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Abstract It has recently been highlighted that the economic value of climate change
mitigation depends sensitively on the slim possibility of extreme warming. This
insight has been obtained through a focus on the fat upper tail of the climate
sensitivity probability distribution. However, while climate sensitivity is undoubtedly
important, what ultimately matters is transient temperature change. A focus on
transient temperature change stresses the interplay of climate sensitivity with other
physical uncertainties, notably effective heat capacity. In this paper we present a
conceptual analysis of the physical uncertainties in economic models of climate
mitigation, leading to an empirical application of the DICE model, which investigates
the interaction of uncertainty in climate sensitivity and the effective heat capacity.
We expand on previous results exploring the sensitivity of economic evaluations to
the tail of the climate sensitivity distribution alone, and demonstrate that uncertainty
about the system’s effective heat capacity also plays a very important role. We go on
to discuss complementary avenues of economic and scientific research that may help
provide a better combined understanding of the physical and economic processes
associated with a rapidly warming world.
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1 Introduction

Recent studies have shown that economic analysis of climate change is sensitive to
the slim possibility of extreme warming. According to Weitzman (2009) a sufficiently
large (albeit still tiny) probability of extreme warming can make climate change
mitigation policies appear infinitely valuable. The significance of this result has been
debated but the implications for integrated assessment modeling are clear; that the
possibility of extreme warming should be accounted for. A number of IAM studies
have pursued this issue (Ackerman et al. 2010; Dietz 2011; Pycroft et al. 2011).

In these studies, a sufficiently high realization of the climate sensitivity (defined
as the equilibrium surface warming that results from a doubling of atmospheric CO2

concentration) gives rise to extreme warming, which, depending on assumptions
about the damage function, can trigger substantial economic damages. If the prob-
ability of drawing such a high value is sufficiently large—or the climate sensitivity
distribution has a ‘fat tail’ according to common usage—the possibility of extreme
warming may come to dominate the economic calculus. It is unfortunate, then, that
there are compelling reasons to describe our knowledge about the value of the
climate sensitivity by a fat-tailed probability density function (pdf), at best (Frame
et al. 2005; Allen et al. 2006; Weitzman 2009; Roe and Baker 2007; Baker and
Roe 2009). Although there is some variability in the usage of the term, a fat-tailed
distribution generally refers to one where the density in the upper tail approaches
zero more slowly than the exponential distribution.

Beyond that it is fat, however, we do not actually know much about the shape
of the tail (Frame et al. 2005; Allen et al. 2006; Roe and Baker 2007; Baker and
Roe 2009). We must face up to this fact if the probability of extreme warming can
overwhelm economic evaluation of climate policies. The existing IAM literature
arguably fails to do this, tending to work with a single fat-tailed climate sensitivity
distribution (Ackerman et al. 2010; Dietz 2011; Hope 2011). An alternative approach,
suggested by Weitzman (2012), would be to stress-test IAMs by comparing multiple
fat-tailed distributions. Weitzman did this very roughly with a toy model, although
he considered uncertainty about the whole distribution at once, making it difficult to
infer the importance of uncertainty about the tail. Pycroft et al. (2011) went further
by varying the upper 50 % of the pdf while holding constant the lower half of the
distribution. One of the ways we seek to advance the literature is to investigate the
sensitivity of the economic value of a mitigation policy to the shape of the tail of the
pdf, while fixing everything except the shape of the upper tail.

What matters, though, is not the probability that the climate sensitivity is high,
but the probability of extreme warming (Allen et al. 2006; Marten 2011; Roe and
Bauman 2012; Hof et al. 2012). Focusing solely on the climate sensitivity results in
a failure to give the requisite importance to other physical parameters that greatly
influence transient temperature change, notably the rate at which heat is taken up
by the oceans, a process encapsulated in the concept of “effective heat capacity".
The effective heat capacity represents the amount of energy necessary to increase
the Earth’s surface temperature by 1◦ C, so a lower value means the temperature will
rise faster in response to a given energy input. The principal empirical contribution
of this paper, therefore, is our exploration of joint uncertainty about the climate
sensitivity and effective heat capacity. Low values of the heat capacity markedly
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increase the probability of extreme warming, and greatly amplify the sensitivity of
economic analyses.

