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these useful for adaptation?

Ana Lopez , Leonard A. Smith, Emma Suckling

January 9, 2012

Abstract

Pattern scaling methods are being widely applied to generate sce-
narios of climate change for quantification of their impacts on dif-
ferent systems. While generic limitations of this approach are well
documented, the implications of the use of pattern scaling to inform
adaptation decisions are not always made clear. The range of errors
that are expected a priori are discussed and illustrated. Particular
examples are used to demonstrate the extent to which pattern scaling
is likely to be an unreliable tool for the quantification of the likely im-
pacts of climate change. It is suggested that internal consistency tests
are considered in any attempt to apply pattern scaling in practice.

1 Introduction

Global Climate models (GCMs) output interpreted through pattern scal-
ing, change factors, and statistical and dynamical downscaling methodolo-
gies are frequently employed to quantify the impacts of climate change on
water resources, food and energy production, biodiversity, and other sec-
tors [1, 2, 3, 4]. Pattern scaling in particular is used to generate climate
change scenarios under changes in anthropogenic forcings that have not been
simulated by full GCMs, but can cheaply be ”simulated” by simpler (and
computationally faster to run) climate models. The main assumption of the
pattern scaling approach is that the anthropogenic climate change signal at
any region and/or time horizon (the response pattern) is linearly related with
the global mean temperature change for the corresponding forcing scenario
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and period. The spatial pattern of change is also assumed to remain con-
stant at any time horizon or forcing scenario [5, 6]. This approach assumes
both spatial linear superposition and linear functional relationships within
the climate system, therefore its application to non linear systems should be
evaluated, and tests of internal consistency developed.

Pattern scaling is currently used to generate projections of climate change
and to quantify their impacts. For instance the Australian climate change
scenarios [7] and the UK Climate Projections UKCP09 [8] use this approach
as part of their methodology to generate probabilistic projections of climate
change. The technique is also being employed to evaluate the impacts of
climate change on, for instance, ecosystems [3] and water resources [1, 2] ,
and the contribution of land use changes to climate change [4]. Within the
framework of the Representative Concentration Pathways (RCPs), the next
generation of scenarios for climate change research that constitute the basis
of the IPCC Fifth Assessment Report, pattern scaling methods are being
considered as a tool to generate climate projections not directly simulated
by GCMs [9]. The assumption is that the climate projections obtained using
pattern scaling will enlarge the ensemble of directly simulated projections
that can provide information to evaluate the impacts, adaptation and vul-
nerabilities under climate change. In particular within the context of climate
change impacts studies, it is argued that while pattern scaling will provide
the large scale patterns of change, its use in combination with some down-
scaling/weather generator methods will generate the information needed at
“decision relevant” scales [9].

Our work addresses directly some of the questions possed by Moss et
al. [9, 10] in their work describing the Recommended Concentration Paths
(RCP). Moss et al. [9, 10] state that it is necessary to evaluate ”whether
the results of scaling different atmosphere-ocean general circulation model
(AOGCM) derived climate scenarios will be sufficiently comparable to full
AOGCM runs designed to achieve similar outcomes”. Understanding these
issues is particularly important to evaluate whether the pattern scaling ap-
proach can actually provide robust and reliable decision making information
for adaptation, vulnerability and policy analysis. If the assumptions under-
lying the approach are shown to fail and/or the method is not internally
consistent, then its use to inform adaptation decisions is highly questionable.

We start in the following section by briefly describing the pattern scal-
ing approach and its underlying assumptions .The three main assumptions
are: first that local climate responses to changes in external forcing are lin-
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ear functions of the induced global mean temperature changes; second that
model simulated changes are robust independently of model biases; and third,
that responses to external forcings and natural internal variability are inde-
pendent, specifically that anthropogenic forcings do not modify the internal
variability of the climate system. We argue that, in general, these assump-
tions can not be expected to hold at regional or local scales, and consequently
evidence of their validity is required for each particular study.

