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Abstract

Bifurcation diagrams which allow one to visualise changes in the behaviour of
low dimensional nonlinear maps as a parameter is altered are common. Visualisation
in higher dimensional systems is more difficult. A straightforward method to visualise
bifurcations in flows of high dimensional nonlinear dynamical systems is presented,
using the Lorenz *96 systems with dimension 8 and dimension 40 as examples. Three
techniques are considered; the first two, density and max/min diagrams, are analogous
to the traditional bifurcation diagrams used for maps. These diagrams are generally
more difficult to interpret than the corresponding diagrams of maps, however, due to
projection effects and the continuous nature of the flow. The third technique intro-
duces an alternative approach: by calculating the power spectrum at each value of
the control parameter, a plot is produced which clearly shows the changes between
periodic, quasi-periodic, and chaotic states; these spectral bifurcation diagrams reveal

structure not shown by the other methods.



1 Introduction

Bifurcation diagrams provide a useful method to show how a system’s behaviour changes accord-
ing to the value of a control parameter. A classic example is the logistic map, where the system
shows both periodic and chaotic behaviour, and periodic orbits appear as a discrete set of points
[Alligood et al., 1996]. With flows, it is more difficult to present the bifurcations, due to the con-
tinuous nature of the flow. While a periodic orbit in a map is an oscillation between a discrete
number of points, in a flow a variable will sweep out a continuous range of values. In this paper,
we discuss different methods for visualising bifurcations in flows, and present a new technique
based on calculating the power spectrum. The techniques are illustrated using the Lorenz 96
systems, though they can also be applied to other systems. The emphasis is on visualising the
bifurcations, rather than exploring their nature using other means, which is a topic for future work.

The Lorenz *96 systems were first introduced as idealised one-dimensional models of the atmo-
sphere [Lorenz, 1996]. They produce time series which are qualitatively similar to the behavior of
variables such as temperature. Variants of the systems have proved useful for studying issues re-
lated to atmospheric predictability and model error [Hansen, 1998; Hansen & Smith, 2000; Orrell
et al., 2001; Orrell, 2002].

The first system, which we shall refer to as System |, contains n variables =1, z, ..., z,, and the

equations are

dz; .
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where F'is a constant, and the index 4 is cyclic so that z; ,, = z;,, = =;. The z;’s can therefore be
viewed as variables around a circle. In physical terms, they could be values of some atmospheric

quantity such as temperature at n equally spaced latitudes around the globe. The constant term F’



in the equations is external forcing, the linear term is internal damping, and the quadratic terms,
which introduce information about the spatial variation of x, represent advection.

The other system to be discussed will be referred to as System Il, and incorporates smaller
scale motions with shorter time scales. There are n variables z;, together with an additional nm

variables g; ;. The equations are
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fori = 1,...,nand 7 = 1,...,m. Again the variables are cyclic so that §;.,; = ¥;; and

Uij—m = Yi—1,j. Following [Lorenz, 1996], we set b = ¢ = 10, which has the effect of making
the ¢’s fluctuate ten times more rapidly than the z’s. The g’s can be thought of as convective scale
quantities in the atmospheric analogy. The coupling coefficient h is set (except when otherwise

specified) to 1.

2 Behaviour of System | with dimension 4

We begin by considering System | with n. = 4, which is the simplest non-trivial variant. We first
derive some of the basic properties of the system, before presenting the bifurcation behaviour. The

equations are:
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By substituting into the equations, it is easily seen that 1 = z9 = z3 = x4 = F is a fixed
point for all F. The stability of this fixed point can be determined by considering the Jacobean

[Guckenheimer & Holmes, 1983], which is:
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For F' = 0, the Jacobean evaluated at the origin (z1 = z2 = 3 = x4 = 0) is minus the identity,
thus the only eigenvalue is -1 which ensures stability. For F' = 1, the Jacobean at the fixed point

.’E1::E2:£E3=.’L‘4:1i5

An eigenvector of this matrix is (z,-1, —z, 1), with associated eigenvalue . At F' = 1 an eigenvalue
passes through the real axis in the complex plane. This is associated with a Hopf bifurcation
[Guckenheimer & Holmes, 1983], where a periodic orbit is produced from a fixed point. Indeed,
in Figure 1 we see that for F' just above 1, the system attractor plotted as = versus z- is a near
circular stable periodic orbit with period of approximately 2z. The variables z, 3 and z4 (not
shown) also follow periodic orbits but are out of phase with = by 7/2, = and 37 /2 respectively.
Viewed as variables on a circle, the solution can then be seen as a wave propagating in a clockwise
direction. This direction of propagation remains noticeable even when the system is chaotic, and

is a consequence of the advection term. The power spectrum of the time series of z; shows a peak



at frequency 1/2, as expected, but also reveals a number of higher harmonics at multiples of the
base frequency.

