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ABSTRACT

Operational forecasting with simulation models involves the melding of observations and model dynamics

to determine a set of initial conditions for each forecast. The Kalman filter (KF) provides the optimal closed-

form solution to a general linear stochastic (perfect model) case, while the target of the problem has not even

been defined in the case of imperfect models. Data assimilation in a nonlinear, perfect-model scenario is

considered. It is shown that a new fully nonlinear approach based upon the indistinguishable states (IS)

systematically outperforms the ensemble Kalman filter (EnKF). The IS provides an ensemble of initial

conditions, consistent with (i) the model dynamics, (ii) the observational noise model, and (iii) the particular

observations over a window. It is argued that this is the relevant limit to consider in data assimilation, when the

desire is to place high probability density in the vicinity of the target state. The advantages of the IS approach

come in part from its ability to provide attractor-balanced ensembles near any attracting manifold the system

may evolve on. The use of an EnKF provides a computationally cheaper alternative that place points in the

general vicinity of the target. A low (i.e., 2) dimensional example is used to provide easily visualized evidence

for these claims, which are then tested in a higher (i.e., 12) dimensional system. Inasmuch as the IS approach is

shown to outperform the EnKF systematically in these perfect-model experiments, it provides an interesting

alternative approach when informative ensembles are desired.

1. Introduction

Data assimilation is the procedure of combining sim-

ulation models with observations. Given noisy observa-

tions, the aim of data assimilation is, arguably, a sample of

(weighted) model states, consistent both with the ob-

servations and the given noise model. A key goal of data

assimilation is the generation of a reliable sample of sys-

tem states for real-time applications including nowcasting,

numerical weather prediction, and seasonal prediction.

Simulation models of interest are high-dimensional, non-

linear, chaotic dynamical systems, which are imperfect.

Observations are typically incomplete, available at dis-

crete times, and contaminated with observational noise

with poorly known characteristics. The main aim of this

paper is to demonstrate that ensembles formed using

a new nonlinear method systematically outperform those

based upon a state-of-the-art linear method in a variety

of perfect-model contexts.

In this paper, we consider data assimilation in the

perfect-model scenario (PMS). Within PMS, the system

state and model state estimates evolve according to the

same dynamics, and the statistical characteristics of the

observational noise are known exactly. Probability theory

is the guiding framework for data assimilation in this

setting (Jazwinski 1970). We advocate the following def-

inition of data assimilation within PMS: given a prediction

model and observations up to and including the present

time t 5 0, the goal of data assimilation is to sample

(ideally to compute) the conditional probability distri-

bution of the system state. Given this definition, we view

any method that seeks to generate a set of states for t 5

0 representative of this conditional probability distri-

bution as a method for ensemble data assimilation. This

includes a whole variety of methodologies and frame-

works, including those explored in this article. Given the
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complexity and size of simulation models of interest,

solving the problem analytically is intractable and Monte

Carlo (ensemble) methods (Leith 1974) are used instead.

The use of nonlinear models suggests the use of en-

semble data assimilation methods, which do not rely,

implicitly or explicitly, on assumptions of dynamical

linearity. Approaches that are optimal in linear sys-

tems (like the Kalman filter; Kalman 1960), need not

perform well in nonlinear systems. The primary goal of

this paper is to contrast a standard linear method with

a nonlinear method, illustrating their relative ability in

the limit of large computational resources.

We describe and compare a novel methodology for

nonlinear ensemble data assimilation based upon in-

distinguishable states (IS). The IS approach has a num-

ber of appealing properties: it does not require explicit

assumptions regarding the form of prior distributions,

nor does it require complicated resampling techniques,

nor prior specification of the properties of model error.

By construction, the IS approach forms ensemble mem-

bers from model trajectories, thus forming ensembles

that reflect the (nonlinear) dynamics of the model. In

PMS, the IS approach has theoretically satisfying limit-

ing properties that do not hinge on dynamical linearity

or distributional assumptions. The IS approach can be

applied to nonlinear observation operators and non-

Gaussian likelihood functions without approximation.

An IS approach will also function in the special case of

vanishingly low observational noise and linearized dy-

namics, but can never be expected to outperform opti-

mal linear methods in truly linear problems.

In section 2, the problem of probabilistic state estima-

tion in the context of ensemble data assimilation is de-

scribed, along with a simple method for comparing two

ensemble data assimilation methods probabilistically. In

section 3, we describe the theory underlying the IS ap-

proach and its practical implementation. To illustrate

aspects of this IS method, which differ from others, re-

sults from a series of Observing System Simulation Ex-

periments (OSSEs; Daley 1991; Arnold and Dey 1986)

are shown. Here the IS method is compared to an en-

semble Kalman filter data assimilation technique that

has been successfully demonstrated in high-dimensional

atmospheric prediction problems (Anderson 2001, 2003;

Anderson et al. 2005). In comparing two relatively com-

plicated ensemble data assimilation schemes (IS and en-

semble Kalman filter), we find it insightful to also include

relatively simple ensemble data assimilation schemes in

order to confirm that complex methods are worthwhile,

and the degree to which they are useful (McSharry et al.

2003). We compare to two additional schemes, one based

only on the observational noise, which provides a ‘‘zero

skill’’ baseline assuming no knowledge of the system’s

dynamics; the other method selects initial conditions in

a manner consistent with the long-term dynamics (i.e.,

‘‘on the attractor’’) but only uses observational in-

formation at the analysis time (i.e., no prehistory). De-

tails of these schemes and numerical experiments are

provided in section 4. In section 5, results are shown for

a nonlinear chaotic two-dimensional Ikeda system,

while in section 6, results are shown for a 12-variable

Lorenz (1996) system. In both sections 5 and 6, for

a nonlinear regime of the model/data assimilation

system, we demonstrate how this IS method signifi-

cantly outperforms the ensemble Kalman filter (and the

other schemes). Section 7 provides a discussion and the

conclusions.