We then evaluate the internal consistency of the approach. That is, as-
suming that there are scales at which the method can be used, we evaluate
whether the decision relevant information generated by pattern scaling is
internally consistent with the one provided by a full model simulation. In
order to do so, in section 3 we apply this approach to a large ensemble of
climate models and investigate if the errors of the pattern scaled projections
are significant enough to affect estimates of climate change impacts. We
show through specific examples that the original model information is highly
distorted after pattern scaling; the approach changes the variability of the
projections and estimates of warming and warming rates that are relevant
for humans and ecosystems adaptation, with errors large enough to misled
adaptation decisions. Pattern scaling is shown to be unfit for purpose in
the cases analyzed here, suggesting that those who apply this method should
establish if it is fit for purpose for the application of interest. Needless to say,
in cases where climate model simulations do not have skillful information at
the impacts relevant scales, neither pattern scaling nor any other approach
used to generate new projections based on that data can possibly ”create”
skillful climate change projections.

Section 4 is devoted to the conclusions.

2 Methods and data

2.1 Pattern Scaling approach and underlying assump-
tions

Mitchell [5] defines pattern scaling as follows. Suppose that T (x, y, t) is the
actual pattern of change in the variable T at (x, y, t), as simulated by a full
GCM. Then, an approximate pattern of change T ∗(x, y, t) for this variable
can be obtained in terms of a spatial pattern P (x, y) , and the global mean
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change T̂ as follows

T ∗(x, y, t) = T̂ (t) + P (x, y)T̂ (t), (1)

where P (x, y) is the pattern that minimizes the distance between T and T ∗,
i.e., it minimizes

∫
dt[T (x, y, t) − T ∗(x, y, t)]2 1. This approximation encap-

sulates the assumption that the spatial pattern of change P is constant in
time, and the only effect of the transient forcing will be to scale the pattern
up or down following the trajectory of the global mean temperature change.
Hence ”pattern scaling”.

The spatial pattern derived in this way using the information from a full
GCM, can then be used to generate time and space dependent patterns of
change for other forcing scenarios that have not been simulated by any full
GCM. Simple fast climate models (such as energy balance models) can be
run cheaply under various forcing scenarios to provide the global mean tem-
perature changes T̂ . The attraction of pattern scaling is that it allows these
inexpensive runs to provide ”spatial” information simply by multiplying T̂
by P (x, y), as in equation (1), generating time and space dependent changes
under these new forcing scenarios. Mitchell et al [5] show that for the forcing
scenarios they consider, the error in annual mean temperature when using
T ∗ instead of T is smaller than the sampling error due to the model’s internal
variability (as defined by an initial conditions (I.C.) ensemble), where the er-
ror as a function of time is defined as the rms distance

∑
x,y[(T

∗ − T )δxδy]2.
Our results confirm this observation, however we note that this is not a de-
sirable property of the methodology if it is to be used to evaluate impacts,
since it only means that the approach reduces the variability of the full GCM
ensemble.

The main characteristics of the projections obtained using this approach
and its limitations when applied to decadal annual or seasonal means have
been discussed previously [5, 6]. For instance it was shown that: the pattern
scaled projections fall within the range of the internal model variability as
defined by the initial conditions ensemble; patterns derived using transient
simulations do not have skill to project long term effects of stabilization
scenarios; and a pattern derived with a given concentration of greenhouse
gases fits a scenario with reduced greenhouse gases well, but a scenario with
greenhouse gases and aerosols poorly (due to the fact that aerosols remain

1The first EOF derived from the time series [T (x, y, t) − T ∗(x, y, t)] gives the same
pattern as P (x, y) [5].
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more localized)[5]. In [6] it was shown that the technique works better for
temperature than precipitation, due to the fact that the signal of change is
not very strong for precipitation. Pattern scaled projections fail to reproduce
extremes; it has been argued that in this case a non linear relationship should
be considered [11]. An analysis for South America has also shown that errors
in pattern scaled projections are smaller than GCM biases [12], though as
we will see this result does not imply that the use of pattern scaling is well
justified.

