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ABSTRACT

Meteorologists often interpret the value of a probabilistic weather forecast using the binary cost–loss scenario.
The socioeconomic benefit of such a forecast will depend on the compliance rate of users and, hence, the number
of warnings that are not followed by the corresponding high-impact weather. A modified version of the canonical
binary cost–loss problem in which the compliance rate of users is a function of the warning probability threshold,
and hence of the ‘‘false alarm rate’’, is presented. In this version of the problem, the value of the forecast can
be enhanced by choosing a probability warning threshold that is higher than the cost–loss ratio. It is found that
the advantage of modifying the probability warning threshold is greatest when the frequency of highly confident
forecasts of an event is relatively high and when users are moderately intolerant of false alarms. Using this
simple example it is illustrated that forecasters who issue nonprobabilistic, or ‘‘unequivocal,’’ forecasts are
making implicit assumptions about the false alarm intolerance of users, as well as assumptions about their cost–
loss ratios. Adopting a probabilistic approach to forecasting avoids these assumptions and separates the activity
of forecasting from the activity of decision making.

1. Introduction

Aesop’s fable, the ‘‘The Boy who Cried Wolf,’’ is
about a young shepherd boy guarding the village flock
who cries that there is a wolf worrying the sheep. The
villagers rush out to protect the sheep, but there is no
wolf. This event is repeated two or three times before
a wolf actually does show up on the hillside. The boy
cries ‘‘Wolf!,’’ but to no avail: the villagers, no longer
regarding the warning as credible, fail to act and the
wolf decimates the flock. The traditional moral of this
tale is that liars are not believed, even when telling the
truth. But, are we being too harsh on the shepherd boy?
Perhaps his mistake was to overestimate the rationality
of the villagers. This traditional tale can be expressed
in terms of a cost–loss problem, used in the analysis of
the utility of weather forecasts (Ångström 1922; Murphy
1966; Liljas and Murphy 1994; Richardson 2000). The
villagers’ cost–loss matrix is

No wolf wolf

Villagers respond C C

Villagers do not respond 0 L,

where C is the price the villagers paid when they ran
to aid the shepherd boy. This price is largely an op-
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portunity cost, the value of the goods and services they
could have been producing had they not been running
about the hills. The loss associated with losing part of
the flock to a lupine predator is represented by L. If the
shepherd boy believed the probability that there was a
wolf about is p, then the expected cost to the village is1

pL if you do not cry wolf
E [COST] 5 (1)5C if you cry wolf.

To minimize the expected cost, the boy should have
cried wolf if p . C/L. If we assume that the flock of
sheep was one of the village’s most important assets,
and that a wolf attack would result in the loss of several
sheep, it seems reasonable to say that the villagers’ cost–
loss ratio, C/L, was quite modest. An estimate of C/L
using contemporary prices gives

21C six villagers for 1 h at $10 h
ø

L three sheep at $200 each

$60
5 5 0.1, (2)

$600

where three has been taken as a reasonable numerical
value of ‘‘several.’’ The cost–loss analysis implies that

1 Whether or not the probability p was a reliable estimate of the
probability would not affect the shepherd boy’s behavior, as long as
the shepherd boy believed p to be a reliable estimate.
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the shepherd boy should have issued a warning even if
he believed there was only a 10% probability of lupine
activity. While this is a rational strategy, it would ob-
viously have resulted in a high rate of ‘‘false alarms’’—
possibly as high as 90%, if the probabilities underlying
the forecasts were reliable.2 The fact that the villagers
were apparently unprepared to tolerate a false alarm rate
of around 67% seems to suggest that they had not per-
formed a cost–benefit analysis of responding to the cries
of ‘‘Wolf!’’ Unfortunately, such behavior is not confined
to the characters in stories written over two millenia
ago. Psychological factors influence people’s perception
of risk, and this perception affects the way that they
interpret meteorological forecasts. In this paper, we ex-
amine how the public’s compliance with warnings might
affect the value of the forecasts, and whether the forecast
value can be increased by taking the user’s response into
account. We do this in the context of the familiar cost–
loss scenario. The standard cost–loss scenario is a pre-
scriptive decision model, which specifies how a user
should respond. In contrast, descriptive decision models
describe how users actually do respond (Stewart 1997).
The modified cost–loss model we present is an idealized
descriptive model, but it provides a quantitative illus-
tration of the descriptive–prescriptive distinction. We
hope that a better appreciation of the importance of this
distinction will motivate further study in the area of
descriptive modeling. The classical cost–loss problem
illustrates that any forecast that is nonprobabilistic in-
cludes an implicit assumption about the cost–loss ratios
of users. The extension presented in this paper dem-
onstrates that such nonprobabilistic forecasts also in-
clude an implicit assumption concerning the tolerance
of users to false alarms. Forecasters who issue strictly
probabilistic forecasts do not make any such tacit as-
sumptions. With probabilistic forecasts, the process of
forecasting can be explictly separated from the process
of decision making in a way that is not possible with
unequivocal (nonprobabilistic) forecasts.