As F is increased, the x; time series picks up extra local maxima due to the presence of higher
harmonics, but there is no sign of period doubling. In the logarithmic scale, the power appears
to decrease more or less linearly with frequency, suggesting that the coefficients in the power
spectrum decrease exponentially with frequency. Near FF = 12, the system becomes chaotic.
Around F' = 14.7 there is a periodic window before becoming chaotic again. The orbit shown in
the lower panels has a period of 11.365 time units.

Rather than examining individual values of F, it is desirable to visualize how the system
changes, and particularly where bifurcations occur, as F' is varied continuously. One method
to do this is analogous to the bifurcation diagrams of maps such as the logistic map, which simply
record the points on the attractor as the bifurcation parameter is increased, either by a scatter plot
or a density plot. For example, the top panel of Figure 2 shows a density plot of the x, variable
(again, by symmetry, it doesn’t matter which x; is chosen). For each value of F, it records the
density of the z; time series, of the sort shown in the left column of Figure 1.

While the resulting diagram is interesting and captures much of the behavior, a disadvantage
of the method, which doesn’t occur with maps, is that because z; is a continuous variable, the
periodic orbits appear as a continuous band rather than discrete points, and it is hard to distinguish
areas of chaos. This can be improved by showing only local minima or maxima. A period p
orbit produces a finite number of local maxima, while in a chaotic region, we expect an infinite
number of such maxima. This method is used in the max/min figure in the middle panel; it is
again a density plot, but now only shows the local extrema of x (either local maximum or local

minimum). Interpreting this graph, the line which appears at F' = 1 represents the nearly linear



growth in the frequency of the solution as F' is increased. The new lines which appear around
F = 3 and F = 8 (and higher values of F’) reflect the higher harmonics (note that these lines
do not indicate period doubling). The system becomes chaotic around F' = 12, and the periodic
window at F' = 14.7, as well as a second window just before F' = 16, can be clearly seen.

While these diagrams give useful information, new lines representing the growth of higher har-
monics appear out of nowhere, and needn’t indicate any bifurcation. Because the system picks up
progressively higher harmonics as F' increases, the more natural approach is the spectral bifurca-
tion diagram in the lower panel. This new kind of bifurcation diagram was inspired by a technique
used to do on-the-fly measurements of field harmonics in superconducting magnets [Orrell et al.,
1994] while the current is being ramped. The diagram is composed by combining the power spec-
tra at different values of F' into a continuous power histogram. The vertical axis shows frequency,
while the color indicates the power at that frequency.

Comparing the spectral bifurcation diagram with Figures 1 and the upper two panels, we see
that the lines beginning at and after F = 1 and continuing to F' = 12 represent the periodic
orbits. These lines are equally spaced in frequency, indicating that the orbit in this region of
parameter space only contains harmonics which are multiples of its lowest frequency (this ensures
periodicity). Around F' = 12 the chaotic regime begins. The periodic windows, such as the one
near F' = 16, appear as bands of horizontal lines. The period of the orbit at F/ = 14.7 may be
estimated from its lowest frequency of about 0.88, which agrees with the observed period 11.365.

The main advantage of the spectral bifurcation diagram is that it can reveal structure, such as
quasi-periodic orbits, which are not seen using the other methods. This is evident in the next

section, where we consider higher-dimensional systems.



3 System | with dimension 8 and 40

System | can be run with any number of variables. While the higher dimension versions display
broadly similar behaviour to the 4D case, they also show additional complications and interesting
features. One property of the n = 8 system is that it has at least two attractors: a symmetric
attractor (z5 = z1,26 = x2,z7 = x3,28 = x4) Which is a copy of the n = 4 attractor, and
a second attractor containing no such points. This symmetric attractor will attract any initial
condition which has the required symmetry, while other points are drawn to the other attractor
[Hansen, 1998]. Therefore periodic orbits corresponding to those in Figure 1, even the one at
F = 14.7 where most orbits are strongly chaotic, all exist in the n = 8 system. The analysis
below is concerned with the second (asymmetric) attractor.