We begin in Section 2 by discussing the science of climate warming, and relating
it to our empirical experiments with the DICE IAM in Section 3. We derive the
fundamental equation of transient temperature change in DICE from basic physical
principles, before discussing the role of climate sensitivity pdfs from the literature
and asking what does uncertainty about the effective heat capacity imply for temper-
ature forecasts? In Section 3 we consider the implications of these uncertainties for
numerical evaluation of mitigation policy. Section 4 concludes with a discussion of
complementary avenues of economic and physical science research that would most
serve to improve future economic evaluation of climate change.

2 The science of extreme warming

In IAMs, the climate component tends to be very simple relative to most physical
climate models. van Vuuren et al. (2011), Marten (2011) and others have evaluated
the predictive performance of the simple climate modules in IAMs. In order to study
the economic consequences of uncertainty about extreme warming in IAMs, it is
helpful to first get a conceptual handle on the underlying physical uncertainties that
drive the economic analysis. In this paper we employ the DICE model (Nordhaus
2008), so our discussion seeks to link its climate module to fundamental physical
concepts, something that the bulk of the IAM literature neglects. DICE is one of
the the most widely studied IAMs. In it economic damages from climate change
depend exclusively on the global mean temperature change. In DICE, this quantity
is calculated using Eq. 1.

Tt = Tt−1 + ξ1

[
Ft − F2×CO2

S
(Tt−1) − ξ3

(
Tt−1 − T LO

t−1

)]
(1)

Tt: Global mean surface temperature change at time t with respect to 1900
Ft: Radiative forcing at time t
F2×CO2 : Radiative forcing for a doubling of atmospheric CO2

S: Climate sensitivity
T LO

t : Temperature of the lower oceans at time t with respect to 1900
ξ1: ‘speed of adjustment parameter’
ξ3: ‘coefficient of heat loss from the atmosphere to oceans’

To understand the physical basis of this equation, start by considering the planet’s
surface, lower atmosphere and oceans as “the system”—a box into which energy
flows in and out. In equilibrium the rate of energy input to the system (from the
sun) equals the rate of energy lost (through radiation to space) so the energy content
remains constant. Increasing atmospheric greenhouse gas concentrations represent
a forcing which decreases the rate of energy loss, leading to an increase in energy
content until feedbacks, including rising temperatures, increase the rate of energy
loss again bringing the system back into balance. Since we are principally interested
in changes from an assumed equilibrium state, the forcings, which decrease the rate
of energy loss, can be thought of as increasing the rate of energy input; the feedbacks
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being a consequential increase in the rate of energy output. This is encapsulated
by Eq. 2 (Andrews and Allen 2008; Senior and Mitchell 2000). The right hand side
represents the overall rate of energy input to the system: radiative forcing F, reduced
by the increase in the rate of energy output to space, the feedbacks, which are taken
to be proportional to the surface temperature change T. The left hand side represents
the rate of change of the system’s energy content, measured in terms of the change
in surface temperature multiplied by an effective heat capacity for the system as a
whole.

Ceff
dT
dt

= F − λT (2)

Ceff: Effective heat capacity of the climate system
T: Surface temperature change from some equilibrium state
F: Radiative forcing
t: time
λ: a feedback parameter

Over short timeframes, decades not millennia, much of the excess energy input
leads to warming of the upper oceans (Levitus et al. 2000; Lyman et al. 2010). More
slowly the energy penetrates to the deep, or lower, oceans. An extension of the above
model is therefore to consider that our system includes not the whole ocean but
only the upper ocean, which is taken to be a well-mixed layer (and therefore warms
uniformly), coupled to a second box which represents the deep ocean and into which
heat diffuses. The deep ocean is usually not taken to be well-mixed but rather to have
temperatures which decrease with depth (Hansen et al. 1985; Frame et al. 2005). A
simpler form of this extension, though, would assume that the deep ocean too is
well-mixed and can be represented by a single temperature, call it T LO. The flow
of energy from the surface to the lower oceans is then taken to be proportional to
their temperature difference. With this extension, we get Eq. 3. Note that T is still
the surface temperature so the heat capacity now relates only to the upper box.

Cup
dT
dt

= F − λT − β(T − T LO) (3)

Cup: Effective heat capacity of the upper oceans, land surface and atmosphere

Equations 2 and 3 both represent energy conservation, but in one- and two-box
systems respectively. Applying Euler’s method to discretize Eq. 3, and re-arranging
we obtain Eq.4.

