbaum constant [17], depending only upon the university class of {fμ}). In Figure 1(b),
the underlying power law behaviour of the Lyapunov exponents has been factored out of
the signal. The resulting curve certainly looks periodic, and it is this feature of the problem
that will be explained below.

The Lyapunov exponent of a point x0 under the map f is the average of the logarithm
of the modulus of the derivative of the map along the orbit (when it exists), i.e.

λ(x0) = lim
n→∞

1

n

n−1∑
0

log |f ′(f k(x0))|, (9)
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4 P. Glendinning and L.A. Smith

Figure 1. The Lyapunov exponent for the logistic map: (a) base 2 logarithm of the Lyapunov

exponent against logarithm r − r∞. The line reflects the power law (r − r∞)
1

log2(δ) . (b) Modulation
function ψ(log2(r − r∞)) obtained by factoring out the power law.

provided the limit exists. It provides a measure of the speed of separation of nearby orbits.
If a solution is in the basin of attraction of an attractor with an ergodic invariant measure
then λ is independent of x0 for almost all initial points x0 and so we can talk about the
Lyapunov exponent of the attractor. Clearly, the Lyapunov exponent is undefined if the
attractor is a superstable periodic orbit, i.e. a periodic orbit containing a turning point of
the map, since f ′(x) = 0 implies that λ equals ‘minus infinity’. So for families such as the
logistic map, for which there are infinitely many parameters having superstable periodic
orbits, the Lyapunov function is not continuous.

To be able to calculate more robust (i.e. continuous) quantities, we will also work with
the topological entropy of a map. For unimodal maps, the topological entropy is essentially
the asymptotic growth rate (limsup) of the number of periodic points of periodp asp → ∞.
This characterization makes it appear rather hard to compute numerically, however, some
fundamental results of Milnor and Thurston [18] show that the topological entropy can be
quite easy to calculate. Moreover, it varies continuously for C1 families of unimodal maps,
making it a more regular function to use (see e.g. [16] chapter II.9, for technical details). A
similar argument to that presented below should hold (with certain extra assumptions) for
the Lyapunov exponents except that the modulating functions cannot be continuous.

Milnor and Thurston [18] developed a symbolic description of orbits of unimodal maps
called kneading theory. If the critical point of the map is at x = c, then define a0(x) = 1
if x ≤ c and a0(x) = −1 if x > c. Now define ai(x) inductively by the relation ai(x) =
ai−1(x)a0(f i(x)), i > 0. The kneading sequence (or itinerary) of a point is the sequence
I (x) = a0(x)a1(x)a2(x) . . . and the kneading invariant of a map, f , is the sequence

k(f ) = lim
x↑c
I (x). (10)
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Dynamical Systems 5

Figure 2. The function f and f 2 showing the geometry of renormalization and the map Tf .

Now, if k(f ) = k0k1k2 . . ., then we can form the formal power series,

K(t) =
∞∑
i=0

kit
i . (11)

Milnor and Thurston [18] prove that if h(f ) > 0 and s is the smallest positive zero ofK(t),
i.e. K(s) = 0 and K(t) > 0 for all 0 ≤ t < s, then

h(f ) = log(s−1). (12)

The first symbols of the kneading invariant of a map are easy to calculate numerically, and
we can solve the polynomial approximation of the power seriesK(t) to find an approximate
value of the topological entropy of f . This method will be used to compute the equivalent
of Figure 1 for the variation and modulation of the topological entropy (the reader may
wish to look forward to Figure 4).