2. Evaluating probabilistic state estimation using
ensembles

a. Definitions and notation

We work within the strong perfect-model scenario,

where the system and model states evolve according

to the same dynamics: the model is structurally correct

and there is no parametric uncertainty. In this case a

‘‘true’’ system state exists. The true system state is de-

noted by ~x
ti
, where ti is time indexed by i and ~x

ti
is an

~m-dimensional vector. We make a number of assump-

tions in setting up the problem, with little loss of gen-

erality. Assume that observations of the true state are

available periodically with a sampling time of Dtassim 5

ti11 2 ti. At time ti, let the m-dimensional vector of ob-

servations be yo
ti

5 H(~xt
i
) 1 nt

i
. Here H is generally a

nonlinear operator and nti
is an m-dimensional observa-

tional error. Assume that H is the same at each observing

time. For simplicity we assume observation of the com-

plete state vector (i.e., m 5 ~m) and take H to be the

identity operator. The posterior ensemble at time ti is

a set of m-dimensional state estimates [xa
k,ti

] (k 5 1, . . . , K)

with weights [wa
k,ti

], normalized so that �K

k51w
a
k,ti

5 1,

where a denotes a particular ensemble formation scheme.

b. Probabilistic evaluation

We focus on the problem of probabilistic state esti-

mation of the system state given observations up to and

including the present time, which is sometimes referred

to as probabilistic nowcasting (see, e.g., Hansen and

Smith 2001). To compare the various ensemble forma-

tion schemes defined below, we deem a method which

systematically assigns more probability mass in a neigh-

borhood about the ‘‘target’’ as the better of two methods.

We denote an m-dimensional ‘‘target state’’ at time ti by

x̂
ti
, noting that in the PMS experiments below, the target

state is the true state (i.e., x̂t
i
5 ~xt

i
). Specifically, in com-

paring two ensemble data assimilation methods Mb
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and Ma at time ti, one can draw a hypersphere of radius

� (hereafter � ball) around the target state. For each

method, one can sum the weights of the ensemble mem-

bers that lie within the � ball. We denote these quantities

by p(jM
a
� x̂ti
j, �) and p(jM

b
� x̂ti
j, �). If p(jM

a
�

x̂ti
j,�).p(jM

b
� x̂ti
j,�), Ma wins. If p(jM

a
� x̂ti
j,�),

p(jM
b
� x̂ti

j , �), Mb wins. If p(jM
a
� x̂ti

j , �) 5

p(jM
b
� x̂ti

j , �), the methods tie. If one method sys-

tematically assigns more probability mass to the target

over a series of assimilation times for a range of �-ball sizes

then it is to be preferred. We stress that this approach does

not correspond to a proper skill score (Brocker and Smith

2007; Du 2009) and should not be used recklessly; nev-

ertheless it addresses the question of interest and is of

value when robust results over a range of length scales

are obtained (as happens below). The �-ball approach

also provides a direct examination of the ensemble,

avoiding the need to translate ensembles into continu-

ous probability distributions in order to apply the more

common proper scores.

3. Indistinguishable states of nonlinear ensemble
data assimilation: Theory and practical
considerations

a. Forming an ensemble using the indistinguishable
states of a reference trajectory

Our goal is to generate an ensemble of state estimates

conditioned on observations at ti, and N observation

times in the past. We start with a sequence of state es-

timates from ti2N to ti denoted by [xe
ti�N

, . . . , xe
ti
], which

is roughly consistent with observational evidence from

ti2N to ti (superscript e denotes state estimate). This

sequence of state estimates can be computed using a

four-dimensional variational data assimilation method

(4DVAR; e.g., Lorenc 1986) or other nonlinear noise re-

duction techniques such as gradient descent (GD; Judd

and Smith 2001, 2004; Judd 2003; Judd et al. 2004; Ridout

and Judd 2002). The GD methodology is used in this

paper, and the reader is referred to Judd et al. (2004)

for a detailed description of the algorithm, omitted for

brevity. [See Judd et al. (2008) for an application of re-

lated algorithms in operational models.] The relevant

details of our particular implementation of GD will be

given as necessary throughout this paper.

After the GD procedure, a ‘‘reference’’ trajectory is

obtained from the final GD estimate by mapping the first

state estimate xe
ti�N

forward in time to ti under the model

dynamics. The result is a reference trajectory denoted by

[xr
ti�N

, . . . , xr
ti
] (superscript r denotes reference). We now

focus on how an informative ensemble of trajectories

can be formed given the reference trajectory. We

emphasize that in practice, the actual methodology

(GD, 4DVAR, etc.) used to determine the reference

trajectory is likely to depend on practical considerations.

The reference trajectory will not be the true trajectory

(even in PMS), the coherent aim of data assimilation in

this case is to form an ensemble. We proceed by finding

the indistinguishable states (IS) of the reference trajec-

tory, noting that a more general approach would also

consider an ensemble of reference trajectories. As the

concept of indistinguishable states is central to this pa-

per, we briefly review the detailed introduction to this

concept in Judd and Smith (2001).

Suppose we are given a ‘‘candidate’’ trajectory

[xc
ti�N

, . . . , xc
ti
] (superscript c denotes candidate) that we

may wish to add to our ensemble. In the limit N / ‘ the

candidate trajectory is said to be indistinguishable from

the reference trajectory [xr
ti�N

, . . . , xr
ti
] if and only if there

is a nontrivial probability (given the noise model) that

the observations of the reference trajectory would be

statistically mistaken as observations of the candidate.

For finite N one is forced to set a threshold value.

Suppose that at ti2N we have a vector of observations

yti�N
, and assume that the observational errors ni2N are

independent and identically distributed, and drawn from

a density r that is not singular. For ti2N, the joint density

that the reference and the candidate are indistinguish-

able is given by

g
t
i�N

(c, r) 5

ð
. . .

ð
r(y

t
i�N
� xc

t
i�N

)r(y
t
i�N
� xr

t
i�N

)dy
t
i�N

,

(1)

where gti�N
can be normalized by dividing by gti�N

(r, r)

implying that the reference trajectory xr
ti�N

is indistin-

guishable from itself with a probability of 1. Normalizing

gti�N
(c, r) defines qti�N

(c, r).

When r is Gaussian:

q
t
i�N

(c, r) 5 e�1/4(xc
ti�N
�xr

ti�N
)TR�1(xc

ti�N
�xr

ti�N
), (2)

where R is the observational error covariance matrix.

The product of q values for ti2N to ti gives the indis-

tinguishability criterion:

Q
t
i�N

,..., t
i
(c, r) 5 q

t
i�N

(c, r) . . . q
t
i
(c, r) (3)

for the two trajectories [xc
t
i�N

, . . . , xc
t
i
] and [xr

t
i�N

, . . . , xr
t
i
].

If Qti�N ,...,ti
(c, r) . 0, c and r are indistinguishable.

The reference trajectory and its indistinguishable

states define a set of trajectories, which can be used to

form an ensemble. Of course, whenever r is unbounded

then while Q
ti�N,...,ti

(c, r) may be vanishingly small for

almost all candidate trajectories, it is always greater than
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zero for any finite N. We restrict attention to the Gaussian

case for the remainder of this paper (other densities are

considered in Judd and Smith 2001). As discussed below,

we have formed sets of indistinguishable states in our

experiments by only accepting states for which the value

of Q is greater than some specified threshold.