Tt = Tt−1 + �t
Cup

[
Ft−1 − λTt−1 − β(Tt−1 − T LO

t−1 )
]

(4)

t: Now the number of the time-step not continuous time
�t: length of the time-step

Consideration of Eq. 2 for the equilibrium response to doubling the atmospheric
CO2 concentrations shows that λ in Eq. 4 can be equated with F2×CO2

S in Eq. 1.
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We have thus arrived at a formulation that is almost identical to the temperature
equation in the DICE model (Eq. 1).1

The physical basis of Eq. 4 makes it easier to relate different sources of uncertainty
in Eq. 1 to the various sources of uncertainty discussed in the physical science
literature. We focus here on uncertainty about the climate sensitivity, S, and the heat
capacities, Ceff and Cup.

2.1 Climate sensitivity

The value of S is not known with certainty. Instead, over the last two decades a large
literature has emerged that seeks to quantify uncertainty about S via probability
distributions. Many distributions have been published (see Fig. 2), along with a
number of review and meta-analysis papers utilizing collections of distributions
(Meinshausen et al. 2009). From this literature three stylized facts emerge. First,
there are differences—at times large—between the various estimates. Second, all
have a large positive skew and in most cases it satisfies the definition of a fat tail.
Third, there are large differences between the various estimates of the upper tail.

The pdfs generated represent different assessments of epistemic uncertainty, each
conditioned on a different set of assumptions (only some of which are usually made
explicit) and founded on different underlying observational and/or model data. It is
important to note, however, that S is being used as a proxy for λ which represents the
feedbacks relevant at some point in time and is state-, and therefore time-dependent;
as is S. The relevant distribution of S to use in an IAM will change over time within
the simulation as the strength of different feedback processes vary. (Consider, for
instance, the role of sea ice in the albedo feedback—this may be small for small
increases in temperature, large for temperatures when the sea ice rapidly declines
and smaller again when the area of remaining sea ice is small.) The foundation of
some of the pdfs may make them them more relevant in the short term, others in
the longer term and still others of limited relevance over the next 400 years or so;
a time period typical of IAM simulations. On top of this, each of the methods has
methodological advantages and disadvantages. Thus it is not possible to identify from
the literature a single distribution which is most suitable for use in an IAM.

Setting aside the issue of time dependence, it is tempting to combine the various
estimates, but this too is problematic. The distributions are not independent in terms
of either methodology or data constraints, yet their degree of dependence is unclear.
Thus neither naive combination nor more complicated weightings can be relied upon
to give “the right” distribution. For the time being the upshot is to accept that the
science has produced many different distributions and the economics must accept
relatively large uncertainty, not just in the value of S, but in the uncertainty in the
value of S—particularly in the tails of the distribution. There are opportunities to
narrow our uncertainty for economic applications, but the first step must be to try

1The one difference in formulation between Eqs. 1 and 4 is the presence of Ft in the former as
opposed to Ft−1 in the latter. In fact the calculation of F in DICE means that in Eq. 1 Ft actually
represents something closer to Ft+ 1

2
. This rather odd formulation appears to have come about from

efforts “to improve the match of the impulse-response function with climate models” (Nordhaus
2008) and has been the subject of critical analysis that stems from the choice of discretization method
(Cai etal. 2012b; Cai et al. 2012a).
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to understand what uncertainty about the tail shape implies for the robustness of the
economic analysis.

2.2 Effective heat capacity

Examination of Eq. 1 suggests that uncertainty in transient temperature change is
dependent not just on climate sensitivity but also on uncertainty in the parameters ξ1

and ξ3 (and also in F2×CO2 , although F2×CO2 is considered well known). Historically
the majority of the heat has remained in the upper oceans (Levitus et al. 2000; Lyman
et al. 2010), so we focus our attention on ξ1; ξ3 only being important for the transfer
of heat to the deep oceans.

Comparing Eqs. 1 and 4 shows that ξ1 = �t
Cup

. The scientific literature does not
provide constraints on Cup directly, but Frame et al. (2005) present uncertainty
estimates for effective heat capacity, Ceff, giving 95 % confidence intervals of
(< 0.2 GJm−2K−1, > 1.7 GJm−2K−1) for the latter half of the 20th century.2 A
first approximation of ξ1 from the observational data would simply be ξ1 = �t

Ceff
,

but this can be refined using values from the first period of the DICE model to
give the implied ratio of Cup to Ceff at the beginning of the 21st century; a value
unlikely to be substantially different to that in the latter half of the 20th century and
therefore comparable with observations. Equation 5, based on Eqs. 2 and 4, shows
this relationship.