To understand the scaling of the Lyapunov exponents shown in Figure 1 and to extend
it to the topological entropy we need to recall some basic facts about period-doubling
cascades. In what follows, we assume that the family {fμ} has a quadratic maximum for
each μ and that there exists a parameter value μ∞ for which fμ∞ is at the accumulation
of period-doubling. It is also convenient to choose a normalization condition: we assume
that the maximum is at x = 0 and that fμ(0) = 1 for all μ. Furthermore, we assume that
the maps are even (fμ(−x) = fμ(x)), so the maps are defined on the interval [−1, 1] as
shown in Figure 2. The analysis of the period-doubling cascades of unimodal maps uses
the idea of renormalization [15–17,19]: if fμ(1) = −α−1 < 0 then define an induced map
on the interval [−α−1, α−1] by taking the second iterate of f in that interval. This new map
is again a unimodal map and maps the interval [−α−1, α−1] into itself provided the map is
sufficiently close to the accumulation of period-doubling. This new map can be rescaled to
give a unimodal map of [−1, 1], T f , defined by

T f (x) = −αf ◦ f (−x/α). (13)

The operator T can now be thought of as a map on a suitably defined function space (see
[16], for full details). In the universality class, we are considering, T has a fixed point f∗(x),

T f∗ = f∗,
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6 P. Glendinning and L.A. Smith

Figure 3. The structure of function space near the fixed point f∗ of T , after [20].

with a one-dimensional unstable manifold, S, with associated eigenvalue δ > 1 and a co-
dimension one stable manifold 	 as shown in Figure 3. The fixed point, f∗ also fixes a
value of α: −α−1

∗ = f∗(1). For unimodal maps with quadratic maxima δ ≈ 4.6692 and
α−1

∗ ≈ 0.3995.
The standard argument for the universality of period-doubling in quadratic families

assumes that there exists a co-dimension one manifold, 	n, beneath 	 and intersecting
S transversely, such that if f ∈ 	n then f has a non-hyperbolic periodic orbit of period
2n−1, which satisfies the conditions for a period-doubling bifurcation. Hence, just below
	n maps have a stable periodic orbit of period 2n−1, and just above 	n this orbit has lost
stability and there is a stable periodic orbit of period 2n. Now consider maps in the manifold
T −1	n = 	n+1, which lies between	n and	 (distances having been contracted by a factor
δ−1 in the direction of S and expanded in the other directions). If T f period-doubles from
period 2n−1 to 2n, then f period-doubles from period 2n to 2n+1, so 	n+1 consists of
maps with non-hyperbolic periodic orbits of period 2n, about to period-double. Repeated
application of T −1 produces a sequence of manifolds accumulating on 	 at the rate δ−1.
By a similar argument, there is a sequence of surfaces 	̃n accumulating on 	 from above
at the same rate, such that if f ∈ 	̃n, then f 2n restricted to a suitable interval is a unimodal
map, which maps the interval onto itself twice (as is the case for x → 4x(1 − x)), and
hence f has topological entropy 2−n log 2 [15].

Now consider a family of maps, {fμ}, which intersects 	 transversely at μ = 0, with
period-doubling cascades occurring as μ tends to zero from below. This family is repre-
sented by a curve in function space as shown in Figure 3, and in terms of the description of
the previous paragraph, the sequence of period-doubling bifurcations occurs at the param-
eter values μn < 0 on which fμn intersects 	n, and μn → 0 as n → ∞. Similarly there
is a sequence of parameters μ̃n > 0, with μ̃n → 0 as n → ∞ such that fμ̃n intersects 	̃n.
Assuming that μ is a reasonable measure of distance between maps in function space, this
immediately gives the famous result [17, 19],

lim
n→∞

μn−1 − μn

μn − μn+1
= lim

n→∞
μ̃n−1 − μ̃n

μ̃n − μ̃n+1
= δ. (14)

If μ ∈ (μn, μ̃n), then fμ can be renormalized n times, i.e. T nfμ is well defined, and the
curve of maps T nfμ has been contracted towards S and stretched in the direction of S. For
sufficiently large n, the curve representing T nfμ, μn < μ < μ̃n, is thus arbitrarily close to
S. Thus, again assuming that μ is a reasonable measure of distance in function space and