Figure 3 shows bifurcation diagrams for the n = 8 case. They are similar to the attractor for
the n = 4 system, but become chaotic much earlier. Prior to about F' = 2.8, the attractors for
n = 4 and n. = 8 correspond, in the sense that trajectories in the n = 8 system are drawn to
the symmetric periodic orbits. However around F' = 2.8 a period-doubling bifurcation occurs,
as shown in Figure 4, and we will no longer have 1 = x5 and so on. By F' = 3.8, the system
appears to be chaotic. At this resolution, it is difficult to pick out periodic windows of any width
in the chaotic regime past F' = 4.5.

The spectral bifurcation diagram in the lower panel of Figure 3 reveals completely new features
that are not evident from the density and max/min diagrams. The symmetric periodic orbit is
indicated by the line beginning at 7' = 1 and frequency 0.16. At F' = 2.8 a line appears at half the
frequency, which corresponds to the period doubling mentioned above. By F' = 4 we see a broad
range of harmonics corresponding to chaos. However from about F' = 4.8 to F' = 5.6 there are

large windows where the system appears not to be chaotic (specifically, it is not broad band).



Inspection of the spectral bifurcation diagram reveals that more than one frequency, or its har-
monics, are present in these windows. The slopes of the diagonal lines in the range F' = 4.8 to
F = 5.6 are different, so the relative balance of power between the frequencies changes with F.
When the frequencies are incommensurate, the result will be a quasi-periodic orbit. In bifurcation
diagrams produced either by the maxima method or a Poincaré section method [Alligood et al.,
1996], these quasi-periodic orbits appear as a continuous band indistinguishable from chaos.

It is possible to find orbits in the region F = 4.8 to F' = 5.6 which appear to close upon
themselves (that is, the attractor is a periodic orbit); this is shown in Figure 5 for F = 5.235298.
The number of decimal places in F', however, attests to the fact that this is not an easy task! The
period of this orbit is 36.7, which corresponds to a frequency of 0.027. Figure 6 is a close-up of
the spectral bifurcation diagram. The periodic orbit is located in a region where the spectra display
lines separated with a frequency spacing of 0.027, as expected.

Still another way to view, or experience, the bifurcations is to listen to them [Orrell, 2001]. A
recording is available which contains a translation of the 8 dimension system into sound. The z;
and x5 variables are interpreted as sound waves, and played to the left and right speakers respec-
tively. Starting from a periodic orbit at F' = 3.5, the system is ramped upwards. The periodic
orbit increases in speed and sound level, like a motor being accelerated. A distinct change is heard
as the system goes chaotic around F' = 3.8; the sound level drops and becomes irregular, as if the
motor is about to stall. Entering the quasi-periodic region around F' = 4.7, the system once again
settles down, though it doesn’t quite repeat. Only when held at a value of F' = 5.235298 is a true
rhythm established. It seems that the Lorenz systems provide a model of a car in need of a tune as

well as the atmosphere!

LAt www.lse.ac.uk/col | ections/cats/documents.htm



The dimension of the system can be increased indefinitely, but computations rapidly become
expensive. The highest dimension we considered was n = 40. Figure 7 shows bifurcations for the
40D System 1. It is again quite similar to the other systems, with the exception that the spectral
bifurcation diagram (lower panel) has a somewhat richer appearance in the transition to chaos.

The systems considered so far have all had a constant forcing term F'. Other variants are pos-
sible; one studied is the case where F' depends on the index 4. This is analogous to the weather
problem where forcing is different over land and over sea [Hansen, 1998; Hansen & Smith, 2000].
Other possibilities include making the forcing function a function of space and time (seasonal
forcing), or a function of the local value of x;, or all values of x; at the current time, or values
of x; at current and previous times, and so on. System Il may be considered as one such variant,
where the forcing depends on small scale ¢ variables which are coupled with the large scale z

variables.

4 Behaviour of System 11

The equations for the Z variables in System Il are similar to those of System I, with the difference
that the constant forcing is replaced by a term which depends on the fast scale ¢ variables. We
might therefore expect the Z variables to behave like the z’s in System I, but with an added degree
of fuzziness. The density and max/min bifurcation diagrams for the n = 8, m = 4 case (dimension
40) in Figure 8 bear this out. They are qualitatively quite similar to Figure 3. The lines in the region
F = 4to F = 5 have an added thickness, and correspond to apparently chaotic orbits that are like
jostled versions of the periodic orbits seen in System | for slightly lower values of F'. There is an
additional period doubling bifurcation at ' = 1.5, as the fast scale variables become non-zero.

Another noticeable feature is that the ¢ variables tend to decrease the forcing £ on average, so the



whole diagram is shifted to the right compared to Figure 3.