Equation (1) implies that for the pattern scaled field T ∗ to be a good
approximation to the fully simulated field T it is required that:

1. Local climate responses to changes in external forcing are linear in
global mean temperature changes.

2. Model simulated changes are robust.

3. Responses to external forcing and natural internal variability are in-
dependent of each other, i.e., changes in anthropogenic forcing do not
change the internal dynamics of the climate system.

To clarify whether or not the pattern scaling approach may prove able to
generate decision relevant information, we discuss the likely validity of these
assumptions individually.

1. Local climate responses to changes in external forcing are
linear in global mean temperature changes. This assumption implies
that, for instance, the warming pattern for a 4o global warming is the same
as for a 2o global warming, but twice as big. Pattern scaling is only vi-
able if local temperatures scale linearly with global mean surface tempera-
ture. In addition, the simple energy balance models used to simulate global
mean surface temperature assume that their changes are linear with changes
in radiative forcing (net forcing downwards at the top of the atmosphere).
Therefore, the pattern scaling approach must presuppose that local surface
temperatures scale linearly with radiative forcing.

At regional/local spatial scales however, processes other than radiative
transfer are important in determining local climate. For instance Lawrence
et al [13] show that even though land cover changes in the comunity cli-
mate system model (CCSM) do not result in very significant global changes,
larger regional and seasonal changes are observed mostly driven by changes
in surface hydrology, with radiative forcing playing a less important role (for
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instance less water available in the soil for evapotraspiration will change the
relative importance of latent heat and sensible heat). Changes in atmospheric
circulation that play an important role for regional climates can have a non
linear relationship with large scale warming, as discussed by Petoukov et al
[14] in relation with recent cold winter extremes over northern continents.
These results bring the linearity assumption into question.

2. Model simulated changes are robust.
Climate models have large biases when compared with present climate

[15, 16]. In spite of their lack of skill in reproducing many aspects of present
climate, it is assumed that climate models’ simulated changes over the next
century or so are robust. While this hypothesis can not be verified, some
modeling studies indicate a strong connection between larger biases in sim-
ulated current climate with higher climate sensitivity [17], suggesting that
larger simulated warming might be related to the presence of model biases.

Of course when non-linear physical processes are invoked, this assumption
is a nonsense. Such phenomena include snow-albedo feedback [18], sea-ice
feedback [19], [20], and possibly changes in circulation patterns that could
be altered under climate change [21].

Models with significant biases can not be expected to perform linearly.
An example of this is the snow-albedo feedback at high latitudes. If the
simulated temperature has a large positive bias, then there is no snow to be
melted in spring/summer. Consequently the amount of water that can be
stored in the soil decreases, reducing evapotranspiration that in turn results
in a relative increase in sensible over latent heat (a decrease in soil moisture
content is related with the occurrence of heat waves [22]). Therefore, it
is reasonable to expect that for models with large temperature biases, the
occurrence of temperature extremes can be a spurious result due to the model
bias.

Similarly, models that simulate smaller ice extent in the Arctic at present,
show a more pronounced sea-ice albedo feedback, simulating larger warming
in this region [23].

Changes in circulation patterns can also occur as a consequence of model
biases: with a large positive bias in surface temperature, snow cover decreases
and the land surface warms (through reduced albedo) faster than the ocean.
This can induce changes in the local atmospheric circulation pattern (surface
convergence over the land and divergence over the ocean) [21].

3. Responses to external forcing and natural internal variability
are independent of each other, so that changes in anthropogenic
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forcing do not change the internal dynamics of the climate system.
The underlying assumption here is that changes in anthropogenic forcing

do not change the internal dynamics of the climate system. Therefore a static
spatial pattern of change can be obtained from a given GCM run under a
particular forcing, and the only effect of any other transient forcing will be
to scale up or down that given pattern by the new global mean temperature
change. It is well known however, that for non-linear systems, in general
changes in forcings are expected to affect the internal dynamics of the system
[24].There is no obvious reason to think that this result will not hold for
the climate system. Ignoring the possibility of runaway changes induced
by internal feedbacks, it could perhaps be argued that induced changes to
internal variability can be neglected when focusing on long term global mean
temperature changes to inform mitigation policies. On short time scales
this approximation must be justified in a case by case basis at the smaller
spatial scales relevant for impacts and vulnerability studies. On long time
scales however, when the local forest may have become a local desert, the
assumption is dubious even for large scale averages.