ξ1 = �t
Cup

≈
�t

[
F1 − F2×CO2

S T1

]

Ceff

[
F1 − F2×CO2

S T1 − ξ3(T1 − T LO
1 )

] (5)

The default DICE value for ξ1 is 0.208, which translates into a value for Ceff of
1.8 GJm−2K−1, on the high side of what the observations suggest is likely.3 A natural
question to ask, then, is what the consequences would be of assuming a lower heat
capacity.

With a lower heat capacity, a given energy input produces more rapid warming,
while the equilibrium temperature of the system is not affected. The main conse-
quence, then, is to ‘front-load’ warming. As Fig. 1 illustrates, this front-loading can
more than compensate for a lower climate sensitivity in the short term, producing
higher temperatures even with a lower climate sensitivity. For a given S, a lower
effective heat capacity will tend to lead to faster warming, causing greater damages
to occur in the nearer term, when the relieving effect of discounting is least felt.

2These values are indicative of those consistent with the most likely values of “attributable 20th
century warming”.
3The discussion of ξ1 above is conditioned on the value of ξ3 used in DICE. Uncertainty about the
value of ξ3 is only likely to have an important effect on the transient model temperatures in the longer
term. Additionally, the relation between ξ1 and Ceff in Eq. 5 is conditional on climate sensitivity, but
the variation is relatively small for sensitivities above 2◦ and the conclusion that the default value is
on the high side of what is credible is robust to all values of sensitivity; for sensitivities below about 2◦
the implied effective heat capacity is not consistent with observations at the 5 % level for any value
of attributable 20th century warming (Frame et al. 2005).
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Fig. 1 Time-series of global
mean temperature from the
DICE model for two
combinations of climate
sensitivity and effective heat
capacity

Uncertainty about the value of the effective heat capacity could therefore have
important implications for the economic analysis of climate change.

3 The economics of extreme warming

In this section we empirically address the issues raised above. Our ultimate aim is to
investigate how sensitive the economic value of a representative mitigation policy is
to uncertainty about the shape of the tail of the climate sensitivity distribution and
about the effective heat capacity of the system.

To evaluate the net economic benefits of mitigation, we conduct a typical compar-
ison between a business-as-usual emissions scenario and a scenario in which there
is intervention in the economy to abate emissions. The business-as-usual scenario is
as standard in DICE-2009, while our mitigation scenario controls emissions so as to
prevent the mean atmospheric concentration of CO2 from exceeding 500ppm in a
stochastic set-up (see supplementary information for details).

We begin by investigating uncertainty about the upper tail of the climate sen-
sitivity pdf. We take the standard deterministic version of DICE-2009 and replace
the best guess for the climate sensitivity parameter with a pdf so that Monte Carlo
simulations can be performed. We first fit a log-Normal pdf to the IPCC’s expert
subjective confidence interval (a mode of 3◦ C with a density of 0.67 between 2◦ C
and 4.5◦ C), plotted in both panels of Fig. 2. For convenience, and because this is the
upper bound of the IPCC likely interval, we speak of everything above 4.5◦ C as the
tail of the distribution. This pdf has 0.25 density in the tail.

We then perturb this log-Normal pdf to obtain two further fat-tailed distributions,
by shifting probability mass around within the tail while keeping the distribution
below 4.5◦ C fixed. In addition to the tail of the log-Normal itself, which is among the
thinnest of fat-tailed distributions, we use the heavier tail of the distribution derived
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Fig. 2 Distributions of the climate sensitivity. a Probability distributions of climate sensitivity
produced by a number of recent studies (source: Meinshausen et al. (2009)). The solid black line
is a log-normal fit to the IPCC AR4 expert subjective confidence interval - see text. b Black: as in
a, Blue: as black line but with the probability mass in the tail (i.e. above 4.5) redistributed to reflect
the Roe and Baker (2007) distribution, Green: as black line but with the probability mass in the tail)
redistributed to reflect the frequency distribution presented in Stainforth et al. (2005)

by Roe and Baker (2007). As an intermediate between these two cases, we use the
tail of the log-logistic distribution fitted to simulation output from Stainforth et al.
(2005).4 Note that, because the mass in the tail is fixed, these two distributions will
have lower densities than the IPCC-distribution in the lower part of the tail, but
higher densities in the upper part of the tail that is typically associated with extreme
warming. The resulting pdfs are displayed in panel (b) of Fig. 2.

