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ABSTRACT

A prediction accompanied by quantitative estimates of the likely forecast accuracy is inherently superior
to a single “best guess” forecast. Such estimates can be obtained by “dressing” a single forecast using
historical error statistics. Dressing ensemble forecasts is more complicated, as one wishes to avoid
double counting forecast errors due, for example, to uncertainty in the initial condition when that
uncertainty is explicitly accounted for by the ensemble (which has been generated with multiple initial
conditions). The economic value of dressed forecasts has been demonstrated by previous studies. This
paper presents a method for dressing ensembles of any size, thus enabling valid comparisons to be
made between them. The method involves identifying the “best member” of an ensemble in a multi-
dimensional forecast space. The statistics of the errors of these best members are used to dress individual
forecasts in an ensemble. The method is demonstrated using ECMWF ensemble forecasts, which are
compared with the ECMWF high-resolution best guess forecasts. It is shown that the dressed ECMWF
ensembles have skill relative to the dressed ECMWF best guess, even at the maximum lead time of
the ECMWF forecasts (10 days). The approach should be applicable to general ensemble forecasts
(initial condition, multi-model, stochastic model etc.), allowing better informed decisions on forecast
aquisition and forecast system development.

1. Introduction

Estimating the uncertainty associated with a fore-
cast is crucial if the forecast is to be used in a decision
making situation. Traditional “deterministic” dynam-
ical forecasts are generated by evolving the best esti-
mate of the initial state of the system forward in time,
under the dynamics of a deterministic forecast model.
In this paper, any single forecast will be referred to as
a best guess forecast1. The uncertainty of such a fore-
cast can be estimated from the statistical properties
of the forecast errors, obtained by analysing histori-
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1The last thing the authors wish to do is to needlessly
introduce jargon into the field, but since the essence of this
paper lies in the distinction between the different forecasts,
they have introduced some terminology that clarifies these
differences. To aid the reader the terminology is summarised
in Table 1.

cal forecast–verification pairs. A forecast–verification
pair is an archived forecast and its subsequent verifi-
cation. Whether the appropriate verification is a direct
observation or an analysis is an important issue, but
in this paper direct observations will be used. Com-
mon implementations of this method usually assume
that the error statistics are stationary, and do not ex-
ploit any state dependence of the predictability of the
system. In principle, statistical inverse models of fore-
cast error, as a function of atmospheric state, can be
constructed using archived forecast–verification pairs;
however, in practice the complexity of such models is
severely constrained by data availability.

Dynamical ensembles are constructed using a for-
ward modelling approach to quantify the state depen-
dence of predictability2. The members of a dynam-
ical ensemble have different initial conditions, often
constructed by perturbing the analysis. This method

2In meteorology, the word “ensemble” alone is used often
when discussing dynamical ensembles under a single model.
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COMBINING DYNAMICAL AND STATISTICAL ENSEMBLES 17

Table 1. Glossary of different ensemble forecast types

Best guess forecast The forecast obtained by evolving the analysis.

Dynamical ensemble An ensemble obtained by evolving an ensemble of diffferent initial conditions.
This is often referred to as just an “ensemble” in meteorology.

Daughter ensemble An ensemble generated around an individual member of a dynamical
ensemble using forecast error statistics.

Hybrid ensemble The ensemble obtained by combining all the daughter ensembles of all the
members of a dynamical ensemble.

Poor man’s ensemble An ensemble that consists of forecasts generated by different models.

is used operationally by the ECMWF in Europe and
NCEP in the U.S. (Molteni et al., 1996; Toth and
Kalnay, 1997 and references therein). As well as incor-
porating uncertainty in the initial condition, dynamical
ensembles can also contain stochastic parameterisa-
tions or use multiple models to assess the impact of
model inadequacy (Houtekamer et al., 1996; Buizza
et al., 1999; Stensrud et al., 1999; Evans et al., 2000;
Palmer, 2001). Multi-model ensembles that combine
the operational forecasts produced by different fore-
casting centres are commonly referred to as “poor
man’s ensembles” (Mylne et al., 2002). The computa-
tional demand of integrating numerical weather pre-
diction models places a practical constraint on the size
of dynamical ensembles. The ECMWF generates the
largest operational ensembles, with 51 members. The
size of ensembles generated using error statistics is not
so limited: ensembles with over 100 000 members are
operationally feasible.

