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Abstract

Questions remain regarding how the skill of operational probabilistic forecasts
is most usefully evaluated or compared, even though probability forecasts have
been a longstanding aim in meteorological forecasting. This paper explains
the importance of employing proper scores when selecting beween the various
measures of forecast skill. It is demonstrated that only proper scores provide
internally consistent evaluations of probability forecasts, justifying the focus
on proper scores independently of any attempt to influence the behaviour of
a forecaster. Another property of scores, locality, is discussed. Several scores
are examined in this light. There is, effectively, only one proper, local score for
probability forecasts of a continuous variable. It is also noted that operational
needs of weather forecasts suggest that the current concept of a score may be
too narrow; a possible generalisation is motivated and discussed in the context
of propriety and locality.



1 Introduction

Useful probabilistic forecasts have long been a goal in operational weather fore-
casting, as has the idea that, by its very nature, the meteorological problem
makes a probabilistic solution “desirable if not inevitable” (Petterssen, 1956).
Modern telecommunications allow the user of weather model output to construct
weather forecasts using simulations from several operational centres. Further-
more, ensembles of simulations under the same model provide flow dependent
uncertainty information, superior to the traditional use of historical errors, for
translating simulations into probabilistic forecasts (Palmer, 2000; Palmer et al.,
2005).

As probability forecasts become more common, the need to select one method
from among the plethora of alternatives for constructing and tuning probabilis-
tic forecasts as well as growing interest in how to better quantify the improve-
ment in probabilistic forecasting techniques (Jolliffe and Stephenson, 2003) has
stimulated the development or adoption of a number of scores (Wilks, 1995;
Gneiting and Raftery, 2004; Roulston and Smith, 2002). While the true value
of a forecast is its utility to the end user, scores are fundamental to the perfor-
mance analysis of probabilistic forecasts and, ideally, provide a general measure
of forecast quality, independent of any specific end user. We will examine sev-
eral scores in detail in Section 3, each of which aims to quantify the quality
of a probabilistic forecast system given a series of forecast—verification pairs.
The main aim of this paper is to demonstrate the requirements on the scores
to ensure internally consistent forecast evaluation, rather than how scores could
be employed in connection with forecast archives to either evaluate or improve
probabilistic forecast systems.

Our main focus is on the importance of using proper scores, as outlined in
Section 4. After defining this property, it is demonstrated that only proper
scores are internally consistent in the sense that a forecast probability distribu-
tion is given an optimal expected score when the verification is, in fact, drawn
from that probability distribution. Using proper scores may have other positive
side effects on the behaviour of forecasters, as argued by Murphy and Winkler
(1987). While discussions on motivating the honesty of forecasters is sometimes
wide ranging, the importance of using proper scores can be motivated solely on
the grounds that mathematically, only proper scores are internally consistent.

Scores used as examples in this paper include the Ignorance, Brier Score,
and the Naive Linear Score. Although widely discussed (Wilson et al., 1999),
the Naive Linear Score is not a proper score. We derive a variant of the Linear
Score that is proper. In Section 5 we consider the issues surrounding the notion
of locality, and note that uncertain observations may drive us to use generalised
scores. Concluding remarks are made in Section 6

2 Probabilistic Forecasts

To give a mathematical definition of a probabilistic forecast, let us consider
a variable of interest, say the temperature at London Heathrow airport on a
specific day. We will use the symbol X to denote the observed value of that
variable. The corresponding lower case © denotes any possible value in the
range of X. In the case of London Heathrow temperature, x could be any real



number larger than —273°C. In this paper we focus on probabilistic forecasts in
the form of probability density functions p(x), which express uncertainty over
what the possible values of X will be, based on the information in hand. By
p(z) we denote the entire function, while the notation p(X) always denotes the
value of the function at the particular observation X. Different information may
well lead to different probability forecasts for X denoted by p(x), ¢(z),r(z), .. ..

A priori, p(z) is only required to be normalised and nonnegative; in symbols

/p(x)dac .Y (1)

For the discussion in this paper, it is not relevant how the probabilistic forecast
came about. It might have been computed using highly sophisticated models
or rather simple ones. Of course, to meaningfully evaluate probabilistic forecast
systems, access to a forecast archive of forecast-verification pairs is necessary;
it is difficult, if not impossible, to usefully evaluate a single probability forecast,
and the size of the forecast archive plays a major role in determining the signifi-
cance of the result, regardless of which score is employed. The aim of this paper
is merely to show why only proper scores should be used. This does neither
depend on how the forecast is constructed nor on the size of forecast archives.