2. Cost–loss scenario with imperfect compliance

To model imperfect compliance with warnings in
the cost–loss scenario we introduce a compliance rate,
q. This is the probability that action will be taken if
a warning is given. The expected cost, E [COST], if
the forecast probability is p is thus

2 In this paper we use the phrase ‘‘false alarm rate’’ to mean the
proportion of times the warning is issued but the event does not occur.
The term ‘‘false alarm rate’’ is unfortunate in that is perpertuates the
belief that one can evaluate a single so-called probability forecast:
perfect probability forecasts would still generate ‘‘false’’ alarms or
nonevent warnings. We prefer not to introduce new jargon here but
instead suggest that compliance will improve when decision makers
understand this point.

E [COST]

pL when no warning is given
5 (3)5qC 1 (1 2 q)pL when a warning is given.

The first term on the lower line of the right-hand side
(rhs) of Eq. (3) denotes the expected cost of protective
action being taken, while the second term is the expected
cost of a loss if no protective action is taken. If warnings
are issued when the forecast probability exceeds some
threshold, pw, then the expected cost averaged over time
is given by

pw

^E [COST]& 5 r(p)pL dpE
0

1

1 r(p)[qC 1 (1 2 q)pL] dp, (4)E
pw

where r(p) is the frequency distribution of forecasted
probabilities. The first term on the rhs of Eq. (4) rep-
resents days on which no warning is issued, and the
second term is days on which a warning is issued. Equa-
tion (4) can be rewritten as

1 1

^E [COST]& 5 L r(p)p dp 1 qC r(p) dpE E
0 pw

1

2 qL r(p)p dp. (5)E
pw

The problem becomes analytically tractable if we as-
sume that the forecast probability, p, is drawn from a
uniform distribution; that is, r(p) 5 1 on the interval
[0, 1]. In this case, Eq. (5) can be rewritten

2^E [COST]& 1 1 pwJ 5 5 1 qc(1 2 p ) 2 q 2 ,w 1 2L 2 2 2

(6)

where J is the expected cost per unit loss and c 5 C/L
is the cost–loss ratio. If the compliance rate, q, is in-
dependent of the threshold at which warnings are issued,
pw, then the minimum of J occurs when pw 5 c; this is
the standard cost–loss scenario.

A more interesting situation arises if we assume that
the compliance rate is a function of the false alarm rate.
The definition of the false alarm rate we are using is

number of times the warning
is issued but event does not occur

FAR 5 (7)
number of times the warning

is issued
1

(1 2 p)r(p) dpE
pw

FAR 5 . (8)
1

r(p) dpE
pw
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Assuming that the forecasts are reliable, and that r(p)
5 1, Eq. (8) gives

1 2 pwFAR 5 . (9)
2

Note that the false alarm rate is not, in general, equal
to (1 2 pw). The expected false alarm rate is a mono-
tonically nonincreasing function of the warning thresh-
old, pw, so we can write q 5 q(pw). As pw increases the
false alarm rate decreases, and we can expect the com-
pliance rate to rise. Thus, a reasonable form of q(pw) is
a monotonically increasing function of pw. The simplest
function of this form is q 5 pw. Assuming that rela-
tionship and differentiating J with respect to pw gives

dJ 1 3
25 c 2 2p c 2 1 p . (10)w wdp 2 2w

Thus, the value of the warning threshold, pw, that min-
imizes the cost per unit loss is

24 4c 2 6c 1 3
p* 5 c 6 . (11)w !3 9

If the cost of acting is small relative to the potential
loss if no action is taken then c K 1 and Eq. (11) gives

1
p* ø ø 58%. (12)w Ï3

This threshold is close to the 60% threshold that the U.K.
Met Office’s National Severe Weather Warning Service
(NSWWS) uses for its ‘‘early warnings’’ (Mylne and
Legg 2002). Given the low cost–loss ratios often asso-
ciated with severe weather, this threshold would appear
too high with respect to the standard cost–loss analysis.
Imperfect compliance on the part of the public provides
a possible justification for the high value of the opera-
tional threshold.