The different sizes of ensembles complicates efforts
to compare approaches. Furthermore, while a dynam-
ical ensemble can attempt to quantify initial condition
uncertainty, there will, inevitably, be residual errors in
the forecast due to the finite size of the ensemble.
Before a meaningful comparison of different fore-
casts can be made, the impact of these residual er-
rors should be accounted for. This can be done by
“dressing” each member of the dynamical ensemble
with its own statistical error ensemble. The ensem-
ble constructed by dressing an individual member of
a dynamical ensemble will be called a daughter en-
semble. Constructing a daughter ensemble requires an
estimate of the error statistics associated with individ-
ual members. The combined daughter ensembles of
each member of a dynamical ensemble will be referred
to as a hybrid ensemble. In this framework, the best
guess forecast can be considered to be a single member
ensemble. The upper limit on the size of a hybrid en-
semble set by the size of the forecast–verification pair

archive. The ability to correct for identifiable short-
comings of operational forecasts, and hence their eco-
nomic value, will be diminished if this archive is too
small.

A method for estimating the individual ensemble
member error statistics is presented in this paper. The
method relies upon identifying the “best member”
of the ensemble. Once the best member error statis-
tics have been estimated they can be used to gener-
ate daughter ensembles around individidual members
of a dynamical ensemble. It will be shown that the
resulting hybrid ensembles give more skillful prob-
abilistic forecasts than ensembles generated statisti-
cally around the best guess forecast. Essentially, hy-
brid ensembles allow a user to have “the best of both
worlds”: ensembles as large as any statistically gener-
ated ensemble and which reflect all sources of error,
while at the same time containing the information on
state-dependent predictability that is contained in a
dynamical ensemble.

2. The “best member” concept

Given an ensemble forecast and a verification, it is
unlikely that any member of the ensemble will match
the verification exactly. This fact can be accounted for
by adding an uncertainty distribution to each mem-
ber of the ensemble. To do this, one must know the
appropriate uncertainty associated with an individual
ensemble member. It is proposed that the appropriate
uncertainty is the uncertainty associated with the best
member of the ensemble, where the best member is
defined as the member that is closest to the verifica-
tion in the full state space of the model. Figure 1 illus-
trates how the best member might be misidentified due
to projection effects. In Fig. 1 ensemble member H is
closest to the verification (X) in the full model space of
variable 1 and variable 2. If, however, only variable 1 is
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18 M. S. ROULSTON AND L. A. SMITH

Fig. 1. An illustration of the concept of best members and
false best members of an ensemble. Suppose that the model
state space is two-dimensional. The symbol X represents the
verification. The symbols A to H represent an eight member
ensemble. If both the verification and the ensemble members
were projected onto model variable 1 then ensemble member
E would be identified as the best member (closest to the veri-
fication). However, in the full, two-dimensional, model state
space it can be seen that H is the true best member. E was
falsely identified as a best member due to projection effects.

used to identify the best member, E would be identified
as such (closest to the verification in variable 1). This
type of misidentification, due to projection, would lead
to an underestimate of the error associated with each
member of the ensemble. The key point illustrated by
Fig. 1 is that, even if one is only interested in fore-
casting variable 1, both variables 1 and 2 are relevant
to identify the best member, and thus estimate the er-
ror distribution of variable 1 appropriate for individual
ensemble members. The impact of higher-dimensional
dynamics on the observed variables can be modelled
statistically. (The Appendix gives a formal justification
for the best member approach.) The error associated
with individual ensemble members depends upon the
size of the ensemble. For a one-member ensemble the
appropriate error statistics are just the error statistics
of that forecast; however, as the number of ensemble
members increases, the magnitude of the best mem-
ber error will decrease because the expected distance
between the best member and the verification will
decrease.

In practice, it is not necessary to identify the best
member of an ensemble in the full model space. It is
only necessary that the subspace in which the identifi-
cation is made is high enough so that projection effects
are unlikely to lead to misidentification. The minimum
number of variables that must be used to satisfy this

condition must be determined empirically. To do this
the idea of a false best member is introduced. This is
reminiscent of the idea of a false nearest neighbour in
nonlinear dynamics (Kennel et al., 1992; Abarbanel,
1995). Let the N ensemble members be described by
d-dimensional vectors, xi (i = 1, . . . , N ). Let the ver-
ification be described by the d-dimensional vector y.
d is the number of forecast variables being considered.
Let the normalised distance between the ith ensemble
member and verification, in the space of d variables,
be written as Ri,d , where

R2
i,d =

d∑
k=1

(xi,k − yk)2

�2
k

. (1)

Here �k is the standard deviation of the kth compo-
nents of the forecast vectors.

The best member in this d-dimensional space is the
one which has the minimum R2

i,d . If this member is
the true best member, then it should remain the best
member when additional variables are included. Or, in
symbols, if min R2

i,d = R2
j,d then min R2

i,d+1 = R2
j,d+1.