3 Scores

A score attempts to compare X and each of the probabilistic forecasts. Yet X
and p(x) are unlike quantities, rendering a point-to-point distance measure such
as the square distance inappropriate. Scores provide more general measures of
comparison. A score is a function S(p(z), X), where p(z) is a probability density
and X is the verification. Note that S(p(x), X) might depend on the whole
functional form of p(x) (e.g. by integration). In other words, S(p(x), X) acts on
p(z) as an operator. To give the reader an impression of how a score S(p(z), X)
would be used to evaluate the quality of a forecast system, assume we had an
archive of forecast—verification pairs at our disposal, that is, a large number N of
forecasts {p;(z),i = 1... N} and corresponding verifications {X;,i = 1...N}.
The forecast system would then be valued according to its empirical skill

(5) = 5 3 Slrl), Xo)

The point of this paper is that not all conceivable scores S should be used
for this purpose, but rather only proper ones. As will be explained, this is a
property of the function S alone. Throughout this paper, scores are defined like
cost functions: small numerical values indicate better forecasts.

Examples for scores include:

The Ignorance Score The Ignorance Score (Good, 1952; Roulston and Smith,
2002) is defined by

S(p(x), X) = —log(p(X)) (2)
To our knowledge, it was first mentioned in connection to weather fore-

casting by Good (1952), who went so far as to suggest that the funding
of the UK Met Office should vary with it. Ignorance has been interpreted



in information theoretic terms (Roulston and Smith, 2002) and directly
quantifies expected returns in certain betting scenarios commonly used to
quantify economic utility.

The Brier Score The Brier Score (Candille and Talagrand, 2004; Jolliffe and
Stephenson, 2003) is defined for binary X, i.e. X = 0 or 1 only. Intuitively,
P(X =1) “should” be close to 1 if X =1 and close to 0 if X = 0. The
Brier score quantifies this via:

S(p, X) = (X —p)*, 3)

where p = P(X = 1). Note that the use of p here differs slightly from our
notational conventions for continuous X.

The Naive Linear Score The Naive Linear Score applies to continuous X
and is defined as

S(p(x), X) = —p(X). (4)
Although often suggested as a possible score, the Naive Linear Score is
not proper, as will be demonstrated and discussed in Section 4.

The Proper Linear Score This score applies to continuous X and is defined
as

S(p(x), X) = / P*(2)dz — 2p(X). (5)

It is a strictly proper alternative to the Naive Linear Score of Equation (4).
The fact that the additional term [ p?(z)dz renders the score strictly
proper will be demonstrated in Section 4. Selten (1998) discussed it and
contrasted it with the Ignorance.

The Mean Square Error This score can be applied to continuous X with
the definition

S(p(a), X) = / (X — 2)%p(z)dz (6)

This score measures the spread of p(z) around X. If we let m and s be
the mean and the standard deviation of p(x) respectively!, that is

m = /xp(x)dx

5= \/ [ mppes,

this score can be written as

and

S(p(x), X) = (X —m)* + 5*. (7)

Thus, the Mean Square Error depends on p(x) only through its first and
second moment. It does not reflect any other aspect of p(x). The impli-
cations of this will be discussed later.

IThe mean and the standard deviation of p(x) are not to be confused with the sample
mean and the sample standard deviation of the observations.



Note that the Proper Linear Score depends on the entire functional form of p(x)
(due to the integral in the first term of Equation 5), while both the Ignorance
and the Naive Linear Score depend on p(x) only via the single number p(X), the
value of p(x) at the verification X. That is, the Ignorance and the Naive Linear
Score depend only on the value of the probabilistic forecast at the verification,
not on other features of the functional form of p(xz). This property is called
locality, which we return to later in Section 5.

4 Proper Scores

At first glance, the various scores presented above possess no distinctive features
qualifying them as particularly useful in valuing probabilistic forecasts. As will
be shown in this section though, some of these scores are proper, while others are
not. We will first define this property and subsequently explain why improper
scores lead to conclusions inconsistent with common sense, thus motivating the
importance of being proper.