D
ow

nl
oa

de
d 

by
 [

2.
10

0.
40

.8
7]

 a
t 1

4:
14

 1
0 

Fe
br

ua
ry

 2
01

3 



Dynamical Systems 7

|μ| is sufficiently small,

Tfμ ∼ fδμ. (15)

But if h(f ) is the topological entropy of f , then (e.g. [14])

h(Tf ) = h(f 2) = 2h(f ),

so, using Equation (15) and writing h(μ) for h(fμ),

h(δμ) ∼ 2h(μ). (16)

Solving this equation gives

h(μ) ∼ ψ(logμ)μ
log 2
log δ , (17)

where the function ψ(logμ) is periodic with period log δ. We have already noted that the
curve in function space given by {T nfμ|μ ∈ (0, μ̃n)} converges to the part of S (the unstable
manifold of f∗) above	. Hence, asμ ↓ 0, we can expect the modulationψ in Equation (17)
to tend to the modulation on S. In this sense, then, the function ψ in Equation (17) is
asymptotically universal within the universality class of the renormalization operator (so a
map with a different order maximum would have a different asymptotic modulation and, of
course, a different δ).

The asymptotically universal function describes the fine structure of the entropy between
μ̃n+1 and μ̃n; since we know that there are intervals of μ values in this range on which
the entropy is constant, ψ(logμ) is not constant and reflects the variation of h(μ) from the

simple power law μ
log 2
log δ .

As mentioned earlier, the entropy, h(f ), is a continuous function of parameters, whereas
the Lyapunov exponent is not. Although the Lyapunov exponent is easier to calculate di-
rectly from iterates of the map numerically using Equation (9), the topological entropy can
be calculated using kneading theory as described above: we computed an approximation
of K(t) in Equation (11) at each parameter value and used Equation (12) to determine the
topological entropy. The results are shown in Figure 4. Figure 4(a) shows a graph of the
entropy of fμ against μ for the logistic map, and Figure 4(b) shows the (asymptotically
universal) function ψ(logμ) over three periods. Figure 1(b) shows the corresponding func-
tion for the Lyapunov exponents of the map over four periods (that is, the horizontal extent
of the graph corresponds to 4 log2(δ)). We consider this figure to be strong evidence that
a similar argument holds for the Lyapunov exponents, or at least that it holds to a good
approximation (for the argument to work for the Lyapunov exponents, Equation (15) must
hold with differentiable conjugacy; we do not know whether this is the case).

Of course, this same universal function should exist near the accumulation of period-
doubling in other types of dynamical systems, in differential equations for example. To
illustrate this, we have calculated the largest Lyapunov exponent for the Lorenz equations
near a window of stable periodic orbits identified by Sparrow [21]. The Lorenz equations
are

ẋ = σ (y − x), ẏ = rx − y − xz, ż = −bz+ xy (18)
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8 P. Glendinning and L.A. Smith

Figure 4. The topological entropy for the logistic map: (a) logarithm of the topological entropy
against logarithm of the parameter showing power law behaviour and (b) modulation function obtained
by factoring out the power law.

Figure 5. The leading Lyapunov exponent, �1, for the Lorenz equations near r∞ ≈ 99.5247:
(a) logarithm of the Lyapunov exponent against logarithm of |r∞ − r| and (b) modulation func-

tion obtained by removing the power law (r∞ − r)
1

log2(δ) . There are no free parameters in extracting
this oscillation. Note the similarity to the result of Figure 1(a).

where we take the standard parameter values σ = 10 and b = 8
3 and treat r as the bifurcation

parameter. The system shows a series of period-doubling bifurcations as r decreases through
r∞ ≈ 99.5247. Figure 5 shows the results for the Lorenz equations, which parallel those of
the logistic map shown in Figure 1. Although the estimated2 Lyapunov exponents for the
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Dynamical Systems 9

Lorenz equations are more uncertain than those of the logistic map, one can still discern
the similarity of the oscillation in Figures 1(b) and 5(b).