3. Imperfect compliance when warnings are rare

While analytically tractable, the assumption of a uni-
form distribution of forecasted probabilities is rarely
appropriate when considering extreme and rare events.
Murphy and Wilks (1998) used a beta distribution to
model the frequency of forecasted probabilities in a pre-
cipitation forecasting system. This type of distribution
can represent the bimodality that an ideal forecasting
system would have, with most forecasts being close to
0% or 100%. In this study an exponential distribution
of forecasted probabilities is used. The frequency of
forecast probabilities generated by a severe weather
forecasting system based on the European Centre for
Medium-Range Weather Forecasts (ECMWF) ensemble
forecasts (Mylne and Legg 2002) generally declines
with increasing probability—a pattern that can be rep-
resented by an exponential distribution described by a

single parameter. The analysis presented could be ap-
plied to other forms of r(p), including estimates of r(p)
made using actual forecasts. The exponential distribu-
tion is given by

2apae
r(p) 5 a . 0, (13)

2a1 2 e

where a parameterizes the rarity of higher forecast prob-
abilities. The normalization of r(p) is such that

r(p) dp 5 1. When the distribution of forecast prob-1#0

abilities is given by Eq. (13) then the frequency with
which the forecast probability is equal to or exceeds
r is

2ar 2ae 2 e
Prob(p $ r) 5 . (14)

2a1 2 e

As expected, as a increases the frequency of probability
forecasts exceeding r decreases. Figure 1 shows the
form of r(p) for three different values of a. Values of
a close to zero correspond to an almost uniform dis-
tribution on the interval [0, 1]. If the forecasted prob-
abilities are reliable, then the climatological probability
of the event is the expected value of p; that is,

1 2a1 e
r(p)p dp 5 2 . (15)E 2aa 1 2 e0

Given that the warning threshold is pw, and the com-
pliance rate is q, the time-averaged expected cost is
given by substitution of Eq. (13) into Eq. (5). Integration
gives

^E [COST]&
J 5

L

pw1 b b 2 b b 1
5 2 1 qc 1 q 1 11 2a g g g a

pwb 1
2 q 1 p , (16)w1 2g a

where b 5 e2a and g 5 1 2 e2a. We seek the value
of pw that minimizes J. If the compliance rate, q, is
independent of pw then setting the derivative of dJ/dpw

equal to zero gives the standard cost–loss scenario re-
sult, 5 c. We can now quantify how user intolerancep*w
to false alarms impacts the forecast value.

In the remainder of this section we perform the same
analysis as for the case of a uniform distribution of
forecast probabilities, but, in addition to using an ex-
ponential distribution of forecast probabilities, we in-
troduce a more general dependence of the compliance
rate on the warning threshold. We do this to show how
the value of unequivocal forecasts varies with the fre-
quency of the event, the cost–loss ratio of the user, and
the intolerance of the user to false alarms.

We parameterize the intolerance of the user to false
alarms with the following model:
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FIG. 1. The frequency with which probabilistic forecasts of an event with a particular probability are issued,
as a function of the parameter a. Low values of a correspond to events for which high-probability forecasts
are relatively common. High values of a correspond to events for which high-probability forecasts are rare.

FIG. 2. The compliance rate, q, as a function of the probability
threshold at which warnings are issued: four different values of the
parameter l are shown. The model of compliance, q, as a function
of warning threshold, pw, is q 5 . Thus, a value of l 5 0 corre-lpw

sponds to full compliance (q 5 1) regardless of the warning threshold.

lq 5 p l $ 0.w (17)

The parameter l is a quantification of the strength of the
‘‘cry wolf effect.’’ It will also be assumed that the prob-
ability forecasts are reliable. If l 5 0 then the compliance
rate is 1 and the standard cost–loss scenario is recovered.
If l is small then the compliance rate remains quite high
until the warning threshold, pw, is set very low (the case
of frequent warnings). In the case of pw 5 0, warnings
occur all the time, and the compliance rate falls to zero.