The Monte Carlo simulations run the DICE model out 400 years into the future
for an ensemble of 100,000 climate sensitivities (see supplementary information).
They reveal how the distribution of transient temperature trajectories change when
we use a different pdf for the climate sensitivity (see Fig. 3). The lower quantiles and
the mode are of course fixed by design, but there is a clear fanning out of the upper
tail, which increases the mean of the distribution slightly. Comparable distributions
can be plotted with and without the mitigation policy. This gives us what we need
to conduct a standard, welfarist economic evaluation—i.e. we compute the expected
discounted utility of the two emissions scenarios, and the difference between them
is the economic value of mitigation. Technically, we measure the change in the
stationary equivalent, defined as the difference in welfare between the two constant
consumption paths that produce welfare equivalent to the expected values from each
of the two emissions scenarios (see supplementary information for details). We use a
standard constant relative risk aversion (CRRA) utility function with a coefficient of

4We emphasize that Stainforth et al. (2005) makes no claim to provide a probability distribution;
simply representing the output of a GCM ensemble experiment. For the purpose of this work a log-
logistic fit to that distribution provides a useful illustrative distribution with tail properties in between
the others considered.



Climatic Change

Fig. 3 Transient temperature change under varying climate sensitivity. Each blue line represents
a run of DICE under the business-as-usual scenario, so more intense colouration can be loosely
interpreted as a higher probability density. The solid white line traces the mean of the distribution.
The vertical axis on the left-hand-side measures the transient temperature change, while the right-
hand-axes measure the corresponding instantaneous climate damages, calculated using Nordhaus’
(N) and our high (H) damage functions respectively. Note that the trajectories of �T depicted here
are obtained from runs of DICE with H. Due to the climate-economy feedback in DICE, using N will
result in lower damages in early periods and consequently higher emissions and temperatures later
on. Although the plot using N looks very similar (hence not reported here), one should be aware that
when changing damage function one does not only read off a different number on the right-hand-axis
but also obtain a different set of temperature trajectories

relative risk aversion of 1.5, and a pure rate of time preference of 1.5 %, both default
values in DICE-2009. The results are reported in Table 1.

Reading first the column entitled ‘Nordhaus damages’, which describes the results
for the standard version of DICE-2009, notice that the shape of the tail does not
appear to matter much for the value of the policy. Going from the thinnest (IPCC) to
the fattest tail (Roe & Baker) increases the economic value of the policy by only 0.04
percentage points. But these results are for Nordhaus’ specification of the damage
function, which has been criticized for being too sanguine about the economic impact
of extreme warming (Weitzman 2012; Ackerman et al. 2010), the very scenario that
interests us most. The damage function is an especially disputed and speculative
element of any IAM because there are no data to constrain it at high temperatures.
This makes it difficult to adjudicate between these positions on empirical grounds,
though one might perhaps think it unreasonable that Nordhaus’ default function
implies ‘only’ the equivalent of a 17 % loss of global GDP for a temperature increase
of 10◦ C above the pre-industrial level, and less than a 50 % loss for a temperature
increase of 20◦ C. One cannot help but wonder what tall tales need be imagined to
account for such survival scenarios. Nordhaus’ damage function effectively assumes
that catastrophic climate change is impossible.

Table 1 Value of 500 ppm
policy

Climate sensitivity Increase in stationary equivalent (%)
distribution Nordhaus damages High damages

IPCC AR4 0.31 0.47
Stainforth et al. (2005) 0.34 0.75
Roe and Baker (2007) 0.35 76.70
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It seems reasonable, then, for us to perform our experiments with an alternative
damage function too. In Nordhaus’ specification, climate change damages increase
as a quadratic function of temperature. To account for the potentially catastrophic
consequences of extreme warming, others have suggested employing a more convex
damage function (Weitzman 2012; Ackerman et al. 2010). We achieved this by adding
a higher-order term, which returns very similar results to Nordhaus’ damage function
for small temperature increases but much higher damages for large temperature
changes. Our higher-order term corresponds to that used in Dietz and Asheim (2012,
equation 9), with the coefficient on the higher-order term assuming the value 0.082
(the mean value in Dietz and Asheim 2012). Others have proposed even more convex
damage functions (Weitzman 2012).

As the right-most column of Table 1 shows, with our ‘high’ damage function the
precise shape of the tail matters hugely for the value of the policy. In going from the
thinnest to the fattest tail, the economic value of the policy jumps from increasing
consumption by a mere 0.47 %, to increasing it by fully 76.7 %. This clearly illustrates
the role of the tail in economic analysis of climate change. Thus, provided we do
not exclude the possibility of a climatic catastrophe, as Nordhaus’ damage function
effectively does, economic assessments of climate policy are highly sensitive to what
is assumed about the precise shape of the tail of the climate sensitivity distribution.

