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Abstract
The new method of analysis by non-orthogonal empirical functions (NEFs) is applied to experimental data for
the spatio-temporal variations in wall temperature during nucleate boiling. It is shown that the method can
successfully identify the positions and patterns of activity at individual members of a large group of nucleation
sites. Statistical methods are developed for comparing data of this sort with numerical simulations.

1. Introduction
The transfer of heat by nucleate boiling is inherently non-uniform in time and space. The fluctuations in local
conditions modify the activity of bubble nucleation sites in ways that cannot be represented by a simple
relationship between space-time averaged wall superheat and the effective size distribution of the nucleation
sites. The interactions between large groups of sites can be simulated by numerical models at low heat flux ( e.g.
Pasamehmetoglu and Nelson 1991, Unal and Pasamehmetoglu 1994, Golobic et al.,1996), and at high heat flux
(e.g. Sadasivan et al. 1995,  He et al., 2001), with approximate representations of events in the fluid phases. For
the special conditions of boiling on a very thin, electrically-heated plate, the variations in temperature on the
back of the plate can be measured experimentally by liquid crystal thermography, with simultaneous high-speed
video recording of the bubble activity, (Kenning and Yan, 1996). Comparisons between models and experiments
over short periods and small regions suggest improvements to the physics incorporated in the numerical models.
Comparisons over long periods for systems comprising many nucleation sites require efficient computerised
processing of large spatio-temporal data files and, because of the nonlinear dynamics of boiling, the development
of appropriate statistical criteria. This paper describes continuing investigations of these issues.

Experiments on pool boiling of water at atmospheric pressure on a horizontal, electrically-heated plate of
stainless steel 42 mm x 20 mm x 0.13 mm thick were described by Kenning and Yan (1996). The colourplay of a
thin layer of liquid crystal on the bottom of the plate and the bubble activity on the top were recorded in the
same colour video field at 200 interlaced fields/s. Separated Hue fields were converted to temperature fields by a
pre-stored calibration and Intensity fields were used for the identification and measurement of bubbles. The
growth of each bubble caused rapid local cooling over the near-circular contact area between the bubble and the
wall; the wall temperature had to recover before the next bubble could nucleate. This cycle was interrupted if the
cooled area of one site overlapped another site. At a heat flux of 51 kW/m2, 48 sites in a central area 20 mm x 11
mm that produced bubbles during a period of 12 seconds were identified by manual analysis of the simultaneous
recordings of temperature and bubble motion.  Sites were identified by tracing a circular cooled patch back in
time to the instant of its first appearance. The bubble view was then checked to confirm the first appearance of a
bubble. The interactions between four adjacent sites were studied in detail over the same period. The manual
analysis required weeks of work, making it impractical to study interactions over a longer period. McSharry et
al. (2000) applied nonlinear analysis to the temperature-time series at the known positions of the four sites over a
period of 30 seconds. They used a simple set of rules to identify bubble nucleation events and obtained statistical
evidence for site interactions without reference to the bubble recordings. They showed that the previous analysis
over a shorter period gave an inaccurate representation of the pattern of interaction over the longer period.

The bubble side cannot always be observed clearly at higher heat fluxes and in other boiling geometries so it is
desirable to deduce the positions and activity of nucleation sites from the temperature data alone over periods of
at least 30 seconds, by fully automated analysis. A conventional approach to such problems is principal
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Figure 1: Typical NEF basis function. F
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manual study (Kenning and Yan, 1996), we choose to study the first difference in time between successive fields.
This has the advantage of removing the constant spatial inhomogeneities, but can lead to increased sensitivity to
noise. A 3 x 3 spatial averaging filter is used to reduce  noise in the derived dataset.

NEF analysis has a few free parameters: First the shape of prototypical NEFs must be chosen, possibly based on the
physics of the problem under study. In order to account for the different horizontal and vertical resolutions, since
NEFs are applied directly to the data arrays, we use a modified ellipsoidal shape, based on the shape described in
McSharry et al. (2001) and illustrated in Figure 1, with an aspect ratio (vertical over horizontal radius) of ∆x /∆y.
This is equivalent to a circular shape in physical coordinates. We allowed only negative amplitude NEFs to be used
in the analysis. A realistic range of radii in the interval 6-36∆y is explored, allowing only for even multiples of ∆y, in
order to reduce the computational time needed for the analysis. The other important free parameter of NEF analysis
is the tuning of the cost function (described in McSharry et al.), expressed by a penalty weighting factor α which
affects the number of NEFs used for the reconstruction. A too low choice of this parameter leads to the detection of
spurious NEFs associated with random background fluctuations or to more than one NEF being used to represent
strongly deformed, non-circular, cooled regions. A too high value prevents the detection of weak, small, cooled
regions, such as those associated with the first stages of bubble formation, particularly when other, extended and
large amplitude, cooled regions are present For the present analysis we choose α=160, which strikes a balance
between the contrasting needs mentioned above.