Weights are assigned to the chosen ensemble members

using the observations. For example, suppose we have

a set of k 5 1, . . . , K ensemble members obtained by

application of this IS method. The trajectories can be

weighted by

w
k

5 r(y
t
i�N
jx

k,t
i�N

) . . . r(y
t
i
jx

k,t
i
). (4)

The weights can be normalized by a constant factor u

defined such that �K

k51uwk 5 1. The weight assigned to

ensemble member k is then uwk.

b. Computing the indistinguishable states of a
reference trajectory: Practical considerations

As the observational window length N / ‘, the IS

of a reference trajectory form a subset of the reference

trajectory’s unstable manifold (Judd and Smith 2001).

One strategy for computing IS of the reference trajectory

is to generate many candidate trajectories by taking

small perturbations about the initial point of the ref-

erence trajectory and integrating forward, while setting

some minimum Q [Eq. (3)] is required for a candidate

trajectory to be included in the ensemble. The precise

scheme used to form informative ensembles will be

problem and system dependent, our choices are dis-

cussed along with the results in section 5 and 6. Recall

that our aim here is not to optimize the implementation

of IS in these cases, but merely to demonstrate an im-

plementation of IS that convincingly outperforms the

other alternatives considered.

4. Details of the experimental design and the
alternative approaches

a. Design of the OSSEs

An initial state was obtained by propagating a point

(believed to be close to the system’s attractor) 10 000

additional Dtassim under the system’s dynamics to place

the initial target state even closer to the system (and in

PMS also the model) attractor. Next, a target trajectory

of 11 000 steps (each separated by Dtassim) was obtained.

In each case the observing network was set to identity

(i.e., H 5 I). Simulated observations were obtained by

adding a random error sampled from a Gaussian distri-

bution with a standard deviation of sobs to each com-

ponent of the target. Observations of individual state

variables are uncorrelated. For all 11 000 steps, posterior

ensembles of size K 5 1000, along with their weights were

computed for a variety of ensemble data assimilation

schemes. Distributions with K 5 1000 appear robust, al-

lowing us to compare the various methods for an ensem-

ble size where the impacts of sampling error are minimal.

The first 1000 assimilation steps were discarded to mini-

mize any transient effects.

b. Alternative approaches (EN, PB, and OB)

The IS method will be compared with three methods,

each with a different underlying motivation. The first

scheme EN denotes an ensemble adjustment Kalman filter

(EAKF) described in Anderson (2001) and Anderson

(2003). The aim of applying the IS method to a hierarchy

of complex assimilation problems, motivated compari-

son of IS ensembles with an ensemble Kalman filter

scheme that has been demonstrated to give accurate re-

sults in high-dimensional, complex prediction prob-

lems (Anderson et al. 2005). This is the rationale for

our comparison to the EN scheme. The EN method is

a particular version of a deterministic ensemble square

root Kalman filter (Tippett et al. 2003). Given the large

ensemble size, the EN was implemented without any

heuristic adjustments such as covariance localization (e.g.,

Hamill et al. 2001) or covariance inflation (e.g., Anderson

and Anderson 1999). Note that the EN assigns equal

weight to all the ensemble members (wk 5 1/K). At the

first of the 11 000 consecutive assimilation times, the prior

ensemble was formed from a 1000 member sample of the

system’s climatology. The EN was used to update this

ensemble for the 11 000 consecutive steps. Discarding

the first 1000 steps allowed the EN to equilibrate to the

observing system before any comparisons are made.

When comparing two relatively complex ensemble

data assimilation schemes (IS and EN), including simple

approaches allows us bench marks for the comparison of

skill and justification of any complex method in the first

place. They are included here as a necessary test toward

demonstrating that the more complicated methods are

warranted. Both simple schemes only know about the

observations at the analysis time. The first simple scheme

called observations distribution sampling (OB) has no

knowledge of the system dynamics, while the other

scheme, one-step perfect Bayes (PB), exploits knowl-

edge of the system dynamics as well. The OB method

obtains 1000 equally likely ensemble members by add-

ing 1000 random perturbations to the observations at

a particular time. The random perturbations are obtained

from random samples of the inverse observational noise

(in this case a Gaussian observational error distribution

with sobs). In the PB scheme, a hypersphere (a circle in

the two-dimensional Ikeda system) of radius 3sobs was

JULY 2011 K H A R E A N D S M I T H 2083



drawn around the observation. Starting from a random

point believed to be close to the attractor, the model was

integrated until 1000 states within the 3sobs ball were

obtained. The ensemble members were then weighted

by their relative likelihood given the observations at

the time in consideration. The PB method is a one-step

method as it is only conditioned on observations at one

particular time. While our choice of 3sobs is arbitrary,

this scheme is an attempt at approximating a scheme

which assumes the prior probability distribution func-

tion (PDF) is the climatology.

While ad hoc choices were made in implementing the

OB and PB schemes, the comparisons to the IS and EN

methods demonstrate the significant advantage of em-

ploying the more complicated EN and IS schemes. Fur-

thermore, we can intuit how the OB and PB will perform

based on how they are implemented. The OB method is

the simplest of all schemes considered, providing a zero-

skill base line as the scheme has no knowledge of system

dynamics. In contrast, the PB scheme uses the system

dynamics to restrict attention only to points consistent

with the long term dynamics (i.e., on the attractor; Hansen

and Smith 2001; Smith 1996); the consistency of PB with

the dynamics and the observation suggests it will out-

perform OB, but with a significant increase in compu-

tational cost.

The EN approach can be interpreted as a linear gen-

eralization of OB using a window of observations and

the system dynamics, while IS attempts a practical ap-

proximation of PB over that window. As noted by Lorenz

(1963) waiting for an analog in a perfect model is valu-

able, when it is an option; arguably PB yields a perfect

ensemble (see Smith et al. 1999) when evaluated over a

long window. As noted above, in this paper we restrict

PB to a window consisting of only a single observation.

Inasmuch as the computational cost of PB increases rap-

idly with the length of the window, it would be interesting

to explore where, for any finite computational resource,

PB would outperform IS. This question is only of interest

within PMS and falls beyond the scope of this paper.

