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Comparison of predictability of epileptic seizures by
a linear and a nonlinear method

Patrick E. McSharry'2?, Leonard A. Smith?? and Lionel Tarassenko!

Abstract— The performance of traditional linear (vari-
ance based) methods for the identification and prediction
of epileptic seizures are contrasted with “modern” methods
from nonlinear time series analysis. We note several flaws of
design in demonstrations claiming to establish the efficacy
of nonlinear techniques; in particular, we examine published
evidence for precursor identification. We perform null hy-
pothesis tests using relevant surrogate data to demonstrate
that decreases in the correlation density prior to and during
seizure may simply reflect increases in the variance.

Keywords— Epilepsy, nonlinear, time series, prediction,
surrogates, null-hypothesis.

I. INTRODUCTION

PILEPSY is the most common serious neurological

disorder, affecting 1% of the population at some time
in their life. Reliable and robust indicators of a seizure
ahead of its onset would have considerable impact on the
quality of life of a very large number of sufferers. They
would also alleviate the work of EEG technicians who con-
tinue to score multi-channel records manually as automated
seizure detection methods remain too inaccurate.

While it is likely that the processes underlying the EEG
signal are nonlinear [1], [2], there is little concrete evidence
that such signals are low-dimensional or display determin-
istic chaos. Nevertheless, a number of nonlinear statistics
have been used, with varying degrees of success, to detect
and predict epileptic seizures, these include: correlation
density [3], [4], cross-correlation integral [5], [6], [7], Lya-
punov exponents [8], [9], [10], synchronisation [11], [12],
similarity measures [13], recurrence quantification [14] and
nonlinear predictability [15], [16], [17], [18], [19]. One pro-
posed mechanism for an epileptic seizure is that neurons in
a particular region of the brain become synchronised [20],
leading to a reduction in complexity. Some evidence of
this synchronisation has been found by investigating EEG
signals from neighbouring channels using intracranial [21],
[11] and scalp [22] electrodes. It is the quantification of
this relationship and how it is reflected in linear and non-
linear statistics applied to EEG signals that motivates this
article.

Regardless of fundamental dynamics, the operational
question is whether or not the fundamental nonlinearities
are sufficiently robust that they may be exploited in the
EEG signals: can modern nonlinear methods systemat-
ically outperform traditional “linear” methods based on
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analysis of variance? Martinerie et al. [4] claim that “de-
terministic non-linear processes are involved in pre-ictal
neural reorganization in transition to seizure”. In this ar-
ticle, we show that there is no clear evidence of improved
performance for nonlinear methods applied to the database
of intracranial EEG recordings previously investigated by
Martinerie et al. [4]. In particular, we contrast a simple
linear statistic (variance), with a nonlinear statistic (the
correlation density [23]) used in [4].

The outline of the paper is as follows: section II out-
lines the procedure used for collecting the EEG recordings
and summarises various statistical methods that may be
used to analyse the EEG. Section III presents the results
of computing moving estimates of both variance and the
correlation dimension for the EEG recordings. The con-
clusion is given in section IV.

II. METHODS
A. Intracranial EEG recordings

The recordings [4] are of 19 seizures collected from a
group of 11 patients, each having medial temporal lobe
epilepsy associated with hippocampal sclerosis. Electrodes,
consisting of insulated wires with eight contacts separated
by 8mm, were stereotaxically introduced along a posterior
trajectory using MRI for guidance. Four contacts were lo-
cated in the epileptogenic zone, the amygdalo-hippocampal
complex; the more anterior contact was in the amygdala;
and the remaining three were in the hippocampus. The
data was then passed through a 32-channel amplifier sys-
tem with band-pass filter settings of 0.5-99 Hz using an
external reference over linked ears. Each of the recordings
is 40 minutes in duration with 20 minutes of inter-ictal ac-
tivity prior to the seizure. The data were digitised at 200
Hz, with 12-bit resolution, and de-trended: the dc-drift was
removed by linear regression in each time analysis window.
The spatial origin where the onset of the seizure is believed
to occur, known as the epileptogenic zone, was confirmed
using video monitoring. For each recording, four electrodes
close to the epileptic focus were chosen. The time taken as
reference for seizure onset was obtained by visual detection
of ictal activity on the basis of low-voltage fast rhythmic
activity (> 10 Hz). Almost all patients were awake during
the seizure, except for patients 4 and 7.

