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Abstract

Disinformation as a result of epistemic error is an issue in hydrological modelling. In
particular the way in which the colour in model residuals resulting from epistemic errors
should be expected to be non-stationary means that it is difficult to justify the spin that
the structure of residuals can be properly represented by statistical likelihood functions.5

To do so would be to greatly overestimate the information content in a set of calibration
data and increase the possibility of both Type I and Type II errors. Some principles
of trying to identify periods of disinformative data prior to evaluation of a model struc-
ture of interest, are discussed. An example demonstrates the effect on the estimated
parameter values of a hydrological model.10

1 Introduction

The starting point for this paper is the belief in certain parts of the modeling community
that it is necessary to use a statistical framework to evaluate the uncertainty in model
predictions. This has been the subject of much discussion in the past, with a range of
positions from the pure (even if Bayesian) probabilistic views of, for example, O’Hagan15

and Oakley (2004), Goldstein and Rougier (2004) , Mantovan and Todini (2006), Ste-
dinger et al. (2008) and others, to the sceptical views of Beven (2006) and Andréassian
et al. (2007). Statistical treatments of errors have been applied quite widely in hydro-
logical modelling, developing from the use of likelihoods based on assumptions about
model residuals (e.g. Sorooshian and Dracup, 1980) to the much more sophisticated20

hierarchical treatments of multiple sources of error exemplified by the BATEA (Kuczera
et al., 2006; Thyer et al., 2009; Renard et al., 2010) and DREAM (Vrugt et al., 2008,
2009) methodologies.

There are two main advantages of this approach. The first is that it provides a formal
framework underpinned by decades of development of statistical methods, including for25

example the use of Monte Carlo Markov Chain techniques within a Bayesian framework
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for evaluating the posterior distributions when new data are added. The second is that
it aims to provide an estimate of the probability of predicting an observation condi-
tional on a particular model structure (or structures in Bayesian model averaging) and
calibration data set (though note that Bayes original 1763 formulation was not in this
form). We will not consider further cases where only forward uncertainty estimation can5

be carried out. Uncertainty estimates then depend entirely on the prior assumptions
about different sources of uncertainty. Conditioning on some calibration data makes
the problem much more interesting.

The main alternative to this approach, at least up to now, has been the Generalised
Likelihood Uncertainty Estimation (GLUE) methodology, first introduced by Beven and10

Binley (1992). GLUE is consistent with hierarchical Bayesian methods in that if an
error model component is added and the associated likelihood based on statistical as-
sumptions is used, then the results should be the same (Beven et al., 2008, 2007).
However, GLUE also allows informal likelihoods (or fuzzy measures) to be used, treats
residual errors implicitly in making predictions, and provides ways of combining like-15

lihoods other than Bayesian multiplication, where this seems appropriate. There are
some conditions under which the resulting posterior likelihoods can be considered as
probability distributions (see Smith et al., 2008), but the meaning will be different. When
an informal likelihood is used, the resulting predictions will no longer formally be con-
ditional estimates of the probability of predicting an observation, but rather conditional20

estimates of the probability of a model prediction. This has led to significant criticism
of the GLUE method (e.g. Mantovan and Todini, 2006; Stedinger et al., 2008; both of
these are based on hypothetical examples where the model structures are known to
be correct, see the extension of one of these cases to an incorrect model structure in
Beven et al., 2008).25

Experience of using the GLUE methodology with a variety of different likelihood mea-
sures suggests that for cases where the ensemble of model predictions can cover the
available observations (e.g. in hypothetical examples with a correct model structure)
the resulting predictions can be rather similar. They will differ more in cases where a
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model structure is, for whatever reason, biased in part or parts of the calibration in the
sense that it is impossible for that model structure to match an observation regardless
of choice of parameter values. Constant bias can be easily handled in a statistical like-
lihood approach (e.g. Kennedy and O’Hagan, 2001) as can constant heteroscedastic
variations in the error variance. Time variable changes in bias or variance are more5

difficult (they suggest that the error series does not have a simple statistical structure)
but can be handled in the sense of increasing the error variance of the identified er-
ror model, even in cases when the best available (maximum likelihood) model might
not actually be fit for purpose, or where the source of the error comes from the poor
specification of inputs for one or more events (though note that separating these cases10

might often be difficult).
In doing so, however, the validity of the model structure as a hypothesis about how

the system is functioning will not be questioned. Since the Bayes statistical estimates
of uncertainty are always conditional on the choice of model(s), there is no inherent
testing of the validity of the model as hypothesis. Different models can be tested relative15

to each other (e.g. by the use of Bayes ratios) but there is no mechanism for total model
rejection.