5. Numerical results in the Ikeda system

a. Model equations

The Ikeda system (Ikeda 1979) is a two-dimensional

nonlinear chaotic map. It is a common test bed in as-

similation studies (Hansen and Smith 2001; Judd and

Smith 2004; Ridout and Judd 2002). The equations are

as follows:

x
i11

5 1 1 m[x
i

cos(f)� y
i

sin(f)], (5)

y
i11

5 m[x
i

sin(f) 1 y
i

cos(f)], and (6)

f 5 a� b

x2
i 1 y2

i 1 1
, (7)

where [xi11, yi11]T is the state vector at ‘‘time’’ indexed

by i; m, a, and b are real valued parameters. Following

previous studies we take m 5 0.83, a 5 0.4, and b 5 6.0

(Hansen and Smith 2001; Lawson and Hansen 2004;

Judd 2003; Judd and Smith 2001) where the system

exhibits sensitive dependence on initial conditions. The

Ikeda system has a complicated fractal attractor, which

does not fill up the entire state space; it is depicted in Fig. 1.

Our main motivation for using Ikeda is that the entire

two-dimensional state space can be displayed simulta-

neously, allowing visual comparison of the various strat-

egies, and indicating how the IS method achieves its

advantage over other data assimilation strategies.

Results were obtained for observations every iteration

of the system so that Dtassim 5 1. Numerical experiments

for this parameter regime of Ikeda reveal that one iter-

ation of the system is roughly 4/5 of the error doubling

time (Lawson and Hansen 2004). The observational error

standard deviation was set to sobs 5 0.05, relatively large

given the size of the attractor (Fig. 1), to evaluate the

methods in a nonlinear regime.

b. Results

1) ENSEMBLE FORMATION USING THE IS METHOD

We begin by focusing on the first assimilation time for

which comparisons are made (the 1000th observation

time or t1000). For t1000, the target is at the intersection of

the straight lines in Fig. 2. The observation is located

FIG. 1. A depiction of 10 000 samples from the Ikeda system

attractor with parameters m 5 0.83, a 5 0.4, and b 5 6.0. The

horizontal axis is state variable x while the vertical axis is state

variable y. This figure was generated by collecting 10 000 consec-

utive states starting from a point in state space known be close to

the attractor (i.e., [0.22, 0.3]).
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at roughly [0.46, 20.71], precisely in the middle of the

circle marked by the inner blue dot. The small dots in

the background are samples from the Ikeda system’s

attractor.

The first step in the IS method is to find a reference

trajectory. A sequence of state estimates was obtained

using the GD method as described in Judd and Smith

(2001; see also Judd et al. 2004), using an initial state

equal to the observations and following Ridout and Judd

(2002) in determining the length of the window used

to find an accurate reference. (The appendix provides

further details regarding the numerical integration re-

quired.) Figures 3a,b depict solutions obtained by GD.

In Figs. 3a,b, the target values for x and y are depicted by

the black dots from t991 to t1000, the error bars indicating

the observational standard deviation (0.05). The obser-

vation values are depicted by the black circles. The solid

blue line joins the state estimates obtained by solving

Eq. (6) in Judd et al. (2004) numerically, until the in-

determinism [defined by Eq. (1) in Judd et al. (2004)]

L ’ 1029. The indeterminism L quantifies how far a

solution obtained from gradient descent is to a true sys-

tem trajectory. In both Figs. 3a,b, it appears that the se-

quence of state estimates obtained via GD has achieved

noise reduction. A reference trajectory, computed by

mapping forward the state estimate at t991, is located at the

centers of the blue circles in Figs. 3a,b. For all sub-

sequent assimilation times, a similar procedure was fol-

lowed. Details concerning the computational cost of this

procedure can be found in the appendix.

Returning to Fig. 2, the observation indicated by the

blue dot within the circle at [0.46, 20.71] depicts the

starting point for the GD calculations. The final point in

the solution is the blue dot at the center of the circle at

roughly [0.375, 20.75] after the GD algorithm has been

applied. We find that successive intermediate points

move toward the target. Notice how the final GD state is

not only closer to the target than the observation, but it

also falls close to a nearby branch of the attractor. Av-

eraged over the full set of experiments, the mean dis-

tance of the observations from the truth was found to be

0.0626, whereas the GD state achieved a mean distance

FIG. 2. A depiction of a gradient descent solution in the Ikeda system. The background dots

indicate the location of the Ikeda attractor. The intersection of the two lines at the center of the

frame indicate the location of the target at assimilation time t1000. The blue dot within the circle at

roughly [0.46, 20.71] indicates the location of the observation, used as the initial state for the

gradient descent solution at t1000. The sequence of blue dots reflect the evolution of state es-

timates at t1000 under GD using a window from t991 to t1000. The outcome of applying the

gradient descent algorithm is a state indicated by the blue dot at the center of the circle at

approximately [0.375, 20.75]. The dots between the initial and final states are intermediate

states obtained when applying the GD algorithm. The intermediate points move first toward

the relevant sheet of the attractor, and then progressively closer to the ‘‘truth.’’
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from the truth of 0.0266, indicating that our choice of

N 5 9 has achieved noise reduction. Once again, Ridout

and Judd (2002) also uses N 5 9 in comparisons to an

extended Kalman filter. We have verified empirically

that further noise reduction can be achieved for larger

windows (N . 9), but N 5 9 proved sufficient for our

purpose of contrasting the IS and EN.

Figure 4 depicts a reference trajectory at t1000 and 999

of its IS, colored by their relative likelihood given the

observations from t991 to t1000. Notice how all the ISs line

up close to a relevant branch of the Ikeda attractor, as

previously observed in Judd and Smith (2001).

We now describe how the ISs were computed, and dis-

cuss various parameter choices which define our particular

implementation. Any trajectory segment (any 10 consec-

utive iterations of the system equations) will fall some

finite distance from the reference trajectory thus have

Q . 0, even if vanishingly small, so an ensemble formed

by taking any trajectories for which Q . 0 would include

(unlikely) trajectories that are far from observations.

For any finite window, we thus only accept trajectories

for which Q is greater than some threshold, taken in this

paper to be 0.1, and discard less likely trajectories for

which Q is small.

Given the reference trajectory from t991 to t1000, we

generate a 1000-member ensemble by computing 999 IS

candidates each with Q . 0.1. These 999 IS candidates

and the reference trajectory form the 1000 member en-

semble. One expects, of course, an infinite number of

trajectories with Q . 0.1. Ideally, we would like to ran-

domly sample from a subset of trajectories on the sys-

tem’s attractor. In practice, this would require knowing

the (singular) density of attractor states in a neighbor-

hood about the initial point of the reference trajectory at

t991, introducing the high computational costs associated

with PB. Instead, we adopt a simple scheme for picking

the IS, which, while ad hoc, is sufficient to outperform the

EN. Specifically, we generate a candidate trajectory by

adding a perturbation to the reference trajectory at t991,

integrate it forward, and accept this candidate trajectory

if and only if Q . 0.1; some trajectories are rejected. We

have picked a perturbation scheme such that the histo-

gram of Q values greater than 0.1 appears roughly uni-

form. Our rationale for picking a scheme that generates

a roughly uniform distribution in Q (beyond 0.1) is that

we have no a priori knowledge of the Q density. While the

histogram in the top panel of Fig. 5 is not statistically

uniform, the procedure generates a range of Q values

greater than 0.1.