Mathematically, a score is proper if for any two probability densities p(x)
and ¢(z)

/ S(p(a), 2)a(z)dz > / S(a(x), 2)a(z)d=. (8)

In words: the minimum of the left hand side over all possible choices of p(z) is
obtained if p(z) = g(z) for all z. A score is strictly proper if this happens only
if p(x) = gq(z) for all .

The central argument for employing only proper scores becomes apparent
when the meaning of the two integrals in Equation 8 is explained. In short,
a proper score will always prefer a probabilistic forecast if it is, in fact, more
accurate. Suppose ¢(z) is our bespoke forecast. If we knew the verification X,
the skill of the forecast ¢(x) would be S(g(z), X). Although we do not know X at
the moment, we still can compute the skill we ezpect to obtain by averaging the
quantity S(g(z), X) over all possible values of X using the forecast we possess
(namely ¢(z)). This can be written as

Forecasted Skill of g(z): / S(g(x),2)q(z)dz.

This is the integral on the right—hand—side of Equation 8. Given an additional
forecast p(x), we can again employ ¢(z) to evaluate the expected skill of p(z),
which is

Forecasted Skill of p(a:):/S(p(:z:), z)q(z)dz

This is the integral on the left—-hand-side of Equation 8. Note that ¢(x) was used
to predict the skill of p(z). Propriety implies that the latter integral is always
larger than the former, or in other words that we expect p(x) to be less skillful
than ¢(z) when the expectation is evaluated using ¢(z). Otherwise, the score
we are using leads to a contradiction: It would rank p(x) above g(x) even if X
was actually drawn from ¢(x). This is a property of the score alone, not of the
particular distributions p(z) or ¢(z). Under a proper score, we would likewise
expect ¢(z) to be less skillful than p(z) if the expected skill was calculated using
p(z) instead of g(x). Propriety is a property of the score, it is neither neccessary



to assume that X is drawn from any kind of “true” distribution nor that any
kind of data is to hand. The question of whether the employed score is proper
or not can be answered before any data is considered.

Alternatively, consider any two forecasts p(z) and g(x). Trivially we can
write

S(p(z), 2)q(2)dz = [ S(a(x), z)a(2)d= )
+ [ S(p(x),2)a(2)dz — [ S(a(x), 2)q(2)dz].

If S is proper, the term in square brackets is positive definite. Strict Propriety
means that the term in square brackets is strictly positive definite. Thus, if X
was drawn from the the distribution g(x), the skill of any forecast, if measured
according to a (strictly) proper score, could be decomposed into the skill of g(x)
plus a (strictly) positive definite term. Again, this holds for any two p(x), ¢(x).
For the Brier score this decomposition (9) is well known as the Reliability—
Sharpness decomposition (Wilks, 1995). To show this, write the Brier score
as
Ey(X - q)* = Ey(X —p+p—q)?
= E(X—p)>+(p—0q)?+2E,(X —p)(p—q) (10)
= E(X-p?—-(p-a?
since E4(X) = ¢, where E, indicates expectation with respect to ¢g. The first
term on the right hand side is the Brier score of p. Adding (p — ¢)? on both
sides, Equation (10) becomes the same decomposition as Equation (9). This
shows also that the Brier score is strictly proper, since the parenthesised term
in Equation (9) is (p — ¢)? and thus indeed strictly positive definite.
We next demonstrate briefly whether or not the further scores mentioned in
the last section are (strictly) proper. The Ignorance is strictly proper, as can
be derived from the fact that

/— log (%) q(z)dz >0, (11)

with equality if and only if p(z) = ¢(x) (Kullback-Leibler Inequality (Kullback

and Leibler, 1951)). The Proper Linear Score is indeed also strictly proper,
given the fact that

/ (4(2) — p())*dz > 0, (12)

with equality if and only if p(z) = ¢(x) for all x. The left-hand-side of Equa-
tion 12 can be written as

/ (9(2)? + p(2)? — 2p(2)q(2)] dz = / g2z + / S(p(x), 2)a(2)dz,  (13)

which is the proper linear score plus the square integral over g(z) which, being
a constant, does not enter the minimisation over p(z). Therefore, the score is
minimal if and only if p(x) = ¢(z).