This is different from the GLUE approach which developed out of the earlier
Hornberger-Spear-Young (HSY) generalized sensitivity analysis (Hornberger and
Spear, 1981). The HSY method investigates the sensitivity of complex systems by20

differentiating between those models considered to be “behavioural” and those that
can be rejected as “non-behavioural”. In that the predictions of model outputs within
GLUE are intended to be useful guides to the future outputs from the system, there is
no point in making predictions with models that have not proved to be behavioural in
calibration. Thus models not thought to be useful in prediction are rejected (or given a25

likelihood of zero; in the statistical approach a very small likelihood would be given to
such a model, but no model would be rejected).

However, this introduces a further degree of subjectivity in GLUE. There is commonly
a complete range of behaviours in calibration between models that fit the data well (or
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as well as might be expected) and those that clearly do not. Thus, deciding on a
threshold between what will be considered behavioural and what will not is necessarily
subjective (even if generally common sense will prevail in doing so; see the limits of
acceptability approach suggested in Beven, 2006). The effect of this selection can be
mitigated to some extent by using an informal likelihood measure that reduces to zero5

at the rejection limit.
Such subjectivity is, of course, anathema to many scientists. The aim of science is to

be as objective as possible (even if the history of science records very many instances
of the subjective and selective use of evidence in many different subject areas: the
history of using the Hortonian model to explain storm runoff is just such an example10

in hydrology, e.g. Beven, 2004). We like to have formal frameworks for doing things,
in which the consequences follow directly and straightforwardly from the assumptions.
So why should we even consider using informal likelihoods and subjectively chosen
thresholds? In fact, a somewhat deeper reflection turns that question around. How can
we possibly justify the use of statistical error models and formal likelihoods when many15

of the errors that affect modeling uncertainty in hydrology are not statistical in nature?

2 Aleatory and epistemic errors

The application of formal statistical methods requires that the representation of errors
is fundamentally as random or aleatory variables. Aleatory errors can be represented
in terms of the odds (or probabilities) of different outcomes. The original paper of Bayes20

1763, for example, was concerned with estimating odds on different potential hypothe-
ses when there might be some prior (subjective) beliefs about the hypotheses. Bayes
equation then provides a formal means for incorporating evidence as represented by a
likelihood function with the subjective prior beliefs to condition a posterior distribution
in a way that satisfies the axioms of probability theory.25

The issue in the application of Bayes theory to inference about models and their
predictions is how to choose a likelihood function to reflect the evidence contained in a
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set of model residuals when there are multiple sources of uncertainty in the modelling
process. Hierarchical Bayesian methods do so by providing a representation of all of
the important sources of uncertainty as aleatory. These representations will then have
hyper-parameters that are estimated as part of the inference process, based on the
series of model residuals. It is critical to this process, however, that all the sources of5

error can be treated as if they are aleatory.
This is not, however, the case. Many of the errors that enter into the modelling

process are not the result of random natural variation but the result of a lack of knowl-
edge about processes and boundary conditions. These epistemic uncertainties are, as
pointed out in the 1920s by Frank Knight and Maynard Keynes, the real uncertainties.10

They include the poor measurements, the processes that we have left out because
they are not deemed to be important (or for which we have no agreed mathematical
representation), and the local catchment characteristics that we cannot know in detail.
They also include the unknown unknowns that we have not even perceived as be-
ing important because of lack of knowledge and which therefore are unexpected (and15

not predicted) when they occur (these are also sometimes referred to as ontological
or irreducible uncertainties). We cannot be too concerned about the latter since past
surprises have probably been incorporated into present models and future surprises
are difficult to predict. In fact, an ontological uncertainty will become an epistemic un-
certainty as soon as it is recognised as an issue. We should, however, be directly20

concerned about the former category of epistemic uncertainties, that we can surely
perceive but do not know enough about.