The previous discussion raises serious doubts as to whether the pattern
scaling technique is fit for purpose at regional or local scales; evidence is
required that each of these assumptions are met in each study. Otherwise
the information generated to be used for adaptation and vulnerability studies
is fundamentally flawed.

Independently of the fact that regional and local changes are not well ap-
proximated linearly, one can determine whether (or not) the pattern scaling
approach preserves model information relevant for adaptation decision mak-
ing. In the rest of this paper we show, through some particular examples,
that pattern scaled projections are inconsistent with the model runs from
which they are derived. Taking as illustrative examples occurrence of heat
waves in Europe, and changes in decadal rates of warming at subcontinental
scales, we show that the pattern scaling approximation destroys potentially
relevant information contained in the model simulations, in particular infor-
mation about temporal variability. In this work, it is not our goal to evaluate
the decision relevance of the models, rather given the model simulation, our
aim is to evaluate whether the model information is conserved by the pattern
scaling approach, effectively providing a test of internal consistency for the
pattern scaling approach.
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2.2 Model data

We analyze data generated by the climateprediction.net (cpdn) experiment
[25], an ongoing experiment in which individual model simulations are car-
ried out using idle processing capacity on personal computers volunteered by
members of the general public.

The climate model used is HADCM3L, a version of the UK Met Office
Unified Model consisting of the atmospheric model at standard resolution (
2.50 latitude, 3.750 longitude) including nineteen vertical layers coupled an
ocean with twenty levels. The experiment intends to explore the effects of
both, initial conditions and model parameter perturbations. Each simulation
involves a 160-year transient run that includes two phases. In the historical
phase, from 1920 until 2000 the experiment is forced with historical records
of CO2, volcanic emissions, and solar forcings. In the second phase, the
SRESA1B scenario is used to force the model response between 2000 and
2080.

In this work we concentrate on two subsets of simulations.
Set A consists of a 67 member initial conditions ensemble of the HADCM3L

model run with standard values of the physical parameters, but different ini-
tial conditions. In section 3.1 we use set A to evaluate whether the pattern
scaling approach preserves the internal variability of the model ensemble.

Set B is a set of 1476 transient simulations that were completed by June
2009, and constitute a perturbed physics ensemble. This ensemble explores
the uncertainty associated to perturbing 26 model parameters that are rel-
evant to model simulation of radiation, large scale clouds formation, ocean
circulation, sulphate cycle, sea ice formation, and convection in the atmo-
sphere. In section 3.2 we use set B as a proxy to evaluate the performance of
the pattern scaling approach when using the pattern extracted from a model
ensemble forced by a given emissions scenario, to approximate projections of
GCMs under a different emissions scenario.

A variety of climate variables at different temporal (monthly to decadal
means), and spatial scales (grid points to continental averages) are being
stored by this experiment. Monthly time series are available for the Global
mean, the area average over 22 continental to subcontinental regions similar
to the Giorgi regions [26]2, eight grid boxes covering the United Kingdom,

2These regions are defined as rectangles covering the same land area as the Giorgi
regions but including the adjacent oceans,and follow the naming convention of the IPCC
4AR [27]
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and six other areas spanning part of the oceans. Seasonal decadal means are
stored for gridded data for sixteen decades between 1920 and 2079.

In what follows, we evaluate the pattern scaling approach when applied
to the Giorgi regions monthly temperature time series. Giorgi regions are
larger than the scales that are usually relevant for many impact studies.
However we assume that if the pattern scaling approach fails to reproduce
model relevant information at these large scales, the failure will persist, or
presumably become more significant at smaller scales.

3 Results

3.1 Consistency of pattern scaled temporal variability.

In this section our aim is to understand how the pattern scaling approach
changes the temporal variability of the model runs projections, and the im-
pact of those errors in adaptation decisions. We assume that the I.C. ensem-
ble,i.e., set A, provides an estimation of internal temporal variability in this
model system, and evaluate whether that is changed in the pattern scaled
ensemble.