Until now, the discussion of uncertainty about extreme warming has focused
exclusively on the climate sensitivity. This reflects the primary focus in the economics
and physical climate science literatures. As we discussed in Section 2, however,
transient temperature changes are also strongly influenced by the effective heat
capacity of the system. In particular, uncertainty about the heat capacity has a strong
impact on our ability to forecast nearer term transient temperatures. A lower heat
capacity front-loads warming, and consequently alters the time profile of economic
benefits associated with emissions abatement.

DICE implicitly assumes an effective heat capacity of 1.8 GJm−2K−1 (see Sec-
tion 2), which is on the high side of what is considered plausible (Frame et al.
2005), and a higher effective heat capacity suppresses large temperature increases
in the short term. This is visible when we plot transient temperature change for heat
capacities of approximately 1.2 GJm−2K−1 and 0.6 GJm−2K−1 (see Fig. 4), values
closer to the median and lower end of the distribution in Frame et al. (2005).5

The implications for the economic value of the policy are stark. Table 2 reveals a
dramatic change in the value of the policy when the heat capacity falls. Going from
the IPCC to the Stainforth tail multiplies the value of the policy several thousand
times, and as the tail gets fatter the value of the policy continues to snowball. Even
a little uncertainty about the tail shape of the climate sensitivity pdf, which may
seem relatively unimportant from a scientist’s perspective, becomes devastating for
economic analysis. A lower effective heat capacity results in a more rapid warming
response to emissions for a given climate sensitivity, which means not only that
the mitigation policy is more valuable, but also that the value becomes much more
sensitive to assumptions about the tail.

5Even lower values of the heat capacity lead to numerical instability in the DICE model when
combined with low climate sensitivities, and thus require a reduction in the time-step applied. This
has limited our ability to explore results for still lower values of the heat capacity, because the time-
step is implicitly defined within multiple parameters and cannot be easily changed.
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Fig. 4 Transient temperature change under varying climate sensitivity and effective heat capacity.
Read as Fig. 3 but for three different values of the climate’s effective heat capacity

The results in Tables 1 and 2 are best understood in the context of the temperature
changes necessary to produce catastrophic economic damages. The economic crite-
rion used to value future consumption assumes the willingness to pay is extremely
high to avoid an outcome where consumption is extremely low. Any future periods
with near-zero consumption will therefore completely dominate the calculation of
the value of the policy, however far off in the future they are. A policy that can

Table 2 Value of 500 ppm policy with varying effective heat capacity

Climate sensitivity Increase in stationary equivalent (%)
distribution 0.6 GJm−2K−1 1.2 GJm−2K−1 1.8 GJm−2K−1

IPCC AR4 1.26 0.80 0.47
Stainforth et al. (2005) 49.63 × 103 19.96 × 102 0.75
Roe and Baker (2007) 75.74 × 105 43.88 × 104 76.70
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avert or even postpone such extreme warming will appear immensely valuable.
With Nordhaus’ damage function, damages rise very slowly as temperatures rise.
Because of thermal inertia, there is no value of the climate sensitivity (or reasonable
combination of climate sensitivity and effective heat capacity) that can produce
sufficient temperature change to drive economic output close to zero over the next
400 years. Consequently, uncertainty about the tail shape is not all that important
(for completeness, Table 2 is replicated with Nordhaus’ damage function in the
supplementary materials). With our high damage function, on the other hand,
damages rise faster with temperatures. As a consequence, it is possible to reach
sufficiently extreme temperatures under the business-as-usual scenario within the
modeling horizon, but not with the 500ppm policy in place. With a sufficiently fat tail
of the climate sensitivity pdf, therefore, our sample of climate sensitivities is likely

Fig. 5 Impacts of mitigation on the higher quantiles of transient temperature change. The three
red lines in each panel trace the 95th, 99th, and 100th percentiles of the distribution of transient
temperature changes (in ascending order) in the business-as-usual scenario. The three blue lines trace
the corresponding quantiles in the mitigation policy scenario
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to include some high values that result in catastrophic warming under business-as-
usual. When there is the possibility of catastrophic warming, then, the value of the
policy derives almost exclusively from its ability to compress down the upper tail of
the distribution of transient temperature changes. The figures in Table 2 therefore
closely correspond to the effects of the mitigation policy on the behaviour of the
higher quantiles of the distribution, as shown in Fig. 5.