In this case, there is a major difference between ideal
rational users of the traditional cost–loss scenario who
will always take protective action if c 5 0 and the in-
tolerant users of the modified scenario who will never
take action. This unwillingless to protect against im-
probable, but potentially catastrophic, events has been
studied in the context of attitudes to insurance (Slovic et
al. 1977). If pw is set to one, warnings are only issued
when there is certainty, and total compliance is achieved.
The extreme cases of pw 5 0, 1 are the same for all
values of l . 0, but higher values of l correspond to
less tolerance of false alarms. The higher the value of l
the more rapidly the compliance rate falls as the warning
threshold is reduced from near certainty. Figure 2 shows
the compliance rate as a function of the warning threshold
for four different values of l.

In this more general case, finding the global minimum
value of the function J(pw) is not analytically tractable.
The minimum value of J, and the corresponding optimum
value of pw that gives this minimum value, can be found
numerically. For cost–loss ratios of c 5 0.01, c 5 0.1,
and c 5 0.5 the results are shown in Figs. 3, 4, and 5,
respectively. Figure 3a shows the optimum value of pw

as a function of a and l. Figure 3b gives the percent
reduction in the average expected cost when this optimum
is used, rather than a value of pw 5 c 5 0.01, which is
what the conventional cost–loss analysis would suggest.
The maximum cost reduction is over 50% and is obtained
for a K 1 and l ø 0.2. This corresponds to an almost
uniform frequency distribution of forecast probabilities
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FIG. 3. (a) The optimum warning probability threshold as a function
of event rarity parameterized by a and intolerance of false alarms
parameterized by l when the cost–loss ratio is 0.01. (b) The reduction
(%) in the expected cost when the optimum threshold is used rather
than the cost–loss ratio.

FIG. 4. As in Fig. 3, except for a cost–loss ratio of 0.1. Note that
with this higher cost–loss ratio the maximum cost reduction is reduced
to about 30%.

and a relatively, but not perfectly, compliant user. The
optimal warning threshold in this case is pw ø 0.30, which
is considerably higher than the cost–loss ratio of 0.01.
Inspection of Fig. 3a suggests that the value of 60% used
by the NSWWS suggests a value of l . 1, and since
the effective value of a for extreme events is likely to
be at the high end of the range shown, the implied value
of l may be more than 3. Such a value would correspond
to a user that is quite intolerant of false alarms. Reference
to Fig. 3b indicates that in this case the reduction in the
average expected cost obtained by inflating the warning
threshold is quite low, less than 5%. Figure 4 shows the
same analysis as Fig. 3, except for the case of a cost–
loss ratio of c 5 0.1. Again, the 60% contour corresponds
to relatively high values of l, and again the cost reduc-
tions obtained for high values of a and l are below 5%.
In this region of the a–l plane, the high value of l means
that the user tends to only respond to almost certain fore-
casts, but the high value of a means that such forecasts
are highly uncommon; hence, the overall impact of ac-
counting for imperfect compliance is small. Figure 5b

indicates that the cost reductions possible by accounting
for imperfect compliance when the cost–loss ratio is 0.5
are not very large for any combination of a and l. In
Figs. 3 and 4 it can be seen that the biggest reductions
in expected cost, for modest values of a, are obtained
for values of 0 , l , 1. In this range, the user deviates
from the perfect compliance enough so that taking this
deviation into account matters, yet they do not deviate
so much that it is infeasible to compensate for their in-
tolerance of false alarms.

The introduction of imperfect compliance increases
the average cost incurred relative to the standard cost–
loss scenario. The value of the forecast is the difference
between the average cost incurred when the forecasts
are used compared to the average cost incurred in the
absence of forecasts. The ratio of the values of the fore-
casts in the imperfect compliance case, with an optimal
warning threshold, and in the standard perfect compli-
ance case is given by the following expression:
^COST(zero compliance)& 2 ^COST(imperfect

compliance, optimal p )&w . (18)
^COST(zero compliance)& 2

^COST(perfect compliance, p 5 c)&w
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FIG. 5. As in Fig. 3, except for a cost–loss ratio of 0.5. Note that
with this cost–loss ratio there is very little cost reduction and the
optimum warning thresholds do not deviate from the cost–loss ratio
as much as they did in Figs. 3 and 4.