3 Colour and spin in epistemic errors

There are very many epistemic errors of this type (see Fig. 1), from spatial patterns
of rainfall inputs that vary from storm to storm, to the water equivalent of drifting25

snow, to radar rainfalls subject to multiple (deterministic) corrections, to rating curve
non-stationarities and extrapolations, to evapotranspiration fluxes in hetereogeneous
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terrain. Some of these may be due to natural variability (as well as the limitations of
available measurement techniques to observe that variability) but none can be con-
sidered as fundamentally aleatory. Such variability will not be white, but structured or
coloured in a variety of ways and it is a significant spin of our understanding to try to
suggest to users of model predictions that they can be treated as if they were aleatory5

in order to be objective.
The general effect of epistemic uncertainty is to make the error characteristics of

the variable under study (whether input or model residual) to appear structured. If that
structure is a well-behaved red noise with stationary characteristics then a statistical
model might be found to represent it. The issue with epistemic error is, however, that it10

is likely to induce colour that is non-stationary. A classic example is the way in which an
error in an input variable when processed through a nonlinear model, produces a set of
residuals that exhibit bias and autocorrelation that might vary depending on the model
structure. That is a logical consequence of the nature of the model dynamics. Since the
errors in the inputs are expected to vary from event to event (but not in a random way)15

that bias and autocorrelation will be non-stationary, and normally gradually reducing
in effect over time. It is known that in simple statistical inference, the neglect of bias
and autocorrelation in error series produces bias in the inferred parameters (e.g. Beven
et al., 2008). We should therefore expect the same in more complex cases involving
non-stationarity. The colour will change over time.20

In extreme cases, the data being used to drive a model or evaluate the predictions
might even be adding disinformation to the inference process (Beven and Westerberg,
2011). In hydrological modelling this would be the case when a rainfall input is so poorly
represented by a set of raingauges that there is no way that a model could conceivably
provide a good estimate of the resulting discharge (see the example in Beven, 2009a).25

The same could happen if an unverified extrapolation of a discharge rating curve re-
sulted in a significant overestimation (or underestimation) of discharges at flood stages
(modellers should be wary of simply accepting discharge values provided by monitoring
Agencies without information about quality control and uncertainties, see Westerberg
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et al., 2011. Such errors will not be simply statistical (even where a statistical technique
such as regression is used to fit a rating curve to observations). Using any variance-
based likelihood function or performance measure that is based on squared residuals
(including the Nash-Sutcliffe efficiency measure) might mean that the inference is bi-
ased because of just a few periods of such measurements. In rapidly responding5

catchments timing discrepancies in either the rainfalls or discharges that affect the ap-
parent timing of the rising limb might also have a significant effect on the apparent
residual variance. A timing error in the onset of snow melt can have a persistent effect
on the error in model simulations that is specific to that period (e.g. see the example in
Freer et al., 1996).10

Distributed models are particularly interesting in respect of epistemic errors. Dis-
tributed models allow for model parameters to vary spatially in every solution element
(though this is rarely done, and where it has been done by interpolation it has not
generally been very successful, see Loague et al., 2005). Deeper in the subsurface,
distributed models can also allow the geological structure to be reflected in the patterns15

of parameters. There will be epistemic uncertainty in the detail of that structure and it
is usually the case that the choice of a conceptual model of the geology (and the first
estimates of the associated hydrogeological parameters) is a subjective interpretation
based on limited amounts of map and geophysical survey data. This is a case where
the epistemic uncertainty is treated in terms of one or more possible scenarios (see20

the case study of Refsgaard et al., 2006).
It is, of course, rare that model parameters can be identified for all the solution ele-

ments in the discretisation. It is much more common to fix parameters over some part
of the domain. This means that local predictions will be in error but because of the
complex nonlinear interactions in space between elements and process representa-25

tions, the effect of this on model residuals will be difficult to quantify. The effect should
certainly not, however, be expected to be, aleatory, because of the connected, nonlin-
ear, nature of the distributed simulation model. The colour should not, therefore, be
expected to be simple in nature.
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4 Colour, spin and information content