The perturbations that generated the first 199 IS are

sampled from a uniform box, centered about the refer-

ence trajectory at t991, the next 200 IS using a smaller box

size, the next 200 using an even smaller box size (see the

appendix for details.). The rationale behind our choice

of a ‘‘box’’ scheme is its simplicity, both conceptually

and computationally; no doubt more efficient schemes

can be defined when needed; that remains an interesting

area of future research. Simple trial and error was used

to tune box sizes appropriately. We note that on aver-

age, 44 000 integrations of the Ikeda system were re-

quired to generate the 1000 member ensemble using our

particular implementation of the box scheme.

FIG. 3. (a) Results for the Ikeda model illustrating the gradient

descent solution for state variable x. The black dots indicate the

target (‘‘truth’’) values of X from t991 to t1000. The error bars are of

width 0.05 (the standard deviation of the observational error). The

black circles denote the observations of x. The solid blue line joins

the state estimates obtained from gradient descent with in-

determinism ’1029. The center of the blue circle at t991 is the

reference trajectory at t991. The centers of the subsequent blue

circles indicate the mapping of the point at t991 under the dynamics.

The blue circles show that the reference state estimates obtained

via gradient descent (i.e., indeterminism ’1029) is very nearly

a model trajectory. Notice how the reference trajectory is system-

atically closer to the target than the observations. (b) Results for

the Ikeda system analogous to (a), but in this case showing state

variable y.
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The histogram of corresponding relative likelihoods is

shown in the bottom panel of Fig. 5. Notice that, after

normalizing, no one member dominates the ensemble. It

was noted that for all 10 000 assimilation times, the values

of Q and the relative likelihood were strongly correlated.

In summary, we have made five key simplifications

in our implementation of the IS method: (i) we have

obtained a sequence of state estimates using GD; (ii) we

have obtained a reference trajectory by mapping the state

estimate at the start of the observation window, obtained

from GD, forward to the most current observing time;

(iii) we have used a window length of N 5 9; (iv) we have

constructed an ensemble of trajectories for which Q .

0.1; and (v) we have chosen a perturbation scheme that

generates a roughly uniform distribution of Q values at

each particular assimilation time. While our implementa-

tion could be improved by increasing N, might be im-

proved by using another scheme to generate a reference

trajectory, and could be made more efficient by employing

a more clever perturbation scheme, the empirical results

are more than sufficient to justify our choices [(i), (ii),

(iii), (iv), and (v)]. A summary of the numerical details

of this implementation is provided in the appendix.

2) COMPARISONS OF THE IS METHOD TO

EN, OB, AND PB

Figure 6 illustrates the main results of this paper and

suggests why the IS method outperforms the alterna-

tives methods. It depicts 1000 member ensembles gen-

erated by the IS method and the EN for four consecutive

assimilation times. Each panel is constructed so that the

target is at the center of the panel at the intersection of

the two lines, the observation is shown as a black circle.

The small black background dots depict points on the

attractor. The magenta crosses depict the 1000-member

equally weighted ensemble members obtained using the

EN. The IS ensemble is depicted by the colored dots,

where the color indicates the relative likelihood of each

ensemble member. Note that in each case the IS en-

semble extends near the target.

Note that the IS ensemble reflects the structure of the

system’s attractor and tends to include points in small

neighborhoods about the target. ‘‘Misleading’’ obser-

vations as in the top right panel of Fig. 6 tend to shift the

probability distribution on the IS ensemble away from

the target, but the ensemble in total retains members near

FIG. 4. Results for the Ikeda system showing the ensemble for t1000 generated using the IS

method. As in Fig. 2, the target is located at the center of the panel where the horizontal and

vertical lines intersect. The observation is in the center of the circle at [0.46, 20.71]. The IS

states (at t1000) of the reference trajectory from t991 to t1000 are depicted by the colored dots. The

colors indicate the relative likelihood given observations from t991 to t1000. Notice how the IS

method ensemble members not only appear to lie near the attractor, they also appear to lie

close to a branch of the attractor near the one on which the target lies. Notice how the IS

method ensemble assigns nonzero probability in a small neighborhood about the target

(‘‘truth’’). The ensemble size is K 5 1000.
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the target, and recovers quickly as shown in the sub-

sequent (bottom left) panel of Fig. 6.

The EN ensemble is often far from the system’s

attractor and does not ‘‘cover’’ the target nearly as well

as the IS method. The entire EN ensemble is drawn

away from the target in the top-right panel, and as it is

sequential, the EN cannot recover in the manner that

the IS ensemble does. We also note that the IS ensemble

is on occasion distinctly non-Gaussian, especially in the

top two panels of Fig. 6. The behaviors illustrated in Fig. 6

strongly suggest why the IS method outperforms the EN

systematically.

In the bottom-right panel of Fig. 7 is a quantitative

comparison of the IS versus EN method. For a particular

assimilation time, a series of �-balls of radius [1.0, 0.5,

0.1, 0.05, 0.025, 0.01, 0.001] have been drawn around the

target. For a given method, the weights of the ensemble

members falling within the � ball are summed. If the IS

method assigns more probability it is assigned one point

and vice versa. If the methods tie, each is assigned a point.

Over the 10 000 assimilation times, the percentage of

wins and ties versus the log of the �-ball size is plotted in

the bottom-right panel of Fig. 7. Except for the largest

�-ball size (where they tie), the IS ensemble outperforms

the EN. The log of the observational error standard

deviation is indicated by the diamond on the horizontal

axis. For small �-ball size, the IS method nearly always

wins. Given the large number of trials, these and all sub-

sequent results are statistically significant (one can for-

mulate significance tests based on binomial distributions

to show this, but for brevity we do not provide results

from such testing given the large number of trials).

As revealed in Fig. 7, the IS method clearly outper-

forms the PB and OB methods. The EN method either

outperforms OB or nearly ties it. However, the EN

method is found to be inferior to the PB method for small

�-ball sizes. In view of Fig. 6, this result is not too sur-

prising, as the PB ensemble is by construction, very close

to if not on the attractor where as the EN ensemble often

places the majority of states far from the attractor. Since

the target is on the attractor, this was enough to find

the PB ensemble superior to the EN ensemble for small

�-ball sizes using this measure. For larger �-ball sizes, the

EN clearly outperforms PB.