We calculate the spatial pattern P (x, y) from the I.C. ensemble mean.
We then compute the ”pattern scaled model runs” (PSR) using equation (1)
and taking as T̂ (t) the simulated global mean temperature for each individual
model run (MR) in the set A. We consider two temporal scales: decadal and
monthly means.

We observe that when applying the pattern scaling technique to decadal
means our results are broadly consistent with [5]. For instance we find that
the root mean square error (r.m.s) between spatial patterns of each MR and
its corresponding PSR for different decades are relatively small (less than
0.30) and stationary, reflecting the stationarity of the range of variability
of the set A (over the 21st century the I.C. ensemble does not increase its
spread as a function of time). Moreover, these r.m.s. fall within the range
of r.m.s between any pair of MRs. Arguably this result is not surprising. By
construction , pattern scaling smoothes any regional/local variability in time
and replaces it by the much smaller temporal variability of the global means.
Long term decadal means have the similar effect : they smooth short term
variability. Therefore, it must be expected that projections obtained using
pattern scaling applied to decadal means should be close to decadal averages
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of model projections when spatially averaged over the Globe. However, an
evaluation of the PSR ensemble based on r.m.s between the spatial patterns
of the pattern scaled trajectory and the GCM trajectory for any given time
is misleading, particularly if we are interested in the range of projections for
a given decade and region. In figure 1 we illustrate this point for Northern
Europe and three different decades. The figure shows the differences between
the PSR and MR cumulative distribution functions (CDFs). For instance,
the top panels show that, in the 2020s, the probability of exceeding 20 accord-
ing to the MR ensemble (1− CDFMR) is more than three times larger than
the same probability evaluated with the PSR ensemble (1−CDFPSR). Sim-
ilar results are obtained for other regions. Clearly, the range of projections
simulated by the MR ensemble is underestimated by the PSR ensemble.

Implications for impacts analysis: occurrence of heat waves
The reduced variability of the PSR ensemble with respect to the MR

ensemble observed for decadal means is exacerbated when pattern scaling
is done for monthly time series. Following the procedures in [6] we now
extract a pattern P in eq.1 for each individual month using the set A mean,
and then obtain PSRs by scaling this pattern using the global annual mean
temperature change of each model run. How relevant are the differences
between the ranges of variability of the two ensembles will depend on the
particular impact being studied.

As an example to illustrate this issue, we consider the occurrence of heat
waves in Southern Europe. We assume that a heat wave can be quantified , to
a first approximation, in terms of changes in mean summer temperature only.
Motivated by the fact that during the 2003 European heat wave the mean
summer temperature of Southern Europe (defined as the region between 10W
and 40E, and 30 and 50N) was 2.3o higher than the 1961-1990 mean [28], we
define an occurrence of a heat wave in the future every time the projected
summer mean temperature change in Southern Europe is larger than 2.3o.
We then analyze how adaptation decisions to reduce the vulnerability to heat
waves depends on whether one considers the MR or the PSR ensembles to
quantify their occurrence. Figure 2 summarizes our findings. The frequency
distribution of the 2003 Southern European mean summer temperatures for
the PSR and MR ensembles shows that the former looses the more extreme
lower and higher temperatures projected by the models (fig 2.a). Time series
for different quantiles of the PSR and MR ensembles are plotted in fig 2.b.,
showing how the risk of overshooting the threshold (horizontal black line) as
quantified by the MR or the PSR ensembles is highly ensemble dependent,
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particularly at the beginning and the end of the time series. Figure 2.c shows
the change in time of the fraction of PSR and MR projections that overcome
the 2.3 threshold.