The reason why this is important is because any colour reduces the information content
of the data that are available. Thus, the inference is likely to be over-conditioned if the
colour is neglected. The result will be generally poorer performance in prediction than
in calibration because the characteristics of the sources of uncertainty in prediction will5

be different to the calibration data. Epistemic errors are expected to lead to this type
of non-stationarity. It is indeed generally accepted in hydrological modelling (and in
published results of hydrological models) that performance will be poorer in validation,
even after optimisation of a model in calibration (though it is probably doubtful if many
studies where performance is very much poorer in validation actually get published; it10

is more likely that a further model iteration takes place).
This expectation of poorer performance in validation is a form of implicit recognition

of the effects of epistemic error on the modelling process. In calibration we have no in-
formation about how the errors in prediction might be different from those in calibration.
We can therefore only assume that the characteristics will be in some sense similar in15

prediction. In the case of statistical inference, this is to assume that the parameters of
the error models fitted in calibration will be constant in prediction (despite the evidence
that they might be difficult to identify in calibration, see Beven et al., 2008). In GLUE
it is to assume that the likelihood weights associated with a model parameter set (with
its implicit error characteristics) will stay the same in prediction. This does not protect20

against the unexpected (an example, from the extensively modelled Leaf River data set
in the paper by Vrugt et al., 2008, led to the comment of Beven, 2009a).

It is therefore a modelling aphorism that a calibration data set can only be partially
informative in the face of epistemic errors. There is no theory of information content to
cover such cases. Hence the attraction of spinning the nature of sources of uncertainty25

to suggest that they can be treated as if they were aleatory. Statistical inference does
provide a theory of information content. Classical Gaussian theory, for example, allows
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individual residual errors to contribute to the likelihood function as:

L∝exp
(
−ρte

2
t

)
(1)

where et is the residual error at time t and ρt a scaling factor. In the simplest case of
an error model that can be assumed to be zero mean and Gaussian with no autocor-
relation, this leads to the likelihood function:5

1
√

2πσ
exp

(
− 1

2σ2
e2
t

)
(2)

where σ2 is the residual variance. In this framework every residual is considered to
be informative (albeit with contributions that can be weighted according to ρt). Indeed
some hydrological modellers would require this to be the case (e.g. Mantovan and To-
dini, 2006) for the inference to be coherent (see also the response of Beven et al.,10

2008). The smaller the error, the higher the contribution, but the multiplicative effect
over a large number of time steps is to produce a highly peaked likelihood surface,
with the danger therefore that where the assumptions of the error model on which the
likelihood function is based are not correct (Eq. (2) would not be appropriate for the au-
tocorrelated residuals of most hydrological models, for example), then the contribution15

to the information content of individual residuals is being overestimated.
As Tarantola (2005) for example points out the assumption in Eq. (1) is subjective

(see also Beven, 2002, 2009b). It is not the only choice about how far a residual con-
tributes information to the conditioning process. Laplace (1774) for example developed
an alternative theory based on the absolute values of residuals, i.e.:20

L∝exp
(
−|ρtet |

)
(3)

Since this was mathematically less tractable, it was largely dropped in favour of the
Gaussian measure (though see Halpern, 2003 for arguments in favour of the Gaussian
formulation). But neither is a truly objective assessment of information content. They
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are only objective within the context of the basic assumptions of Eqs. (1) and (3). This
applies also to other error norms that might be chosen.

There is therefore no real reason why a more direct recognition of epistemic errors
should not be based on choices about information content in a way that allows for the
expectation of future variability in error characteristics. The difficulty in doing so is that5

epistemic errors are those for which, by definition, we have little or no information about
their nature in calibration and even less about the potential errors in prediction.

What we can do, however, is list some desirable qualities or principles for an assess-
ment of information content when we suspect that the modelling process is subject to
structural error. These should then be reflected in any model evaluation and likelihood10

assessment. In their strongest form these principles might be expressed as:

1. Information should be assessed so as to minimise, as far as possible, Type I
(false positive, or accepting a model that would not provide useful predictions) and
Type II (false negative, or rejecting a model that would provide useful prediction)
errors.15

2. Periods of disinformative inputs or outputs should be identified as far as possible
independently of any model structure to avoid the reducto ad absurdum of all
periods that do not fit a particular model being rejected as disinformative.