If this condition does not hold then the best mem-
ber can be classed as a false best member (FBM).
The fraction of FBMs, averaged over past forecasts,
gives an indication of an operational lower bound on
the minimum number of variables required. The ad-
ditional variables that are included can either be the
same quantity at different spatial locations or they can
be at the same location, but for different forecast lead
times. Different forecast quantities might also be used.
Once a choice of forecast variables has been made
that gives a low fraction of FBMs, the best member
of each ensemble in the forecast–verification archive
can be identified. After identifying the best members,
the errors of these particular ensemble members can
be calculated. There are several approaches to gener-
ating errors with which to dress the current forecast.
The simplest approach is to sample from the archive
of best member errors. This will ensure that the dress-
ing errors have the same distribution as the historical
best member errors, and also that correlations between
the errors on different variables are reproduced. This
is the approach that will be used in all the examples
in this paper, although it can be refined say, by only
sampling from the same season as the current fore-
cast. More complicated stochastic error models can
also be constructed, with the best member errors used
to fit their parameters. The limited number of forecast–
verification pairs in the archive places constraints on
the complexity of such models.
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COMBINING DYNAMICAL AND STATISTICAL ENSEMBLES 19

3. Example: Lorenz-95

The Lorenz-95 system was used to illustrate the pro-
cedure for combining statistically generated ensem-
bles with dynamical ensembles outlined above. This
spatially distributed system was introduced by Lorenz
(1995) as a relatively simple analogue of the atmo-
sphere. It contains external forcing, dissipation and
convection. The system is described by

dX̃ i

dt
= X̃ i−1(X̃ i+1 − X̃ i−2) − X̃ i + F − c

b

n∑
j=1

Ỹ i, j

(2)

dỸ i, j

dt
= cbỸ i, j+1(Ỹ i, j−1 − Ỹ i, j+2) − cỸ i, j + c

b
X̃ i

(3)

where the X̃ i s and Ỹ i, j s have cyclic boundary con-
ditions and are loosely analogous to meridional av-
erages. The values of the parameters used were
i = 1, . . . , 8, j = 1, . . . . , 4, F = 8 and b = c = 10.
With these parameters the Ỹ i, j s are “fast” variables.
They have a timescale 10 times faster than the X̃ i

variables, but their amplitudes are 10 times smaller
(Hansen, 1998). Equations (2) and (3) were used to
provide “truth”. The forecast model used was an im-
perfect representation of the Lorenz-95 system. The
imperfection was introduced by replacing eq. (3) with
a parameterisation of the impact of the Ỹ variables on
the tendency of the X̃ variables. Figure 2 shows the

Fig. 2. The error in the tendency of the X̃ variables, given
by eq. (2), that is introduced when the the impact of the Ỹ
variables is ignored, as a function of the value of X̃ . The line
is the fit that was used to find the values of α and β in the
closure scheme used in eq. (4).

last term on the RHS of eq. (2) plotted against the
value of X̃ for a sample of points on the attractor of
the Lorenz-95 system. This term (containing the Ỹ s)
in eq. (2) was replaced with a linear function of X to
give the following forecast model,

dXi

dt
= Xi−1(Xi+1 − Xi−2) − Xi + F + αXi + β (4)

where the closure scheme coefficients, α and β,
were estimated from Fig. 2 to be α = −0.1543 and
β = −0.1039. Figure 3 shows four forecasts of the
Lorenz-95 system, made using eq. (4). In the fore-
casts in Fig. 3 the initial condition is the true initial
condition of the full system projected into the model
space (X̃ i = Xi for all i). The state-space of the system
described by eqs. (2) and (3) is 40-dimensional (eight
X̃ variables and 32 Ỹ variables). The state-space of the
model described by eq. (4) is only eight-dimensional
(eight X variables).

To simulate the effect of observational uncertainty,
normally distributed errors, with standard deviations
of 0.2 (≈1% of the range of Xi ), were added on to the
initial values of the Xi . Ensembles were constructed
by adding perturbations, with the same distributions
as the errors, onto the erroneous initial conditions. En-
sembles with 2, 4, 8, 16 and 32 members were gener-
ated. The ensembles were imperfect ensembles since
the initial states were not constrained to lie on the sys-
tem attractor, hence the forecast PDF is not expected
to be accountable even if the model is perfect (Smith,
1997; Smith et al., 1999). The equations were inte-
grated using a fourth-order Runge–Kutta scheme. The
trajectories were sampled at intervals of 0.1 dimen-
sionless time units.