B. Linear statistics

One of the simplest linear statistics that may be used for
investigating the dynamics underlying the EEG is the vari-
ance of the signal calculated in consecutive non-overlapping
windows [24]. Let s; denote the EEG signal at time i. The
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variance of this EEG signal is given by

o® = (s7) — (s1)°, (1)
where (-) is the average taken over the time interval being
considered. Esteller et al. [25] suggest measuring the en-
ergy (simply (s2)) of the signal in consecutive windows of
the EEG signal.

Another useful linear approach for investigating the EEG
signal is its power spectrum [26], [27], [28], [29]. There are
a number of different statistics which aim to summarise
the information contained in the power spectrum. These
include calculating the total integral of the power spectrum
over all non-zero frequencies (note that this equals the vari-
ance of the signal), and the median frequency which esti-
mates the “typical” frequency present in the signal [30].
Quasi-periodic fluctuations or ‘rhythmic’ behaviour char-
acterised by a peak in the power spectrum at a specific fre-
quency may be used to identify epileptic seizures in some
cases [31].

C. Nonlinear statistics
C.1 State space reconstruction

The nonlinear analysis of data usually requires a state
space reconstruction in order to investigate the underlying
dynamics [32]. A delay vector reconstruction [33], [34], [35]
of the signal s; is defined by

X; = [si—(m—l)'ra ceey Si—r, Si]

where m is the reconstruction dimension and 7 is the time
delay. This reconstruction may be obtained from spatial
electrodes, time delays at one particular electrode, or a
spatio-temporal mixture of these. If synchronisation be-
tween spatially localised electrodes is the hallmark of an
epileptic seizure, then it is important to use a spatio-
temporal reconstruction. Indeed any spatial correlations
(whether linear or nonlinear) will show up in such a recon-
struction space.

In the results presented here, m = 4 and 7 was chosen
using the geometrical approach introduced in [36], in order
to facilitate comparisons with [4]. Four delays on each of
the four channels yielded a 16-dimensional state space. Fol-
lowing Martinerie et al. [4] Principal Component Analysis
[37] was applied to the state vectors within the learning set
to obtain the set of principal axes with their associated sin-
gular values. States within the 16-dimensional state were
projected onto the 8 principal axes with the largest sin-
gular values and the correlation density calculated in this
8-dimensional space.

C.2 Correlation density

One statistic which is capable of detecting both linear
and nonlinear correlations is the correlation density C(r)
[23]; this may be computed by counting the fraction of pairs
of points which are separated by a distance less than r. In
mathematical terms, this may be written as

) =y = & 2 O Ik xl),

i=1 j=i+1

where © is the Heaviside unit function and || - || is the
maximum norm distance.

Lerner [3] tracked the onset and progress of an epileptic
seizure using the correlation density rather than the corre-
lation dimension [23] claiming that the former gives results
which are robust with respect to parameters such as the
embedding dimension, the time delay and the particular
value of ry used to evaluate C(rp).

D. Surrogate data

To determine whether or not there is information in
changes in C(rg) beyond that available from observing that
some linear statistic has changed, we constructed surrogate
data sets with, for example, the same variance and tested
whether observing changes in C'(r¢) in the real EEG signal
yields precursors not seen in the surrogate. Any ‘nonlinear’
precursors in the real data are destroyed (by construction)
in the surrogate data. Thus the idea is to construct data
which ‘looks like’ the real data from a linear perspective
and see if the nonlinear statistic of choice can distinguish
the real recording from the surrogates.

To test how much of the variation in C(rg) results from
changes in the variance associated with separate electrodes,
we constructed surrogate time series [38], [39], [40], [41],
[42] to mimic the linear temporal correlations. We em-
ployed the technique introduced in [39], [42] using freely
available software documented in [43] to produce surro-
gates. Each surrogate maintains the probability distribu-
tion function and approximates the power spectrum of the
real data, thereby preserving linear temporal correlations.
These surrogates do not maintain any nonlinear correla-
tions.

Relevant surrogates reflect the obvious properties of the
data, in particular that the variance in different windows
(or blocks) of the data changes with time. Hence we re-
fer to these surrogates as block surrogates. All surrogates
employed in this paper are block surrogates, that is they
were constructed window by window so as to replicate the
obvious time dependency of the linear correlations found
within each window in the original recordings. Blocks of
30 seconds duration were used. We constructed block sur-
rogates independently for each electrode as described above
and refer to these as Block Univariate (BU) surrogates.

Another obvious property of the data is the cross corre-
lation between electrodes; surrogates which retain both the
linear temporal and linear spatial cross correlations are re-
ferred to as multivariate surrogates [40]. In this particular
case the multivariate aspect is restricted to the linear cross-
correlations (either global or within each block). Obviously,
we may have either Global Multivariate (GM) surrogates
(as used in [4]) or Block Multivariate (BM) surrogates.