3. Contributions to model likelihood evaluations should be a function of the time
varying information content of the observations.20

4. Account should be taken of the potential for input errors to have an effect on model
outputs over multiple consequent events.

These features may be desirable but will be difficult to satisfy because of the expec-
tation that the epistemic errors will be non-stationary and of complex structure, while
principle 2 precludes the use of model residuals in assessing information content in this25

sense. It is difficult therefore to define a strategy for the independent estimation of such
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errors without additional information being provided (which generally is not possible for
periods of past calibration data).

5 Avoiding false negatives

The first principle above is important. It is a fundamental principle for the assessment
of information content. It is worth noting, however, that false negative errors are much5

more important than false positives. The potential for false positives is the reason
underlying principle 2, but false positives will generally be less serious because they
can be corrected as more information becomes available. However, once a model that
would provide useful predictions in the future is rejected (a false negative), those useful
predictions will not then be available. There is little experience in testing hydrological10

models as hypotheses within such a framework (Beven, 2010).
False positive and false negative inferences can be expected to result when the

driving data for a model are hydrologically inconsistent with the observed variables
with which model simulated variables will be compared. We might expect such an
inconsistency to be expressed in terms of large model residuals (even for a model that15

might be useful in prediction) but, following principle 2, we would ideally wish to assess
consistency independently of the model hypothesis being evaluated.

So what does hydrological consistency mean? That the inputs and outputs should be
consistent with the mass, energy and momentum balances and what is known about
the processes in a catchment. Both are difficult to assess. As part of the Repre-20

sentative Elementary Watershed concepts, Reggiani and Schellekens (2003, see also
Reggiani et al., 2000, 2001) have shown that the mass, energy and momentum bal-
ances can be expressed for catchment or subcatchment units but that they are subject
to an important closure problem. Expressed in terms of the simplest lumped catchment
water balance for example, we can classically write:25

Q=R+E +∆S
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where Q is discharge, R is all types of precipitation, E is evapotranspiration rate and
∆S is the integral change in storage for all points and at all levels in the catchment. In
fact, even this is too simplistic, since there may be unmeasured discharges, U , from
a catchment (due to regional groundwater fluxes, or unmeasured subsurface fluxes
beneath a gauging site). Thus:5

Q=R+E +∆S+U

In addition each of these terms would be subject to estimation errors, particularly over
short periods of time (such us those for which we might wish to assess the information
content of data). Allowing for such uncertainties in observed values of the variables
is, in general and even for experimental catchments, the only way in which the water10

balance can be closed. In practice, therefore, inconsistencies can only be assessed
in the broadest sense of departures from the behaviour seen in the data series as a
whole.

In keeping with principal 2 therefore, is there a way of identifying periods of incon-
sistent data independent of any model structure being evaluated? Two strategies (at15

least) would seem feasible. One is to use a non-parametric method for explaining re-
lationships in the observations themselves, such as the regression tree methodology
used by Iorgulescu and Beven (2004). Past experience suggests that this can be useful
in identifying anomalous periods of data. The second would be to identify character-
istic response function for a catchment (the unit hydrograph) and test for anomalies in20

runoff coefficients for individual storms (allowing for the antecedent state of the catch-
ment and seasonal effects in the form of accumulated evapotranspiration since the
previous event).

There are dangers in both of these approaches, in that unusual periods in the ob-
servations, if they were in fact hydrologically consistent, would probably be the most25

informative in differentiating between model hypotheses. There is therefore a need to
differentiate between hydrologically consistent and hydrologically inconsistent anoma-
lies (with analogous possibilities of being wrong as a result of uncertainty). Remember,
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however, that we should expect not to be sure about identifying hydrological inconsis-
tencies in all cases. There will always be the potential for making Type I and Type II
errors.

More generally, principle 3 suggests that it might be possible to rank observations
or periods of observations in terms of their contribution to total information content in5

conditioning a model. This implies a more continuous scale of information than simply
excluding certain periods of data considered to be disinformative. Such a ranking, or
weighting, of different periods of data might be expected to be context dependent, with
relevance to the particular type of application of interest and to the expected obser-
vation errors (the classical statistical weighting as an inverse function of observation10

variance is an example of this). It is also the case that the same set of observations
might have more information content with respect to one model output or component
than to another. There has been some (limited) exploration of this concept already in
hydrological modelling, for example in Gupta et al. (2008) and Wagener et al. (2003).