The spectral bifurcation diagram for System Il in Figure 8 can be compared also with that in
Figure 3. Again it is quite similar to the System | case, with the difference that a full range of
spectra, indicating a completely chaotic regime, doesn’t occur until around F' = 5.5 as opposed
to F' = 4. The diagram only shows to F' = 6, however the system appears to remain chaotic
and there no obvious periodic or quasi-periodic windows visible past that point. Figure 9 shows
bifurcation diagrams for the ¢ variables.

So far we have only considered bifurcations obtained by varying the parameter F'. There are of
course other possibilities, such as varying the coefficient A, which controls the coupling between
the small scale ¢ variables and the large scale Z variables. Figure 10 shows bifurcations in the ¢
variables as the coefficient A is varied, while the forcing is held constant at ' = 2. The spectral
bifurcation diagram shows intricate cross-hatching, and a degree of structure that is absent from
the other diagrams.

When the coupling coefficient is increased, System |1 is capable of showing quite complicated
behaviour even at F' = 2, where System | is periodic. Figure 11 shows the Z and ¢ orbits. The z

variables nearly follow a periodic orbit, while the g variables are clearly quasi-periodic.

5 Conclusions and future work

In this paper, we have discussed different methods for viewing bifurcations in high dimensional
nonlinear dynamical flows. The most useful, in terms of the amount of information conveyed, is
the spectral bifurcation diagram. These diagrams reveal a sometimes surprising amount of detail
in system behaviour which would not otherwise be evident.

The methods have been illustrated throughout using the Lorenz *96 systems. While these sys-

10



tems are useful for simulating certain properties of atmospheric models, they also turn out to be
interesting in their own right. Spectral bifurcation diagrams reveal the extraordinarily rich struc-
ture of their bifurcations.

While this paper has concentrated on techniques for visual presentation of bifurcations, it would
clearly be interesting to explore the nature of the Lorenz 96 bifurcations in greater detail. We hope

that the results here will serve as motivation for such work.
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Figure Captions

Fig. 1. Plots of 2, versus time, 5 versus z; and log (base 10) power spectra versus frequency for various

values of F' for System | withn = 4.

Fig. 2. Bifurcation diagram for System | with n. = 4. Upper panel is a density plot of 1, middle panel is

density of local max/min, and lower panel shows the spectral bifurcation diagram, as introduced in the text.

Fig. 3. Bifurcation diagrams for System | with n = 8. Upper panel is the z; density plot, middle panel is

the density of local max/min, lower panel is the spectral bifurcation diagram.

Fig. 4. Period doubled orbit at ' = 3 for System | with n. = 8.

Fig. 5. Periodic orbit at F' = 5.235298 for System | with n = 8.

Fig. 6. Close up of spectral bifurcation diagram in region of periodic orbit, for System | with n = 8.

Spacing of the harmonics at F' = 5.235298 is about 0.27, corresponding to a frequency of 36.7

Fig. 7. Bifurcation diagrams for System | with n = 40. Upper panel is the 2, density plot, middle panel is

the density of local max/min, lower panel is the spectral bifurcation diagram.

Fig. 8. Bifurcation diagram for the 40D System I, Z variables.

Fig. 9. Bifurcation diagrams for 40D System I, ¢ variables.

Fig. 10. Bifurcation diagrams for 40D System Il,  variables, as a function of the coupling coefficient A.
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Fig. 11. Z and g orbits for true system with F' = 2 and ¢ = 1.2.
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Fig. 1. Plots of 2, versus time, 5 versus z; and log (base 10) power spectra versus frequency for various

values of F' for System | with n = 4.
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Fig. 2. Bifurcation diagram for System | with n. = 4. Upper panel is a density plot of z;, middle panel is

density of local max/min, and lower panel shows the spectral bifurcation diagram, as introduced in the text.
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Fig. 3. Bifurcation diagrams for System | with n = 8. Upper panel is the z; density plot, middle panel is

the density of local max/min, lower panel is the spectral bifurcation diagram.
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Fig. 5. Periodic orbit at F' = 5.235298 for System | with n = 8.
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Fig. 6. Close up of spectral bifurcation diagram in region of periodic orbit, for System | with n = 8.

Spacing of the harmonics at F' = 5.235298 is about 0.27, corresponding to a frequency of 36.7
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Fig. 7. Bifurcation diagrams for System | with n = 40. Upper panel is the z density plot, middle panel is

the density of local max/min, lower panel is the spectral bifurcation diagram.
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System Il, x variables
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Fig. 9. Bifurcation diagrams for 40D System I, ¢ variables.
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System I, y variables as function of coupling
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Fig. 10. Bifurcation diagrams for 40D System Il,  variables, as a function of the coupling coefficient A.
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