Apart from measurement noise due to the characteristics of the liquid crystal and of the hue conversion, video noise
generated during acquisition and replay can occasionally introduce large amplitude and completely artificial
structures in the data arrays. The use of short-time correlations, as described in the following section, allows us to
remove some spurious identifications and to locate the position where nucleation events first originate, even when
there is no possibility of crosschecking the results with observations on the fluid side.

2.3 Detection and characterization of nucleation events
Various problems affect the performance of the NEF algorithm in locating accurately nucleation events both in
time and in space. From the previous work, it is expected that a nucleation event will be preceded by a slow rise
in temperature at the site and followed by a rapid fall in temperature over an area approximately matching the
size of the bubble, then a slow recovery. The video sampling rate is slow compared to the rate of fall, so there
may be only two or three samples during that period, with a sharp transition in temperature, as illustrated in
Figure 2.  When working on the derived dataset  the cooled patch may therefore be first captured when it is small
and of low amplitude. This gives the best estimate of the position of the nucleation site at the centre of the patch
but the early detection of the patch requires setting the cost function for high sensitivity and can be inhibited by
the presence of other strong cooled regions. In the following arrays, the cooled region is of larger amplitude and
radius but its centre may not coincide exactly with the nucleation site, e.g. if the bubble grows over a region of
initially non-uniform temperature or the bubble is swept sideways by a fluid disturbance. Also background
fluctuations and video noise can lead to occasional spurious detection of bubbles by the NEF algorithm,
especially when a too high sensitivity of the algorithm was chosen.

In order to obtain a possibly accurate estimate of the nucleation site associated with a nucleation event, the data
obtained from the first stage of NEF analysis are postprocessed in order to identify and keep only realistic
nucleation events and to trace back the position of cooled areas at the moment of their first formation. To this
purpose, at each step in time, the NEFs found are compared with those identified at the previous step: NEFs
centred within a certain radius ∆r near previous ones are labelled as representing the same nucleation event. For
the analysis presented in this paper we used ∆r=1 mm. When all NEFs have been assigned to a particular
nucleation event, time and position of the first NEF of each sequence are recorded to represent the nucleation site
and time. The sampling rate and the ability of the NEF algorithm to detect the appearance of the small and weak
cooled region associated with the early stages of bubble formation limit the accuracy in determining the time of
initiation of a nucleation event and its initial position.
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Figure 3: Nucleation sites found by manual
analysis (Kenning and Yan 1996)  after grouping sites
closer than 1 mm.
nd, the local wall temperature immediately before
temperature is averaged over a 3x3 cell centred at
ckward in time from the earliest time of bubble
ing back to the highest temperature before a drop
logously the first minimum temperature following
m temperature reached by the wall. Occasionally
 inaccuracy in the determination of the centre of
minimum wall temperature is compared with the
1ºK, the event is discarded.

l inspection of the sequence of temperature fields,
f individual cooled regions, of discarding spurious
 bubble at the same site.

ion event for statistical analysis: time, position,
 and corresponding radius of the NEF.

identified more than 600 nucleation events over a
 that coincided exactly, so “nucleation sites” were

than 20 ms and by consolidating locations lying
tes, at a low average bubble frequency of 1.15 Hz,
ormously. 77% of the bubbles were formed at 12

tire period. The average nucleation superheat and
ven site, there were only small variations in the
measuring temperature. In a subsequent study of
only a single active site (Wienecke et al. 1999;
 11 K but there was a variation of ± 10% for
 liquid at the instant of nucleation was estimated

 small to explain the variation.  These studies raise
e as a single, micron-sized cavity with a fixed



F

0

0.02

0.04

0.06

0.08

0.1

0.12

0 1 2 3 4 5 6 7

P
D

F

r (mm)

Figure 5: PDF of the radii found by NEF analysis.
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igure 6: PDF of the nucleation temperatures.
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temperatures between events can be fitted to an exponential distribution p(r)=b exp(-a T), with a = -1.3. This
means that 75% of these pairs has a nucleation heat difference smaller than 1°K.

4. Conclusions
It has been shown that fully-computerised NEF analysis can be applied to spatio-temporal data for wall
temperature fluctuations in a nucleate boiling system with many nucleation sites. This method makes it possible
to develop statistical tools for the comparison of experimental data and numerical simulations. Further work is to
be performed to determine the significance of interactions between nucleation sites in extensive systems over
long periods.
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