Principle 4 is important. Model output uncertainties in hydrology and hydraulics are15

often dominated by input data uncertainties, due to limited measurement sites in space
or time or both. Thus the information content of accurate output observations that are
being used to evaluate model performance might be compromised by input uncertain-
ties that, in many cases, are very difficult to characterise because of heterogeneities
and non-stationarities between events. It was this type of uncertainty that was the issue20

at the heart of the discussion between Beven (2009a) and Vrugt et al. (2008, 2009).

6 An example

The above points can be illustrated by considering an example, the calibration of a
rainfall-runoff model to observed data. The observed data are those readily available
in the UK, discharges from an Environment Agency stream gauge and hourly rainfall25

totals from Met Office rain gauges. The catchment is the South Tyne station 23006 at
Featherstone (322 km2). This catchment is predominantly moorland vegetation and the
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land-use is mainly for rough grazing. The geology is mainly carboniferous limestone.
An important consideration for the choice of this catchment was that the flows for this
site are natural to within 10 % at the 95 percentile flow. Five recording rain gauges are
available within the catchment boundary of the chosen site, with catchment average
rainfalls being estimated using a Thiessen polygon method. Comparison with stor-5

age gauges in the catchment revealed that the recording gauges generally estimated
higher rainfall totals than the storage gauges. There is scope for both the under and
overestimation of the inputs to the catchment under different rainfall patterns.

Discharges are measured using a compound Crump weir, which contains the flow
at all stages and remains modular throughout its range. There is some suspicion of10

truncation of higher peaks, possibly due to stilling well problems, but the discharge
data are generally considered to be of good quality and are included in the UK HiFlows
database.

Periods of disinformative data were assessed though the use of event runoff coeffi-
cients. Variability in event runoff coefficients is to be expected due to inadequacies in15

observing both the precipitation input and the output discharge as well as differing inter-
nal states of the system. However, events whose runoff coefficients differ substantially
from similar events (e.g. those with similar rainfall totals falling in the same season)
should be further investigated. In some cases these may be examples of catchment
dynamics not often observed so should remain in the analysis; in other cases they may20

be disinformative.

6.1 Selection of disinformative periods

To perform the selection of disinformative data periods on an event basis, the observed
data needs to be broken into events for which the total runoff and precipitation can be
computed. Calculating the total runoff requires the extrapolation of the falling limb of the25

event hydrograph to estimate the volume of discharge that might have been observed
if further rainfall had not occurred.
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The analysis of recession curves has a long history in hydrology and extensive re-
views have been provided by Hall (1968) and Tallaksen (1995). In spite of well-known
difficulties with recession variability and partitioning of flow sources, an analysis of re-
cession curves can often give some indication of the characteristics of the subsurface
discharges from a catchment and can been used to develop catchment storage models5

Lamb and Beven (1997).
The approach taken for this study was to develop a master recession curve (MRC)

by piecing together individual shorter recession curves. Ideally, only true flow reces-
sions should only be selected where there is no rainfall and minimal evapotranspiration
during the flow recession period. In practise this ideal is difficult to achieve and in10

this study the MRC was constructed by piecing together individual recession curves of
greater then 12 h duration during which less then 0.2 mm of rainfall fell. Figure 2 shows
the lower part of the MRC.

Figure 3 outlines the calculation of the runoff volume for an event. The time period
was divided into events. An event was considered to start at the first rainfall after15

12 dry hours (hours with rainfall less then 0.2 mm) when the discharge at that time was
less then 0.8 mm and so within the range of a parametric approximation to the MRC.
Figure 4 shows the runoff coefficient for the 1817 events plotted against the total event
rainfall. From this it is clear that the runoff coefficient for small events is often poorly
estimated. While the approximation of the MRC at low discharges may play a role in20

this, the misobservation of low catchment rainfall totals, which may indicate localised
patterns of rainfall over the catchment, is felt to be the dominant cause. These events
are deemed disinformative. A number of rainfall events with larger totals (Fig. 4) also
show comparatively high runoff coefficients greater than 1. For whatever reason, these
events are hydrologically inconsistent and are also deemed disinformative as are those25

with a runoff coefficient of less then 0.05 in this upland UK catchment.
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6.2 Influence of disinformative data on calibration