A simultaneous comparison of all the methods is pro-

vided in Fig. 8. For each assimilation time, if a particular

method assigns more probability in a neighborhood of

size � about the target than any other method, it wins and

is assigned one point. If there is no clear winner, all the

methods are assigned one point (this intentionally gives

inferior methods an advantage). The IS method is re-

peatedly found to be superior to all the other methods,

FIG. 5. Results for the Ikeda system showing the properties of one ensemble. (top) Histogram

of Q values for the 999 indistinguishable states of the reference trajectory from t991 to t1000.

(bottom) The histogram of relative likelihoods is shown for the ensemble at t1000 depicted in

Fig. 4.
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in spite of this bias in favor of the inferior methods.

Figure 8 depicts the percentage of wins and ties for each

method as a function of the log of �-ball size. The IS

method is the clear winner, EN ranks second, PB is third,

and the OB scheme is last.

The IS method significantly outperforms the EN in

terms of placing more probability mass near the target

over a range of definitions for ‘‘near.’’ The score used

is not proper, but is appropriate for our interests and

avoids the complications of transforming the ensemble

into a continuous probability distribution for the appli-

cation of more common proper scores. One can imagine

a situation in which this score would be misleading, if,

for example the IS method often places only a slightly

greater probability mass near the target on most occa-

sions, while being wildly off target now and then. If this

were the case, the claim that the IS has performed better

than the EN in our experiments might be considered

misleading. Scatterplots (not shown) of the ensemble

mean distance to the ‘‘truth’’ for the IS versus the EN

(over a series of verification times) show that there are

no instances in which the IS is very far from the truth,

whereas the EN is, on occasion. The �-ball score is re-

flecting the properties we wish to examine in this case.

The linearity assumptions inherent to the EN method

are not met in these experiments, and so it is not sur-

prising that the EN is not the preferred method. It is

possible, of course, that the performance of the EN was

due to too small an ensemble size. To verify whether or

not the poor performance of the EN was not due to en-

semble size, we have run an additional set of results for

EN using 10 000 members, and found that the perfor-

mance of the EN with 10 000 members relative to the

10 times smaller 1000 member IS method did not change

significantly (the wins/ties results analogous to the bottom-

right panel of Fig. 7 looks nearly identical, not shown here

FIG. 6. Results for the Ikeda system illustrating how the IS ensemble systematically outperforms the EN ensemble.

(top left) A snapshot of K 5 1000 member IS and EN ensembles. The target is located at the center at the intersection

of the horizontal and vertical lines, while as the observation is depicted by the circle. The EN ensemble is depicted by

the 1000 magenta crosses, each given the same color as they are equally likely. The colored dots depict the weighted

ensemble members obtained via the IS method. The coloring indicates their relative likelihood given observations

from t991 to t1000. (top right), (bottom left), and (bottom right) Ensembles for the next three observation times. Note

that the EN ensemble shows a systematic flaw in moving too close to each observation considering the location of the

attractor, while the weights assigned to the IS ensemble members sometimes shift unfavorably close to the obser-

vations, the ensemble itself stays near the attractor and the target.
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for brevity). This suggests that the EN results have con-

verged and the EN cannot be improved significantly by

increasing the number of ensemble members. An iden-

tical analysis working closer to the linear regime (de-

creasing the standard deviation of the observational noise

to 0.0001) reveals the IS method still systematically out-

performs the EN, although less dramatically so. While we

have intentionally focused on the nonlinear regime in this

paper, it may be of interest in follow on work to under-

stand what degree of nonlinearity is required before one

starts to see benefits in using the IS method, as opposed

to the EN method that is optimal in linear systems. At

the request of a reviewer, we note that, averaged over

all the experiments, the mean ensemble mean distance

to the truth for the IS method was found to be 0.0264 and

for the EN it was 0.0463. We also note that RMS sta-

tistics in visibly nonlinear distributions can be very mis-

leading (Smith 1996; McSharry and Smith 1999).

Contrasting the results of IS and EN with the simple

systems shows that both IS and EN add value above pure

sampling of the inverse observational noise (OB). We note

that, for small � balls PB outperforms the EN method,

suggesting the importance of sampling on the attractor

(see Smith 1996). We note that, were it computationally

tractable to extend PB to longer windows, it would be

expected to outperform IS as well, as accountable en-

sembles would result (see Smith 1996 for a discussion on

accountable ensembles).

6. Numerical results in the Lorenz 96 12-variable
system

a. Model equations

While difficulties identified in low-dimensional systems

rarely vanish in high-dimensional systems, success often

fails to generalize. In this section, results for a 12-variable

FIG. 7. Results for the Ikeda system showing the superior performance of IS in various �-ball comparisons. The

diamond indicates the magnitude of the observational noise. (top left) Comparison between PB and OB ensemble

data assimilation strategies. For each of the 10 000 assimilation times, a circle of radius � is drawn around the target

(truth). For each method, the weights of the ensemble members that fall within the ball are summed. For a given

assimilation time, the method that assigns more probability to the target within the � ball gets one point, whereas both

methods get one point for a tie. (top left) Plots of the percentage of wins and ties vs the logarithm of the �-ball size

when comparing PB and OB. The remaining panels consist of the same comparison among the four methods tested.
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version of the Lorenz 1996 (L96) system (Lorenz 1996)

are presented. L96 is often used in assimilation studies

(e.g., Hansen and Smith 2001; Bengtsson et al. 2003). The

equation is

dx
j
/dt 5�x

j�1
(x

j�2
� x

j11
)� x

j
1 F, (8)

where j 5 1, . . . , 12 and the forcing parameter F 5 8. The

system is cyclic with xj112 5 xj. The locations of the state

variables can be conceptualized as equidistant locations

on a latitude circle. This version of L96 has (i) ‘‘energy’’

conservation, (ii) nonlinear advection and linear dissi-

pation, (iii) sensitivity to initial conditions, and (iv) ex-

ternal forcing (Lorenz 2005). The energy E 5 �12

j51x
2
j /2

is conserved through a compensation between the con-

stant forcing term and linear dissipation term. For F 5 8,

disturbances propagate from the low to high index j

(‘‘west’’ to ‘‘east’’; Lorenz 2005).

Following Lorenz (2005), a fourth-order Runge–Kutta

scheme with time step Dt 5 0.025 is used. Numerical

experiments yield an error doubling time of roughly

16 Dt. Assuming that the doubling time in the atmosphere

is roughly 2 days, our value of Dt can be thought of as

equivalent to 3 h. The climatology is xj 5 2.3 with

sclimate,j 5 3.6 (same for all j).