FIG. 6. The ratio (%) of the value (average cost reduction) of the
forecasts when there is imperfect compliance to the value when there
is perfect compliance. A value of 100% indicates that incompliance
has no impact on forecast value, while a value of 10% indicates that
the actual value of the forecast is only 10% of the value that would
be calculated using the conventional cost–loss method. The optimum
warning threshold for the parameter values was chosen for the im-
perfect compliance, and a threshold of pw 5 C/L 5 0.1 was used for
the standard cost–loss comparison.

Figure 6 shows the value of the ratio in Eq. (18) for
different values of l and a. The cost–loss ratio used
was c 5 0.1. From Fig. 6 it can be seen that as the
rarity of events increases, and the user’s intolerance for
false alarms increases, the actual potential value of the
forecasts falls in relation to the value that the standard
cost–loss analysis predicts. Replacing COST (zero com-
pliance) in Eq. (18) with the average cost when deci-
sions are based on climatological probabilities, COST
(climatology) will reduce the value of the forecasts and
reduce the ratio defined by Eq. (18). That is, if we as-
sume that users, in the absence of a forecast, make better
decisions than zero compliance, then the value of fore-
casts with imperfect compliance will be further reduced
relative to the forecasts with perfect compliance.

4. Discussion and implications

We have shown that introducing a compliance rate
that is a function of the false alarm rate in the cost–loss
model can have a substantial impact on the optimal

choice of warning threshold and the value of forecasts.
The extent to which false alarm intolerance modifies the
results of the cost–loss analysis depends upon the fre-
quency of forecasted probabilities (a in our model), the
cost–loss ratio (c), and the intolerance of the users to
false alarms (l in our model). The modification is most
pronounced for low cost–loss ratios (c K 0.1), relatively
high frequency events (a , 1), and users who are mod-
erately intolerant of false alarms (0 , l , 1). For such
situations the optimal warning threshold can be many
times the cost–loss ratio, and the savings obtained by
changing the warning threshold can exceed 25%.

Establishing the value of a, or a more appropriate
form of r(p), for a particular type of forecast is a prob-
lem that lies comfortably inside the domain of meteo-
rologists. Past forecasts can be used to estimate r(p).
Determination of the cost–loss ratio, c, is more a prob-
lem of economics than meteorology. Nevertheless, the
cost–loss type of decision model is now well established
in the field of weather forecasting (Katz and Murphy
1997; Richardson 2000). The value of the parameter, l,
indeed the functional relationship q(pw), is poorly un-
derstood. At its simplest, q can be interpreted as the
probability that a random individual will comply with
forecast warning. The compliance rate can also be in-
terpreted as the fraction of individuals who will comply
with a warning. These two interpretations are equivalent
if each individual’s decision is independent of the de-
cisions made by other individuals, but in practice this
is unlikely to be the case. For example, an individual’s
decision on whether to evacuate their home may depend
on what his or her neighbors are doing. This means that
the form of q(pw) will be an emergent property of a
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system of interacting individual choices. In addition, q
may depend on the false alarm rate during a finite period
in the recent past. In such a situation the optimum warn-
ing threshold will be time dependent.

The simplified problem addressed in this paper illus-
trates the importance of including the actual user re-
sponse in models of forecast value. This descriptive
component cannot be neglected if estimates of the true
value of forecasting systems to the economy and society
are required. The results in this paper also indicate that
consideration of users’ response by forecasters can in-
crease the realized value of their forecasts. Many fore-
casters will feel uncomfortable about modifying their
forecasts in an attempt to compensate for imperfections
in user responses. If forecasters make only probabilistic
forecasts then they need not, and should not, report fore-
casts that deviate from their best estimate of the prob-
abilities of future weather outcomes. Whenever fore-
casters issue nonprobabilistic forecasts, however, they
are making implicit assumptions about both the cost–
loss ratios of users and their tolerance of false alarms.
Unless forecasters are prepared to make these assump-
tions explicit, and to justify them, then they should ex-
clusively issue probabilistic forecasts and thus untangle
themselves from the process of decision making.
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