Consider calibrating a lumped hydrological model to the observed flow series. The
effects of the disinformative data on the calibration of a hydrological model can be
illustrated using the lumped rainfall runoff model outlined in Eqs. (4) and (5). The
model is Hammerstein in form representing a non-linear transform of the rainfall series5

rt (Eq. 4) and then routing through two parallel tanks expressed as a linear transfer
function. The linear transfer function is assumed to be mass conservative so that
the parametrisation (α1,α2,β1,β2) can be simplified to (α1,α2,ρ) where ρ is the split
fraction of effective input entering the first path. To ensure the model is physically
meaningful (α1,α2,ρ,φ1) lie between 0 and 1, while φ2 is greater then 0 (the range 010

to 2 is considered). To ensure identifiability the condition α2 >α1 is imposed.

ut = φ2y
φ1

t rt (4)

xt =
β1

1−α1
ut−2+

β2

1−α2
ut−2 (5)

Twelve thousand uniformly distributed random samples were drawn from the parameter
ranges outlined above. For each parameter set the maximum and minimum values of15

the scales residual (yt−xt)/yt were computed for: (a) the first 900 events identified
in the time series and (b) those events in the first 900 that are not disinformative.
Parameters set were considered behavioural if

min
t

yt−xt
yt

>κmin

and20

max
t

yt−xt
yt

<κmax.

Table 1 shows the number of parameter sets considered behavioural for various com-
binations of κmin and κmax. These indicate that by including the disinformative data in
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the analysis there may be a risk of making a Type II error for given values of κmin and
κmax. Moreover the results show that the model which is not considered behavioural
for say (κmin,κmax)= (−10,0.98) may be considered behavioural for stricter conditions
(e.g. (κmin,κmax)= (−10,0.9)) when the disinformative data is removed.

Specification of the behavioural threshold can therefore affect the potential for mak-5

ing Type II errors, but specifying too generous a bound will also increase the pos-
sibility of Type I errors. To illustrate how these trade-offs may influence the conclu-
sions drawn from analysis of the model two situations are contrasted. Situation 1 re-
lates to considering the full calibration data set and specifying behavioural limits of
(κmin,κmax)= (−10,0.98). The second situation considers analysis using only the infor-10

mative data and behavioural thresholds of (κmin,κmax)= (−5,0.93).
Figures 5 and 6 show that the resulting distribution of the behavioural parameters

sets may change both in location and spread. Figure 7 shows how the selection of
the threshold may influence the output of the behavioural model simulations for several
events outside the calibration period. The simulation results indicate that the very15

simple model used is structurally deficient, failing to capture the changes in timing in
the rising limb of the hydrograph while tending to over-estimate the peak discharge.

7 Back to the unexpected future

In calibration, therefore, we can attempt to identify periods of data that might be dis-
informative in model inference independent of model runs. We should not expect a20

behavioural model to predict such periods of data (while recognising that we might still
be making Type I errors in accepting some models as behavioural). There might be
similar periods of hydrologically inconsistent data in prediction, that can be identified
in similar ways to those applied in calibration. It therefore follows that we should not
expect such periods to be well predicted by the set of behavioural models identified25

in calibration. We should also not expect that such periods would be covered by any
statistical representation of the calibration errors, since the epistemic uncertainties of
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inconsistent periods in prediction might be quite different to those in calibration. The
only response to this would appear to be to moderate our expectations of what a model,
or set of models, can do in prediction.

Once new observations are available, and they have been checked for consistency,
they can be used in further testing of the set of behavioural models. As noted earlier,5

new observations might reduce the potential for Type I errors by rejecting some of
the set of behavioural models based on the new evidence. New observations then
contribute to the type of learning process suggested in Beven et al. (2007) and Buytaert
and Beven (2009).