We take Dtassim 5 2Dt or 6 h, similar to current-day

operational systems (Bishop et al. 2003). We have set

sobs 5 1.0. The results below confirm that we are eval-

uating the various methods (IS, EN, OB, and PB) in a

nonlinear regime.

b. Results

1) ENSEMBLE FORMATION USING THE IS METHOD

Using a similar procedure to that used with the Ikeda

system, reference trajectories were obtained from state

estimates obtained from GD for N 5 19. This means that

the separation in time between the initial point and final

point in the reference trajectory is 19Dtassim (nearly

5 ‘‘days’’). Averaged over all the assimilation times, the

mean observation distance to the truth was found to be

3.374, whereas the mean distance of the GD solution was

found to be 0.798, indicating that the GD method with

N 5 19 has achieved significant noise reduction. Further

numerical details regarding our computations with GD

are found in the appendix.

Again employing a similar scheme to that used with

Ikeda system, we generated a set of 999 IS each with Q .

0.1 and a Q distribution, which is roughly uniform (again,

this is typical for all the assimilation times). Details of the

numerical perturbation scheme are summarized in the

appendix; on average 14 000 integrations were required

to obtain the 1000 member ensemble. At each obser-

vation time, a 1000 member ensemble was formed using

the 999 IS and the reference trajectory. In the top-left

panel of Fig. 9 is a plot of state variables x1 and x2 at t1001.

The target is depicted by the intersection of the two lines

at the center of each panel, the observation by the black

circle. The IS ensemble members weighted by their rel-

ative likelihood are depicted by the colored dots, where

as the magenta crosses indicate the EN ensemble

members, which are each equally likely. In the top panel

of Fig. 10 is a histogram of Q values corresponding to

t1001, the bottom panel consists of the histogram of rel-

ative likelihood values. As in the Ikeda system, the

majority of the relative likelihood is not assigned to only

one member, and again the Q values and relative like-

lihood values are strongly correlated. We note that we

are sampling from a likelihood function, which is 240

dimensional, where dimension is defined as the number

of observing times (i.e., 20) multiplied by the number of

observations at each time (i.e., 12).

2) COMPARISONS OF THE IS METHOD TO OTHER

SCHEMES

Figure 9 depicts two-dimensional projections of the

posterior ensembles at t1001, t1011, t1021, and t1031. Unlike

Fig. 6 (analogous plot for Ikeda), background dots

FIG. 8. The all-methods-at-once �-ball results for the Ikeda sys-

tem showing the superiority of the IS method over a range of �

values. The diamond indicates the magnitude of the observational

noise. At each time a circle of radius � is drawn around the target

(truth) and the sum of the weights of the ensemble members of

each method that fall within the ball is computed. At each assim-

ilation time, the method that assigns more probability within the

�-ball than all the other methods, if any, receives one point while

the other methods receive zero points. If there is no clear winner,

all the methods receive one point. The percentage of wins and ties

vs the logarithm of the �-ball size is plotted. Methods tend to tie at

very large values of �, greater than the standard deviation of the

observational noise.
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corresponding to the attractor are not shown. We note

that the two-dimensional projection of the L96 attractor

appears to be a circular ball (with standard deviation 3.6

and mean 2.3 in each direction). The results in Fig. 9

suggest that the two-dimensional projections of the IS

and EN ensembles are close to (if not on) the two-di-

mensional projection of the system’s attractor. It also

appears that the IS ensemble assigns more probability

near the target than the EN ensemble.

The win/tie comparisons for the L96 results are depic-

ted in Figs. 11 and 12. For the L96 results, the �-ball sizes

were set to [4.0, 2.0, 1.0, 0.5, 0.25, 0.1, and 0.05]. The

bottom-right panel of Fig. 11 plots the percentage of wins

and ties for the IS versus EN. The log of the observational

standard deviation is indicated by the diamond at zero

on the horizontal axis. The IS method again systemati-

cally assigns more probability in a small neighborhood

about target than EN, except for small �-balls, � , 0.1,

within which neither method tends to assign nonzero

probability (the volume of a 12-dimension sphere de-

creases quickly with �). The IS method is shown to out-

perform PB and OB in Fig. 11.

To test whether or not the deficiency of the EN method

is due to using too small an ensemble, we have run the EN

for K 5 10 000. The same win/tie comparisons were made

with the 10 times smaller K 5 1000 IS ensemble. As with

the Ikeda system, it seems that the EN method has con-

verged in the sense that the relative comparison of the

IS versus EN (bottom-right panel of Fig. 11), which is

essentially unchanged. An additional set of results was

obtained closer to the linear regime where the observa-

tional standard deviation was set to 0.001. As for Ikeda,

the results suggest that as the noise level is tending to

zero, linearized dynamics provides an excellent descrip-

tion near the target, and the EN and IS results become

comparable.

The all-methods-at-once comparison in Fig. 12 again

shows that the IS systematically assigns more probability

FIG. 9. Results for the 12-variable L96 system showing the performace of the IS and EN systems in two-dimensional

projection. (top left) A snapshot of K 5 1000 member IS and EN ensembles at assimilation time t1001. The target is

located at the intersection of the horizontal and vertical lines (near the center); the projection of the observation is

depicted by the circle. The EN ensemble is depicted by the 1000 magenta crosses. The EN ensemble members are

equally likely and are therefore given the same color. The colored dots depict the weighted ensemble obtained via the

IS method. The coloring indicates their relative likelihood given observations from t982 to t1001. (top right), (bottom

left), and (bottom right) Ensembles for the assimilation times t1011, t1021, and t1031, respectively.
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to the target for a range of � balls than all the other

methods. At the request of a reviewer, we note that the

mean ensemble mean distance to the truth of the IS

method was found to be 0.796, whereas it was 0.900 for

the EN. We again note the RMS distance between the

ensemble mean and truth in nonlinear systems is at best

blunt measure of ensemble quality and can easily mis-

lead (see McSharry and Smith 1999). Finally we note, as

for the Ikeda system, that the degenerate case where the

IS method is winning by a small margin most of the time

but loses drastically on occasions does not occur, as there

are no instances in which the ensemble mean distance to

the truth is significantly larger for the IS when compared

to the EN method. The IS ensembles robustly outper-

form the other methods considered.

7. Discussion and conclusions

Arguably, the aim of data assimilation in the nonlinear

context is a set of states at a given time representative of

the system’s conditional probability distribution given

observations up to and including that time. In this paper,

a novel approach to nonlinear ensemble data assimilation

based upon indistinguishable states (IS) has been shown

to be superior to an alternative approach based upon

a state-of-the-art ensemble Kalman filter; this result

appears to be robust in the limit of large computational

resources. The IS method makes use of a nonlinear noise

reduction technique to obtain a reference trajectory, and

then forms an ensemble by weighting the reference tra-

jectory and its indistinguishable states by their relative

likelihood. The fact that ad hoc elements remain in the IS

approach as presented, which no doubt could be improved

upon, should not distract us from the fact that the IS ap-

proach as presented outperforms the EN systematically.