The Naive Linear Score however is improper: even if X were drawn from
q(z), the Naive Linear Score would not judge ¢(z) the best. Probability density
functions p(x) different from ¢(x) would rank higher than ¢(z). In short, there
are p(x) which would be judged to have greater skill. In fact, for any given g(x)
it is always possible to find a p(z) so that

[z < [ ~ate)atene



Actually, the Naive Linear Score favours a p(z) featuring a very small spread
and which is centred at a point Z for which ¢(Z) is very large. To see this,
consider first the case where g(x) is not constant. Then there is a Z so that

(@) < / —4(2)a(2) dz = / S(q(a). 2)a(z) d=.

This point Z is a point where ¢(x) is larger than average. If we take an arbi-
trary kernel function g(x) that has a continuous derivative, is symmetric, and
normalised and define p,(z) = 2g(%=%), i.e. center the kernel at Z with spread

ag
o, it follows that

/S(pg(x),z)q(z)dz = /—pg(z)q(z)dz — —q(Z).

In other words, the Naive Linear Score rewards assigning excess probability
to high—probability x, which requires assigning too low probability to low—
probability x. If however ¢(z) is constant, then

[ -p@ataz = g

for any p(z). So in this case the score does not discriminate between forecasts
at all.

The non—propriety of the Naive Linear Score would also emerge as a conse-
quence of a far more general result due to Bernardo (1979) (see also Page 8),
namely that for continuous variables all smooth, proper and local scores are
affine functions of the Ignorance. The notion of locality, briefly mentioned at
the end of Section 3, will be returned to in Section 5. Proper scores in general
have been characterised by Gneiting and Raftery (2004).

The Mean Square Error is improper as well. This can be seen as follows. Let
m, and s, be the mean and the standard deviation of p(x). Likewise let m, and
sq be the mean and the standard deviation of ¢(x). Using the representation
Equation 7 we have

/S(p(m), 2)q(z)dz = /(z — mp)2q(z)dz + 512,
= (mg— mp)2 + 5(21 + 512>'

But this quantity is not necessarily larger than

/ S(q(x), 2)q()dz = 252,

as it would have to be for the Mean Square Error to be proper. In fact, as for
the Naive Linear Score, a density p(z) centred around the mean m,, and having
small standard deviation s? would achieve a better score than g(x) itself.

Sometimes only the mean of p(x) is eventually used as a forecast. The error
in the mean can be taken as a score, effectively setting

S(p(x), X) = (X —my)*.

This score is proper, but not strictly proper, as follows from the fact that [(z —
my)2q(z)dz is minimal if m, = m, in particular if p(z) = g(z), yet every other



pdf p(x) having the same first moment m,, will achieve the same score, no matter
how distorted the distribution is! Even a forecast that, for example, assigned
zero probability wherever g(x) is non-zero but had the same mean would achieve
the same score.

To conclude, we note that proper scores and only proper scores are internally
consistent in that the score S(g(z),X) assigns an optimal expected value to
q(z) if and only if X is distributed according to g(x). Note that philosophical
arguments over the existence of a “true” probability distribution play no role in
the entire discussion of this paper. It is tempting to think of the skill of a forecast
p(z) as its distance to a true (in any sense) conditional probability describing
the relation between our information and the unknown variable X. Since we
do not assume the existence of such a “true” probability distribution, much
less having access to it, we are unable to consider distance measures between
probability distributions, gainfully explored in other circumstances by Kleeman
(2002). A proper score merely ensures consistency.

5 Locality and Non-locality

A score is local if the probabilistic forecast is evaluated only at the actual ver-
ification. As an example, contrast the (nonlocal) Proper Linear Score, which
involves the functional operation of integrating over p(x)?, with the (local) Ig-
norance Score, which is simply the logarithm of the probability density function
taken at the verification. In other words, a score is local if and only if it can
(with a slight abuse of notation) be written as

S(p(x), X) = S(p(X), X).

Thus, for local scores, S does not act on the whole function p(z) any more but is
just a usual function of the two real numbers p(X) and X. Therefore, it makes
sense to define smooth local scores as local scores for which the function S has
continuous partial derivatives with respect to these two arguments.?