We might expect the uncertainty in the driving variables for hydrological and hydraulic10

models to be reduced by the application of new or more pervasive measurement tech-
niques into the future. The next generation of radar estimates of rainfalls or satellite
estimates of surface soil moisture will, we are assured, provide greater accuracy and
finer resolution. It might be expected, however, that some significant epistemic uncer-
tainties in model inputs and model structures will remain for the foreseeable future.15

We think we have a pretty good perceptual model of how catchment systems work
such that many of the epistemic uncertainties discussed above arise, not from unper-
ceived unknowns, but from the limitations of current measurement techniques, spatial
and temporal sampling, estimating effective parameter values etc. But, of course, this
is true for every generation, and then some unexpected information comes along to20

change that impression. For the early computer modelling generation, one of the most
important unexpected pieces of information was the introduction of tracer data that
allowed the residence times in catchments to be addressed in ways not previously
possible (e.g. Sklash and Farvolden, 1979). Suddenly, subsurface flows could not be
ignored (see also the history of the R5 modelling exercise reported in Loague and Van-25

derkwaak, 2002 and modelling the Plynlimon chloride data in Kirchner et al., 2001 and
Page et al., 2007).

What we can be sure of is that the next generation of hydrological modellers will also
have access to new and better geophysical and geochemical information, and that
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their perceptions of how hydrological systems work will change. There remain some
epistemological uncertainties of which, as yet, we have only the vaguest intimation
but which we should expect to inform better hydrological simulation and integrated
catchment management in the future.

8 Conclusions5

Disinformation as a result of epistemic error is an issue in hydrological modelling. In
particular the way in which the colour in model residuals resulting from epistemic errors
should be expected to be non-stationary means that it is difficult to justify the spin that
the structure of residuals can be properly represented by statistical likelihood functions.
To do so would be to greatly overestimate the information content in a set of calibration10

data and increase the possibility of both Type I and Type II errors. This has been
recognised in the past in the bias to be expected in posterior parameter distributions
when too simplistic a likelihood function is used, but it has been suggested here that
the problem is much more significant. Some techniques have been suggested for
identifying periods of disinformative data prior to evaluation of a model structure of15

interest, and the effect on the estimated parameter values of a hydrological model has
been demonstrated.
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Table 1. Table showing the number of Monte Carlo samples considered behavioural for vary-
ing thresholds. Values for the data series with disinformative periods removed are shown in
brackets.

κmin κmax

1 0.99 0.98 0.97 0.95 0.93

−100 10152 (10192) 5819 (9544) 456 (6082) 145 (2968) 22 (1408) 1 (789)
−50 8733 (8754) 4885 (8201) 333 (5213) 111 (2561) 16 (1175) 1 (641)
−30 7459 (7478) 4095 (7011) 235 (4442) 81 (2181) 12 (977) 1 (507)
−10 4192 (4214) 2210 (3920) 86 (2471) 25 (1262) 2 (496) 0 (215)
−5 2276 (2308) 980 (2090) 13 (1162) 6 (549) 1 (164) 0 (56)
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Fig. 1. Potential sources of epistemic error in measuring and modelling catchment responses.
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Fig. 2. Plot of the lower part of the master recession curve.
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Fig. 3. Schematic showing the calculation of the runoff volume associated with an event. The
lighter shaded area represents the runoff volume associated with the event which starts at time
0 and the darker shaded area an underlying baseflow The subsequent events starts after 67 h
(solid line) so the lighter shaded area after this time is extrapolated using the MRC.
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Fig. 4. Scatter plot of runoff coefficient against total rainfall for the 1817 events identified in the
time period. Those in red are considered as disinformative.
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Fig. 5. Cumulative distribution of φ1 for behavioural parameter sets of the two situations con-
sidered: analysis using the full data set with (κmin,κmax)= (−10,0.98) (solid) and with the disin-
formative data removed with (κmin,κmax)= (−5,0.93) (dot-dash).
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Fig. 6. Cumulative distribution of α2 for behavioural parameter sets of the two situations con-
sidered: Analysis using the full data set with (κmin,κmax)= (−10,0.98) (solid) and with the disin-
formative data removed with (κmin,κmax)= (−5,0.93) (dot-dash).
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Fig. 7. Simulation results for an event not within the calibration period. the shaded area rep-
resents the limits (evaluated on a time step by time step basis) of the simulations ... deemed
behavioural when calibrated against all the calibration data with (κmin,κmax)= (−10,0.98). The
lines correspond to the limits when on the informative calibration data is used and (κmin,κmax)=
(−5,0.93).Points represent the observed data.
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