III. RESULTS

A. Variance

Spatio-temporal changes in each of the 19 intracranial
recordings from 11 patients are illustrated using a moving
window estimate of the variance (Fig. 1). The first num-
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time [secs]

Fig. 1. Moving variance for each of four intracranial electrodes from
the 19 recordings investigated in Martinerie et al. [4]. Each label
specifies the patient (1 to 11) and recording number for that pa-
tient. Seizure periods are illustrated by the shaded regions. The
vertical axes have a logarithmic scale ranging between the minimum
and maximum variances.

ber of the label is the patient index and the second is the
recording index. In each panel, the lines denote the vari-
ance computed over non-overlapping 30-second windows
for each of the four intracranial electrodes used for record-
ing the EEG at the epileptic zone [4]. The shaded region
in each panel denotes the time period which clinicians have
marked as containing the epileptic seizure for that partic-
ular recording.

The moving variance (Fig. 1) captures information
about the temporal and spatial activity. Note the marked
increase in variance during all the seizures apart from
recordings 2/1 and 4/1 where the variance increases af-
ter the seizure finishes. This late identification may be due
to an error in the method used for calculating reference
times for the seizure onset [4]. There is generally good
agreement between the levels of variance at the four elec-
trodes, except for recordings 2/2 and 2/3. Note also that
during the seizure in recording 3/2, one electrode registers
decreasing variance whereas the others show increasing lev-
els of variance. Variance provides a benchmark with which
other statistics must be compared, in as much as the use of
complicated nonlinear statistics can only be justified when
they are seen to outperform traditional alternatives.

time [secs]

Fig. 2. Analysis of intracranial EEG recordings using C(rg) cal-
culated in non-overlapping 30 second windows. Seizure periods are
illustrated by the shaded regions. The vertical axes have a linear scale
ranging from 0 to 1.

B. Correlation density

Martinerie et al. [4] calculated C(ro) for the recordings
in the same database as that which we investigated here
and reported that it yielded precursors to epileptic seizures
in 10 out of the 11 patients (all apart from patient 9). We
calculated C(rp) in non-overlapping 30-second windows for
the intracranial EEG data (Fig. 2), using a value of rg
(following [4]) such that C(r9) = 0.5 during the first 30-
second window.

Recall that the correlation density C(r) is the fraction
of pairs of points in the reconstructed state space which lie
within a given length scale r and therefore provides a geo-
metrical measure of the clustering properties of the points.
Once 1 is fixed, there is an obvious relationship between
changes in the variance and changes in C(rg): if the vari-
ance increases then C(rq) will decrease (Fig. 1 and 2). Note
that while variance is computed from distances between the
signal and the average at one electrode, C(ro) is calculated
from distances within the spatio-temporal reconstruction
state space, thereby incorporating both spatial and tem-
poral correlations.

On the other hand changes in the temporal correlations
at a single electrode will change the distribution of points
in the reconstructed state space even if the variance is con-
stant. Such a change in the distribution of points almost
certainly changes C(ro), similarly for changes in the spatial
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correlation between electrodes. Finally nonlinear spatio-
temporal correlations which do not affect linear statistics
can also change C(rp). All this implies that changes in
C(ro) would not necessarily be picked up by the variance.
The use of nonlinear methods for diagnosing medical dis-
orders can only be justified by showing that they outper-
form well-understood traditional linear statistics. In the
following, we stress the need for relevant null hypotheses
and demonstrate that these should relate to the detection
method being tested.

C. Null hypothesis testing

Martinerie et al. [4] “constructed multivariate surrogate
data from each raw data set in such a way that the lin-
ear correlation within each component time series and the
cross-correlation between them is preserved”. It is obvious
(Fig. 1) that such GM surrogates do not reflect the tempo-
ral changes in variance. If the entire duration of a record-
ing is used to construct the surrogates (as was done in
[4]), then temporally localised events displaying large vari-
ance tend to be dispersed throughout the surrogate. The
real recording is easily distinguished by eye from among
a group of such GM surrogates. Thus it is not surprising
that the values of C(rg) calculated for the real recording
(Fig. 2 of [4]) are wildly different to those calculated for
the surrogates. The results reported in [4] are ‘statistically
significant’, but the null hypothesis is medically irrelevant.
Changes in variance (heteroscedasticity) can be as easily
detected by monitoring the variance as by the more com-
plicated estimation of C(rg). The use of the GM surrogates
implies that the variance changes before the seizure, not
that C(rg) outperforms a linear statistic.