At first sight, it might seem unreasonable that features of the forecast other
than the value it assigned to the verification should matter. Yet it is possi-
ble that domain knowledge suggests any appropriate forecast should have, for
example, some smoothness properties; one may want to restrict the possible
variations in the probability forecast a priori, without having looked at the
data3. This can also be useful when scores are employed for training models
translating numerical model simulations into probability density forecasts. A
ubiquitous problem here is to limit model complexity, which can be addressed
by enforcing certain measures of smoothness upon the probability density func-
tions (regularisation). Since a finite sample of verifications is never sufficient to
either confirm or deny the presence of such properties, smoothness has to be
enforced either by restricting the class of density functions considered to smooth

2Note that a similar definition for nonlocal scores would require a substantially more ad-
vanced concept of smoothness, since in general nonlocal scores involve functional operations.

3The definition of locality as given here must not be confused with issues related to scor-
ing forecasts for spatial fields. There the question arises whether fields should have some
smoothness properties over space, rather than over different verifications.



functions a priori, or by augmenting the score with a term that penalises non—
smooth densities, essentially rendering the score nonlocal* °.

A separate reason for using nonlocal measures in a particular problem would
arise if the Ignorance score is not considered suitable. For example, the Igno-
rance score is infinity if the forecast assigns vanishing probability to an event
that obtains. If we wish to usefully evaluate forecasts which insist on assigning
zero probability to events that occur, we would have to resort to other scores.
Inasmuch as Ignorance is the only smooth, proper and local score for continuous
variables (Bernardo, 1979)°, this implies switching to a nonlocal score.

Nonlocal evaluation measures also arise naturally when the value of the
verification is uncertain, although the whole concept of scores needs a slight
alteration in this situation. Suppose we have a probabilistic forecast p(x) for
X, but we in fact observe Z, which is X corrupted with additive observation
noise. Assuming that the density of the noise is known, the conditional density
k(z]z) of Z given X can be computed. Any forecast p(z) for X gives rise to a
forecast p(z) for Z by means of

A(z) = / (e |2)p(z)da.

Applying a score S to p(z) and Z, we can define the generalised score S for p(z)
by setting -

S(p(x), Z2) = S(p(2), Z).
Here the right—hand-side defines the left-hand—side. We then define a gener-
alised score to be proper if for any g(x) we have

/Sw@xm@wz/éwwwmam7 (14)

where, as for p(z),
1) = [ (elo)aa)d.

If S is proper, S is proper as well. If S is strictly proper though, S is not
neccessarily strictly proper, since if §(z) = p(z), this does not neccessarily mean
equality of p(z) and g(z). Although S is not a score in the original definition of
Section 3, it is clearly a nonlocal quantity.

6 Conclusions

Insightful evaluation and inter-comparison of probability forecasts requires a
careful choice of score to quantify the agreement between historical forecast-
verification pairs. We focus on a few scores for the case that each forecast
consists of a probability density function and each verification consists of a real

4Scores including the derivative at verification points are still nonlocal according to the
common definitions, although they could be attested a certain “pseudo-locality”

5Requirements of smoothness or parsimony might be desired for reasons not directly con-
nected with skill, and therefore might not be considered as part of the score. We thank Devin
Kilminster for stressing this point.

6The exact statement of this result is that every local, smooth and proper score for con-
tinuous variables is an affine function of the Ignorance



number. This list of scores is not exhaustive. Furthermore, probabilistic fore-
casts for discrete events allow for further measures of skill not mentioned here.
Our main point is that only proper scores are internally consistent. Another
property of scores, locality, is discussed. Several scores are examined in this
light. By Bernardo’s theorem, Ignorance is effectively the only proper local
score for continuous variables. Locality also appears to be a desirable prop-
erty of a score, yet the case for local scores is less compelling than for proper
scores. It would be interesting to identify and investigate when nonlocal scores
for continuous variables would be highly valued.

When using scores to evaluate probabilistic forecasting systems it is critical
to consider the performance of the system over a duration sufficiently long to
obtain robust results. Ultimate evaluation of operational probabilistic forecast
systems may require including the fact that the verifying observation is itself
uncertain, and thus a move to generalised scores. A possible generalisation was
motivated and discussed in the context of propriety and locality. Proper scores
allow an internally consistent evaluation, making their use an important feature
in the valuation and further improvement of these forecasts and the models
behind them.
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