The use of the pattern scaling approach to estimate changes in the risk
of heat waves presupposes that the top and bottom panels in Figure 2.b for
instance are equivalent. Observe that they vary tremendously: while the PSR
ensemble would suggest that no significant changes in the risk of heat waves
will be observed until the 2030s, the MR ensemble projects a 10% increase
by the 2020s. Moreover, the PSR ensemble projects a sudden increase in risk
around the 2040s, while the MR ensemble projects a smoother increase of
the risk over the 21st century. If a decision maker was to base her adaptation
planning on this information, the pathways to be undertaken according to
these two ensembles would be significantly different. In the case of the PSR
ensemble, there is still time to wait and see if new observational evidence or
modeling approaches can reduce the uncertainties in the projections. For the
MR ensemble however, the risk increases significantly already during the next
decade, and the time left to put in place measures to reduce the vulnerability
of the exposed population to heat waves, or to wait for improved climate
information is much shorter. Clearly, for a given level of risk tolerance, the
pattern scaled ensemble generates false confidence potentially leading to mal
adaptation.

This example illustrates that the pattern scaling approach fails to repro-
duce decision relevant information contained in the full GCM simulations.
We remark that we are not suggesting that the MR ensemble projections
are robust to quantify the risk of heat waves in Southern Europe in the 21st
century, we are simply arguing that if they were, they would be very much
misrepresented by the PSR ensemble.

3.2 Consistency of warming rates for pattern scaled
projections under different forcings

In this section we focus on another aspect of pattern scaling. As already
mentioned, this approach is considered as a quicker and cheaper way to
generate multiple climate change scenarios to evaluate impacts of climate
change, but without the need to run expensive GCMs. The generation of
multiple scenarios thus requires that patterns derived from a set of models run
under a given forcing scenario are used to emulate climate change projections
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for other different forcing scenarios. It has been shown that the accuracy of
pattern scaling deteriorates when extrapolating to higher forcing scenarios,
with errors being greater when scaling from low to high scenarios than when
scaling from high to low [6, 29]. Here we are interested in understanding the
implications of these errors in the pattern scaled projections for adaptation
decisions. Due to the fact that the PPE or set B has been run under just one
forcing scenario (SRESA1B), we can not use it to address exactly the problem
posed above,i.e., errors incurred when pattern for one emissions scenario is
used to generate projections for other emission scenario. We can however
ask whether spatial patterns derived from sets of fast (slow) warming models
can reproduce the magnitude and speed of temperature changes simulated
by slow (fast) warming models when scaled by the global mean temperatures
of the later. Information about rate of changes is relevant, for instance,
to evaluate the ability of many ecosystems to adapt to changes in climatic
conditions, as this ability is strongly dependent not only on the magnitude
of the warming, but also on the rate at which changes occur [3].

Implications for impacts analysis: warming and warming rates
We consider for our illustration two sets of models within the set B, those

whose 2030s decadal mean temperature change falls within the range (2 ±
0.5)0C (1084 model runs) and those whose 2030s decadal mean temperature
change falls within the range (3±0.5)0C (240 model runs), using as a baseline
the period 1961− 1990. We refer to first group as the 20C ensemble and the
second one the 30C ensemble. We then generate two sets of pattern scaled
trajectories. The first one is obtained deriving the spatial pattern P (x, y) in
equation (1) from the 20C ensemble mean and scaling it by the global mean
temperatures (GMTs) simulated by the model runs in the 30C ensemble. The
second one is obtained deriving the spatial pattern P (x, y) in equation (1)
from the 30C ensemble mean and scaling it by the global mean temperature
of the model runs in the 20C ensemble. Even though the differences between
the two spatial patterns are not large (within a tenth of a degree for all
regions), there are errors in the PSR as compared with the corresponding
MR due to the different warming rates of the two sets of models.

As illustrated in figure 3 for Northern Europe, when scaling the pattern of
models that warm slowly (20C ensemble) by the GMTs of models that warm
faster (30C ensemble), the resulting PSRs mostly overestimate the warming
(figure 3.a)). For instance, in all decades nearly 50% of the PSRs overestimate
the warming by more than 0.50C when compared to the corresponding MRs.
Alternatively, when scaling the pattern of models that warm faster (30C
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ensemble) by the GMT of models that warm slowly (20C ensemble), the
resulting PSRs mostly underestimate the warming (figure 3.b)). In this case,
by 2020s about 15% of the PSRs underestimate the warming by 0.50C, and
the proportion increases to one third of the PSRs by the 2040s and 40% later
on in the 21st century.