The role of the heat capacity can also be understood in these terms. Firstly, as
discussed earlier, a lower heat capacity front-loads warming, thus increasing the
value of mitigation even in moderate warming scenarios. Secondly with a lower
effective heat capacity, a lower climate sensitivity will be sufficient to produce
extreme warming within the period of analysis. We are thus more likely to have
extreme warming even with a thinner tail of the climate sensitivity distribution. This
is why the red lines keep shifting higher and higher as we go from right to left in
Fig. 5, and the value of mitigation derives primarily from averting these more and
more catastrophic possibilities. This is also why the economic value of the policy
increases so rapidly as we go from right to left in Table 2.

4 Discussion

Uncertainty about the shape of the fat upper tail of the climate sensitivity distribution
can wreak havoc with economic analysis of climate policies. However, the climate
sensitivity matters only indirectly. Economic analysis is sensitive to the probability of
extreme warming, and high values of the climate sensitivity are only one of the factors
that lead to rapid warming. As we have shown, uncertainty about the effective heat
capacity also matters a great deal for economic analysis, and this uncertainty greatly
amplifies the economic consequences of uncertainty about the shape of the tail of the
climate sensitivity distribution.

With results like these, it is perhaps understandable that some have concluded
the risk of a climate catastrophe should be the sole determinant of climate policy
(Pindyck 2011). Whether one agrees with this assessment or not, it highlights the
need to improve our understanding of the relevant risks. It would be valuable to
place a greater emphasis on exploring uncertainty about the probability of very
high transient temperature changes directly, which would entail a more inclusive
discussion of the underlying physical uncertainties that accompany a rapidly warming
world. A concrete example of this is carbon cycle feedbacks, which, studies suggest,
are both influenced by and themselves influence the likelihood of higher or lower
warming (Cox et al. 2000; Friedlingstein etal. 2006).

A secondary conclusion relates to the importance of the damage function in
economic analysis. As we saw in Section 3, with one damage function the expected
value of the policy was rather insensitive to the probability of extreme warming,
while another damage function makes the economic analysis hypersensitive. This is
because each damage function implicitly defines what level of warming is considered
catastrophic, and uncertainty about extreme warming plays a profoundly different
role in economic analysis depending on how we define ‘catastrophic’. For all of the
focus on the economics of catastrophic climate change, surprisingly little attention
has been paid to this issue. At a basic level, we must try to understand better the
limits of human adaptation to climate change. A noteworthy example is provided by
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Sherwood and Huber (2010), who note that for wet-bulb temperatures above 35◦ C,
dissipation of metabolic heat becomes impossible in humans and mammals, causing
hyperthermia and death. They proceed to estimate that with an increase in global
mean temperature of roughly 12◦ C, most of today’s population would be living in
areas that would experience wet-bulb temperatures of more than 35◦ C for extended
periods. Given how important the limits of adaptation appear to be for economic
calculations, further exploration of such limitations may prove informative.

Our analysis indicates it would be especially valuable to gain a greater under-
standing of both the physical and social processes associated with a much warmer
world. The proposed endeavour will necessarily be speculative in many respects. It
will involve trying to understand which physical feedbacks will become significant
in the next few centuries, and how much warming they can and cannot account for.
It will require that we both imagine and take seriously the social and demographic
processes that would accompany a quickly changing climate. The fat tail of the
climate sensitivity distribution has perhaps been an effective vehicle for bringing
attention to the issue of extreme warming, but it is time to move beyond this
convenient metaphor and build a scientific view of society in a rapidly warming
world.

Acknowledgements RC, DAS and SD gratefully acknowledge the support of the Grantham
Foundation and the Centre for Climate Change Economics and Policy, funded by the Economic
and Social Research Council and Munich Re. RC is also grateful to the Jan Wallander and Tom
Hedelius Foundation.