3. The period-doubling Cantor set

We began this note by discussing lacunarity in the context of spatial structure and have
ended with an approximate function associated with intermittency. At the accumulation of
period-doubling, a unimodal map has an invariant Cantor set on which the motion is not
chaotic. Once again, there is an approximately self-similar structure here.

The invariant Cantor set at the accumulation of period-doubling is not self-similar. As
Figure 2 suggests, the Cantor set can be constructed by successively dividing an interval
into two smaller intervals of different length. One of these is a factor of α times the parent
interval, whilst the other (the right-hand invariant interval in Figure 2) can be calculated
approximately using a quadratic approximation to f∗ to be roughly a factor of α2 times
smaller than the parent interval. So each interval at the nth generation splits into two
intervals whose lengths are, respectively, α and α2 times the length of the parent interval.
From this observation, it is easy to see that the at the nth generation there are 2n intervals
of which

( n
k

)
are of length αkα2n−2k . Thus we have

N (αn) = N (αn−1) +N (αn−2), (19)

(cf. Fn = Fn−1 + Fn−2, which generates the Fibonacci numbers), and so we obtain the
approximation

N (α2
∗ε) = N (α∗ε) +N (ε), (20)

where α has been replaced by the asymptotic value α∗ defined above.
It is now easy to check that if

d1 =
log

(√
5+1
2

)
logα∗

and d1 =
log

(√
5−1
2

)
logα∗

and φi(log x), i = 1, 2, are arbitrary periodic functions with period 2 logα∗ then

φ1(log ε)εd1 cos
2mπ log ε

logα∗
and φ2(log ε)εd2 cos

(2m+ 1)π log ε

logα∗
(21)

are solutions, for each m ∈ Z. Noting that d1 < 0 and d2 > 0 (as α∗ < 1) and that the
cosines are also periodic with period 2 logα∗ we find that

N (ε) ∼ χ (log ε)εd1 (22)

as ε tends to zero, where χ (log ε) = χ (log ε + 2 logα∗). This is only an approximate
result: the invariant Cantor set is not strictly self-similar in the way described and the
recursion relation forN (ε) is also an approximation. For a fuller, and more precise treatment,
see [22,23].
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10 P. Glendinning and L.A. Smith

4. Conclusion

We have given four examples of lacunarity: two for sets in state space and two for sets in
parameter space. For the middle third Cantor set, the analysis is exact and the modulation
function can be derived explicitly. In the second example, for the scaling of topological
entropy, the modulation function was computed numerically, and in this case the theory is
asymptotically exact, in the sense that the modulation function is universal sufficiently close
to the accumulation of period-doubling. The third example, for the Lyapunov exponents
above the accumulation of period-doubling, mirrors the analysis of the topological entropy
except the function is much less regular (it is not continuous). The analysis of the final
example is approximate. Here we defined a scaling for the Cantor set at the accumulation
of period-doubling, which is asymptotically exact at small length scales, but we have used
a rough approximation of this scaling law to obtain approximate scaling functions.

There are other situations in which it is possible to obtain approximate self-similarity
over some set in parameter space or state space. In these cases, it is possible to repeat the
argument used above, but the periodic modulation functions will only be approximately
valid. The most obvious example of approximate self-similarity in parameter space is
intermittency. The standard analysis (e.g. [24]) uses an approximate renormalization scheme
to describe the length of time spent close to the location of a saddlenode bifurcation, and
this can be used to derive scaling and approximate modulation functions. We have not
considered this case in detail, but it would be interesting to know how much relevant
information these approximations hold.
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Notes
1. After completing this work, we learned that Robert MacKay had noted the universal nature of

the modulation function for period-doubling in his Ph.D. thesis, though he did not compute the
functions [10].

2. These numerical estimates were obtained from using the ε–returns algorithm. The relative un-
certainty in the estimate increases (visibly) for smaller r∞ − r , as the value of �(r) → 0.
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