To put these temperature differences into context, some authors have es-
timated that changes in the growing season temperature within the range
[−0.50C, 0.50C] can cause changes in yields of [5%,−5%] for maize. Tem-
perature changes within the range [−10C, 10C] can cause yields’ changes of
[10%,−10%] for barley and [4%,−4%] for wheat [30, 31]. Of course there are
large uncertainties in these estimates, and they refer to growing season tem-
peratures and not annual averages. They serve however as an illustration of
how significant the errors in pattern scaling can be in relation to the current
estimates of impacts of global warming in crop yields.

We also analyze the decadal warming rate, i.e., the change in temperature
between any two consecutive decades. We find that in general, the PSR
ensemble has a reduced range of warming rates as compared to the MR
ensemble, consistently with the fact that the PSR ensemble has a reduced
variability. In figure 4 we show the scatter plots for MRs warming rates vs
PSRs warming rates for different decades for Northern Europe. We observe
that differences between warming rates for PSRs and corresponding MRs can
be as large as 10C in magnitude 3 and in some cases the sign of the changes
are different. This has implications for, for instance, the use of pattern
scaling to generate climate projections to evaluate ecosystems’ adaptation to
climate change. In general, ecosystems are sensitive not only to the amount
of change but also to the rate at which the change occurs. It’s likely that
the slower the change the greater the potential for adaptation by dispersal
or through natural selection for physical or behavioral characteristics that
are better suited for a changed climate. Some authors have estimated that
ecosystems can withstand warming rates of about 0.05 − 0.10C/decade [3].
Basing adaptation decision on pattern scaled projections that can under or
over estimate the rate of warming by several times these magnitudes has the
risk of resulting in maladaptation.

We conclude that the errors in the magnitude of the decadal warming and
decadal warming rates as estimated with the pattern scaled projections, are
of the same order or larger than the amount of warming that could severely

3Notice this is several times the observed current warming rate of 0.130C/decade [27]
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affect crop production, or the rate of changes that could diminish the ability
of ecosystems to adapt to new climatic conditions. Pattern scaling errors are
large enough to mislead adaptation decisions and pattern scaled projections
would not be fit for purpose for, for instance, crop production adaptation
planning.

4 Conclusions

Pattern scaling was developed as a tool to generate climate projections not
directly simulated by GCMs [5, 6, 29], and is currently used under the as-
sumption that the generated climate projections enlarge the ensemble of di-
rectly simulated projections providing information to evaluate the impacts,
adaptation and vulnerabilities under climate change. In this paper we have
investigated whether or not this methodology can actually generate robust
and reliable decision making information. It seems unlikely that this is the
case in many situations of interest. We therefore suggest consistency tests be
employed whenever patter scaling is considered as a tool in decision support.

Firstly we discuss the assumptions underlying pattern scaling, and whether
these hold at the regional/local scales relevant for adaptation decisions. The
three main assumptions are : local climate responses to changes in exter-
nal forcing are linear in global mean temperature changes; model simulated
changes are robust; and responses to external forcing and natural internal
variability are independent of each other, so that changes in anthropogenic
forcing do not change the internal dynamics of the climate system. The
first assumption fails when considering regional/local spatial scales where
processes other than radiative transfer are important in determining the lo-
cal climate. The assumption that model simulated changes are robust fails
when the regional/local climate is determined by processes where model bi-
ases might affect significantly simulated changes. In the case of the third
assumption it has been shown to fail for simpler non linear systems [24].
For the climate system, it could perhaps be argued that induced changes
to internal variability can be neglected when focusing on long term global
mean temperature changes to inform mitigation policies. But it is not clear
that this approximation can be justified at the smaller spatial and temporal
scales relevant for impacts and vulnerability studies. Even at larger scales,
it assumes not significant feedbacks from changes in the small scales.