References

Ackerman F, Stanton EA, Bueno R (2010) Fat tails, exponents, extreme uncertainty: Simulating
catastrophe in DICE. Ecol Econ 69(8):1657–1665

Allen M, Andronova N, Booth B, Dessai S, Frame D, Forest C, Gregory J, Hegerl G, Knutti R,
Piani C (2006) Observational constraints on climate sensitivity. In: Schellnhuber HJ (ed) Avoid-
ing dangerous climate change, chap 29. Cambridge University Press, pp 281–289

Andrews DG, Allen MR (2008) Diagnosis of climate models in terms of transient climate response
and feedback response time. Atmos Sci Lett 9(1):7–12

Baker M, Roe G (2009) The shape of things to come: why is climate change so predictable? J Clim
22(17):4574–4589

Cai Y, Judd KL, Lontzek TS (2012) Continuous-time methods for integrated assessment models.
Working Paper 18365, National Bureau of Economic Research

Cai Y, Judd KL, Lontzek TS (2012) Open science is necessary. Nat Clim Chang 2(5):299–299
Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to

carbon-cycle feedbacks in a coupled climate model. Nature 408(6809):184–187
Dietz S (2011) High impact, low probability? An empirical analysis of risk in the economics of climate

change. Clim Chang 108(3):519–541
Dietz S, Asheim GB (2012) Climate policy under sustainable discounted utilitarianism. J Environ

Econ Manag 63(3):321–335
Frame DJ, Booth BBB, Kettleborough JA, Stainforth DA, Gregory JM, Collins M, Allen MR (2005)

Constraining climate forecasts: the role of prior assumptions. Geophys Res Lett 32(9):L09702
Friedlingstein P, Cox P, Betts R, Bopp L, Von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I

(2006) Climate-carbon cycle feedback analysis: Results from the C4MIP model intercomparison.
J Clim 19(14):3337–3353

Hansen J, Russell G, Lacis A, Fung I, Rind D, Stone P (1985) Climate response times: Dependence
on climate sensitivity and ocean mixing. Science 229(4716):857–859



Climatic Change

Hof AF, Hope CW, Lowe J, Mastrandrea MD, Meinshausen M, Vuuren DPv (2012) The benefits
of climate change mitigation in integrated assessment models: the role of the carbon cycle and
climate component. Clim Chang 113(3-4):897–917

Hope CW (2011) The social cost of co2 from the page09 model. Economics Discussion Paper 2011-
39, Kiel Institute for the World Economy

Levitus S, Antonov JI, Boyer TP, Stephens C (2000) Warming of the world ocean. Science
287(5461):2225–2229

Lyman JM, Good SA, Gouretski VV, Ishii M, Johnson GC, Palmer MD, Smith DM, Willis JK (2010)
Robust warming of the global upper ocean. Nature 465(7296):334–337

Marten AL (2011) Transient temperature response modeling in IAMs: the effects of over simplifica-
tion on the SCC. Economics 5(2011–18):1–42

Meinshausen M, Meinshausen N, Hare W, Raper S, Frieler K, Frame D, Allen M (2009)
Greenhouse-gas emission targets for limiting global warming to 2c. Nature 458:1158–1162

Nordhaus WD (2008) A question of balance: Weighing the options on global warming policies. Yale
University Press.

Pindyck RS (2011) Fat tails, thin tails, and climate change policy. Rev Environ Econ Policy 5(2):258–
274

Pycroft J, Vergano L, Hope C, Paci D, Ciscar JC (2011) A tale of tails: uncertainty and the social cost
of carbon dioxide. Economics: The Open-Access, Open-Assessment E-Journal

Roe GH, Baker MB (2007) Why is climate sensitivity so unpredictable? Science 318(5850):629–632
Roe GH, Bauman Y (2012) Climate sensitivity: should the climate tail wag the policy dog? Clim

Chang 117:647–662
Senior CA, Mitchell JFB (2000) The time-dependence of climate sensitivity. Geophys Res Lett

27(17):2685–2688
Sherwood SC, Huber M (2010) An adaptability limit to climate change due to heat stress. Proc Natl

Acad Sci 107(21):9552–9555
Stainforth DA, Aina T, Christensen C, Collins M, Faull N, Frame DJ, Kettleborough JA, Knight S,

Martin A, Murphy JM (2005) Uncertainty in predictions of the climate response to rising levels
of greenhouse gases. Nature 433(7024):403–406

van Vuuren DP, Lowe J, Stehfest E, Gohar L, Hof AF, Hope C, Warren R, Meinshausen M, Plattner
GK (2011) How well do integrated assessment models simulate climate change? Clim Chang
104(2):255–285

Weitzman M (2009) On modeling and interpreting the economics of catastrophic climate change.
Rev Econ Stat 91(1):1–19

Weitzman ML (2012) GHG targets as insurance against catastrophic climate damages. J Public Econ
Theory 14(2):221–244


	Tall tales and fat tails: the science and economics of extreme warming  
	Abstract
	Introduction
	The science of extreme warming
	Climate sensitivity
	Effective heat capacity

	The economics of extreme warming
	Discussion
	References