The IS methodology has a number of desirable prop-

erties. The IS methodology does not require explicit

assumptions or parameterizations of prior distributions

of states, nor does it require implementation of com-

plicated resampling techniques unlike other nonlinear

ensemble formation techniques described in the state

estimation literature (Anderson and Anderson 1999;

Pham 2001; Kim et al. 2003; Bengtsson et al. 2003; van

Leeuwen 2001; Doucet et al. 2001; Evensen 1994). The

IS method constructs ensembles from a set of trajecto-

ries, consistent with the model’s nonlinear dynamics over

the observation window. The IS method can be applied

to nonlinear forward observation operators and non-

Gaussian distributions.

In this paper, we have used the gradient descent method

(e.g., Judd and Smith 2001) to obtain reference trajecto-

ries. Alternative methods are clearly available, ultimately

FIG. 10. Results for the 12-variables L96 system showing the statistics of one IS ensemble.

(top) A histogram of Q values for the 999 indistinguishable states of the reference trajectory

from t982 to t1001 obtained from gradient descent. (bottom) The histogram of relative likeli-

hoods is shown for the ensemble at t1001 depicted in the top left panel of Fig. 9.
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the choice is a pragmatic one. We stress that the IS

method provides a methodology for ensemble formation

irrespective of the scheme for finding reference trajec-

tories. The exploration of alternative methods for ob-

taining reference trajectories, and indeed sampling over

reference trajectories, remains an interesting area for

further research.

Success in any number of specific systems does not, of

course, establish that the IS method provides superior

state estimation in high-dimensional dynamical systems

in general, or outside PMS (see however Judd et al. 2008).

The results presented above illustrate the performance

of the IS method compared to a state-of-the-art ensemble

Kalman filter scheme (Anderson 2001, 2003), which has

been applied successfully to high-dimensional atmo-

spheric prediction problems (Anderson et al. 2005). The

manner in which the IS approach outperforms the EN

will generalize inasmuch as it respects the nonlinear

dynamics of the system. Perfect-model comparisons, in

a two-dimensional Ikeda system and a 12-variable L96

system have been made in a nonlinear regime of the

model/data assimilation system. We find that for both

systems, the nonlinear IS method systematically assigns

more probability mass near the target (which is the ‘‘truth’’

in PMS) for a range of small neighborhoods than does

the EN. The IS method also drastically outperforms a

scheme that samples the inverse noise model about the

value of an observation (OB) and a method that forms

an ensemble by weighting (using relative likelihood) a

random sample of the points near the model manifold

within a neighborhood of the observation value (PB).

The IS, EN, PB, and OB methods have been evaluated

for an ensemble size K 5 1000. This demonstrates the

clear superiority of the IS approach, inasmuch as em-

ploying values of K an order of magnitude larger for the

EN does not appear to improve performance of the EN.

FIG. 11. Results of the �-ball tests in the 12-variable L96 system showing the superior performance of the IS

ensemble over a range of length scales. (top left) A comparison between PB and OB ensemble data assimilation

strategies. For each of the 10 000 assimilation times, a circle of radius � is drawn around the target (truth). For each

method, the weights of the ensemble members that fall within the ball are summed. For a given assimilation time, the

method that assigns more probability to the target within the � ball gets one point, whereas both methods get one

point for a tie. (top left) Plots of the percentage of wins and ties vs the logarithm of the epsilon ball size when

comparing PB and OB. The remaining panels consist of the same comparison among the four methods tested.
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Specifically, the EN using a K 5 10 000 member ensem-

ble was outperformed by the 10 times smaller K 5 1000 IS

ensemble, outperformed in much the same manner as the

comparison of equal sized K 5 1000 ensembles for both IS

and EN. In this sense it appears the EN has converged,

and its performance will not be improved by massive in-

creases in computational resources. On the other hand,

we expect performance of the IS method to improve with

longer observational windows and larger ensemble sizes.

Within PMS the IS method can exploit further increases

in computational resources, which the EN will not.

Ensemble members generated by the IS method have

been weighted by their relative likelihood given obser-

vations. By considering trajectories with nontrivial Q

density, the IS approach avoids the problem of nearly all

the (relative) likelihood being assigned to one ensem-

ble member, a phenomena that has been observed and

studied analytically in the context of random sampling

(Bengtsson et al. 2008). The set of examples introduced

here can be used in future studies of the relative likeli-

hood sampling issue.

This paper lays a foundation for understanding how

the IS method performs in more complicated assim-

ilation problems. Applications of the IS approach in

higher-dimensional applications, in studies with explicit

restrictions on computational resources and ensemble

sizes among the competing methods, with incomplete

observations or nonlinear observation operators remain

to be explored. The IS framework can be extended in a

systematic fashion to the imperfect-model scenario as

shown in Judd and Smith (2004). Given the results above

and in Judd and Smith (2004), a similar study to this one

in the imperfect-model scenario is a natural extension of

this work (see Du 2009). The IS methodology provides

an exciting new framework for tackling some of the most

interesting prediction problems in forecasting and data

assimilation.
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APPENDIX

Summary of Experimental Details

The tables below provide design details of the ex-

periments discussed above.

FIG. 12. The all-methods-at-once �-ball results for the 12-variable

L96 system showing the superior performance of the IS ensemble

over a range of length scales. For each of the 10 000 assimilation

times, a circle of radius �-ball size is drawn around the target

(truth). For each method, the weights of the ensemble members

that fall within the ball are summed. For a particular assimilation

time, if one method assigns more probability within the � ball than

all the other methods, it receives one point while the other methods

receive zero points. If there is no clear winner, all the methods

receive one point meaning a tie. The percentage of wins and ties vs

the logarithm of the �-ball size is plotted.

TABLE A1. All experiments for each model and method were

run for 11 000 assimlation times separated by Dtassim. Comparisons

were made over the last 10 000 assimilation times. The n is the

number of state variables in a given model.

Summary of expt

Model Dtassim sobs

Ensemble

size (K)

Ikeda (n 5 2) 1 map iteration 0.05 1000

L96 (n 5 12) 0.05 time units 1.0 1000

TABLE A2. The EN denotes the ensemble adjustment Kalman

filter, OB denotes the observation distribution sampling, and PB

denotes one-step perfect Bayes.

Methods tested against the IS method

Method Comments

EN No localization/inflation used

OB Random samples of inverse

observational error distribution

PB Sample of model manifold within

3sobs of observation
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