Secondly we evaluated the internal consistency of the approach. That is,
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assuming that there are scales at which the method can be used, we evaluate
whether the decision relevant information obtained using pattern scaling is
internally consistent with the one provided by a full GCM simulation. We
start by analyzing how the pattern scaling approach changes the temporal
variability of the model runs projections, and the impact of those errors
in adaptation decisions. We assume that the climateprediction.net I.C. en-
semble provides an estimation of internal temporal variability in this model
system, and evaluate whether that is changed in the pattern scaled ensemble,
and find that the pattern scaled ensemble reduces significantly the variability
of the original ensemble. For instance, using as an illustration the occurrence
of heat waves in Southern Europe, we find that if a decision maker was to
base her adaptation planning on this information, the pathways to be under-
taken according to the two ensembles would be significantly different. In the
case of the PSR ensemble, there is still time to wait and see if new observa-
tional evidence or modeling approaches can reduce the uncertainties in the
projections. For the MR ensemble however, the risk increases significantly
already during the next decade, and the time left to put in place measures
to reduce the vulnerability of the exposed population to heat waves, or to
wait for improved climate information is much shorter. We finish by using
the Perturbed Physics Ensemble (PPE) as a test bed to analyze whether
spatial patterns derived from ensembles of fast (slow) warming models can
reproduce the magnitude and speed of temperature changes simulated by
slow (fast) warming models when scaled by the global mean temperature of
the latest. We find that the errors in the magnitude and decadal rate of
temperature change are similar to or larger than estimates of the amount of
warming that can severely affect crop yields or the rate of warming that can
strongly affect the ability of ecosystems to to adapt to changes in climatic
conditions. Therefore, in this case as well, pattern scaling errors are large
enough to mislead adaptation decisions.

We conclude that deploying pattern scaling as a quick (and cheap) way
to generate scenarios for impacts is problematic. By focusing on particular
model outputs, we have seen that assuming that the models have valuable
information, that information can not be completely captured if models (with
their internal variability) are replaced by pattern scaled projections using a
simple climate model and a spatial pattern of change obtained from a full
GCM ensemble. In the cases we have analyzed they are not fit for purpose
to address problems where the knowledge of temporal and spatial variability
is required. Our findings make concrete the IPCC 4AR statement that ”for
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some quantities like variability and extremes, such scaling is unlikely to work”
[27] 4, and reinforce the necessity of clearly evaluating the consistency of the
method before embarking in particular analysis that can otherwise end up
with misleading information.
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Figure 1: Relative probabilities of exceeding a temperature change threshold
for the MR and PSR ensembles in Northern Europe. The panels on the left
hand side show cumulative distribution functions (CDFs) for the MR and
PSR ensembles for three different decades. The panels on the right hand side
show the relative probability of the change in temperature being smaller than
a given value (CDFMR/CDFPSR) (left side) , and the relative probability of
the temperature change being larger than a given value (1 − CDFMR/1 −
CDFPSR)(right side). The vertical line indicates the temperature change for
which CDFMR = 0.5.
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Figure 2: Southern Europe projections for summer warming and Heat Waves:
a) year 2003 frequency distribution of PSR(left) and MR(right) projected
mean summer temperature changes, red vertical line indicates 2.30 thresh-
old, b) MR(top) and PSR(bottom) ensembles’ projections for summer tem-
perature change as a function of time, black horizontal line indicates 2.30

threshold, c) change in annual risk of heat wave occurrence as quantified by
the MR (blue) and PSR (red) ensembles.
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Figure 3: Dependence of decadal warming on ensemble sensitivity for North-
ern Europe: a) MR vs PSR temperature changes when pattern extracted
from 20 ensemble mean is scaled by GMTs of MRs in 30 ensemble, pat-
tern scaling overestimate warming in this case. b) MR vs PSR temperature
changes when pattern extracted from 30 ensemble mean is scaled by GMTs
of MRs in 20 ensemble, pattern scaling underestimate warming.
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Figure 4: Dependence of decadal warming rate on ensemble sensitivity for
Northern Europe: a) MR vs PSR warming rate when pattern extracted from
20 ensemble mean is scaled by GMTs of MRs in 30 ensemble . b) MR vs
PSR temperature changes when pattern extracted from 30 ensemble mean is
scaled by GMTs of MRs in 20 ensemble.
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