The use of block surrogates is crucial to applications
like this. There is a strong argument that surrogate data
‘should’ address a well defined null hypothesis. More im-
portant, however, is that it address a relevant null [41].
GM surrogates are particularly inappropriate in this study
since we wish to assess the usefulness of nonlinear methods
against time dependent (block-wise) linear statistics.

For recording 8/1 we calculated the variance averaged
across the four electrodes (Fig. 3a). In addition C(r¢)
was calculated for this recording and ten BU surrogates
(Fig. 3b). These surrogates also display decreasing val-
ues of C(rg) when approaching the seizure, suggesting that
this phenomenon is simply due to an increase in variance.
Nonetheless there are differences between the BU surro-
gates and the original recordings suggesting that spatial
correlations and perhaps nonlinear correlations are also rel-
evant for determining C(rg). We also constructed ten BM
surrogates which also preserve the linear spatial correla-
tions. Inclusion of the linear spatial correlations provides
a better agreement between C(rg) calculated for the real
recording and the BM surrogates (Fig. 3c). There are
still some discrepancies between C(rg) derived from the
real recording and the BM surrogates which are due to
nonlinear effects. While C(ry) stays within five standard
deviations of the mean of the C(rg) values calculated using
the BM surrogates, it remains above this threshold (corre-
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Fig. 3. Analysis of recording 8/1: (a) variance averaged across four
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Fig. 4. Comparison of C(rg) with variance for recordings 1/1
(squares), 8/1 (circles) and 11/1 (triangles), showing the clear re-
lationship between C(rg) and variance. Note the logarithmic scale
on the horizontal axis.

sponding approximately to the 95% significance level) both
during and for 350 seconds after the seizure. This suggests
that while there is no evidence of nonlinearity before the
seizure, there may be nonlinear activity both during and
after the seizure onset. Note, however, that there is no
reason to invoke nonlinear activity in order to explain the
decrease in C(rg) prior to the seizure.

A comparison between C(rg) and variance for a number
of recordings (Fig. 4) shows that C(ro) is highly dependent
on the variance. This demonstrates that in these cases
there is little information in C(Ryp) that is not available
in the variance. There is little justification for using C(ro)
instead of variance as a statistic for predicting the epileptic
seizures in this database.
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IV. CONCLUSION

Whatever statistic is measured, detecting a “precursor”
requires one to define some algorithm for identifying some
recognisable change in that statistic. It is not our intent to
discuss the details of such algorithms, beyond noting that,
given the similarity of BM surrogates to the real data, it is
likely that any precursor seen in a complicated nonlinear
statistic would also be seen in variance. Rather, we stress
the need for any such algorithms to be tested for false pos-
itives: long durations of seizure-free data must be analysed
to see how many false positives an algorithm produces. We
have been unable to obtain such long duration records on
any of the patients for which previous techniques have been
published.

The most striking result from this investigation is that
variance seems to perform just as well as the nonlinear
technique considered here. We employed BU and BM sur-
rogates to determine the role of different linear correlations
in determining the value of C(rp). These surrogates were
constructed window by window to preserve the variance
in each window used for calculating C(rg). Both tempo-
ral and spatial linear correlations were required to yield
similar values of C(ry). Martinerie et al. [4] used GM
surrogates, effectively assuming the variance of the signal
was constant in time. These surrogates are inappropriate
if the signals are obviously heteroscedastic (as the EEG
signals are) and the (high) significance levels they report
are irrelevant to the question of whether or not a nonlinear
statistic is required. Their significance tests are completely
consistent with changes in variance being a precursor (their
surrogates are flawed). For all the recordings considered,
our results show that the changes in variance account for
their [4] observed changes in C(r¢) and provide no evidence
for additional information in C(r¢) beyond that provided
simply by measuring the variance.

To establish the clinical use for any seizure detection or
prediction scheme it is necessary to test on out-of-sample
data sets. This test should include evaluating a given
statistic on numerous EEG recordings which are known
not to contain an epileptic seizure. Comparisons between
different statistics could be facilitated by calculating the
number of false positives. Whilst there are a number of
groups applying various statistical methods to databases
of EEG recordings, there has been remarkably little effort
made to contrast these methods [4], [44], [13], [10] and to
evaluate their performance on different databases. To es-
tablish whether any of these methods can be used in a
clinical setting will require either the collection of a very
large database of recordings of sufficient duration (many
hours) and/or increased co-operation between a number of
independent research groups.
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