The fractions of false best members, as a function
of trajectory length for a single X variable, were esti-
mated. The result is shown in Fig. 4. The fraction of
FBM falls rapidly as the lead time is increased, until a
lead time of about 1.2 time units. Beyond this lead time
the fraction of FBM remains approximately constant,
at around 7%. Figure 4 indicates that best members
should be identified using forecasts out to at least 1.2
time units. The best members of each ensemble in the
historical forecasts were identified using a trajectory
of 4.0 time units. The best member error statistics were
then calculated. A further 1000 forecast–verification
pairs were used for forecast validation. Hybrid ensem-
bles of 512 members were generated. In the case of the
best guess forecasts, the single forecast was dressed
with a statistically generated ensemble of 512 mem-
bers. The dynamical ensembles with 2, 4, 8, 16 and
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20 M. S. ROULSTON AND L. A. SMITH

Fig. 3. Forecasts of the Lorenz-95 system, given by eqs. (2) and (3), made using eq. (4). For these forecasts there was no error
in the initial condition. The deviation of the forecasts (dashed line) from the verification (solid line) is the result of replacing
the impact of the Ỹ variables with a closure approximation in eq. (4).

Fig. 4. The fraction of false best members identified in the
Lorenz-95 ensemble forecasts, as a function of the length of
the forecast trajectory used. A set of 1000 forecasts was used.

32 members were dressed with daughter ensembles
of 256, 128, 64, 32 and 16 members, respectively.
Therefore, all the hybrid ensembles had 512 members.
Making a direct comparison of the ensembles of dif-
ferent sizes would introduce a bias against the smaller
ensembles.

The best member error statistics are shown in
Fig. 5. The thick line is the standard deviation of the
errors for the best guess forecasts. The standard devi-
ation of the errors of the best members of the dynam-
ical ensembles is substantially smaller than the error
of the best guess forecasts at each lead time. The total
error is essentially partitioned into two components;
the spread of the dynamical ensemble and the residual
error.

Figure 6 compares the dressed best guess and the
hybrid, dynamical-statistical ensembles for two par-
ticular forecasts. The left panels show the dressed best
guess and the right panels show the hybrid ensem-
bles. In the top panels, the spread of the dynamical
ensemble indicates that the system is in a particularly
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COMBINING DYNAMICAL AND STATISTICAL ENSEMBLES 21

Fig. 5. A comparison of the dynamical ensemble spreads,
the RMS error of the best guess forecast and the standard de-
viation of the best member error, for the 32 member ensemble
forecasts of the Lorenz-95 system.

unpredictable regime. In the bottom panels, the dy-
namical ensemble spread is low, indicating higher pre-
dictability. The dressed best guesses, however, have
static error statistics. The result is that the dressed best
guess ensembles are substantially wider than is needed
to capture truth. The hybrid ensemble is constructed by
dressing each of the 32 dynamical ensemble members
with its own, tighter, daughter ensemble. The result is a
tighter hybrid ensemble. Dressing the best guess using
static error statistics leads to ensembles which are too
narrow in low predictability regimes, and ensembles
which are unneccesarily wide in high predictability
regimes. Both types of error reduce the value of the
forecast.

The forecasts were evaluated using two different
scoring rules for probabilistic forecasts. The value of
X1 was discretised into M bins of width 2.0 units for
calculating both scoring rules. Let pi,t be the forecast
probability of the verification falling in the ith bin for
forecast t, where t = 1, . . . , T . Let j(t) be the index of
the bin in which the verification was observed to fall,
for forecast t.

(i) Ignorance. Ignorance is a logarithmic scoring
rule which is equal to the information deficit (in bits)
of someone in possession of the forecast (Roulston and
Smith, 2002). The average ignorance is given by

IGN = − 1

T

T∑
t=1

log2 p j(t),t . (5)

(ii) Ranked probability score (RPS). The ranked
probability score is a quadratic scoring rule. It is the
name given to the Brier score when applied to a situa-
tion of more than two possible outcomes (Brier, 1950).
It is given by

RPS = 1

T

T∑
t=1

M∑
i=1

[
pi,t − δi j(t)

]2
(6)

where δi j = 1 if i = j and δi j = 0 if i �= j .
The ignorance and RPS are both proper scoring rules

that combine together the reliability, and the resolu-
tion, of a probabilistic forecast. Both scores are defined
such that a lower score is better. The ignorance score
can be nicely interpreted in terms of gambling returns.
If fair odds are set on each outcome by a casino based
on their probabilistic forecast, and a gambler bets ac-
cording to her probabilistic forecast, so as to maximise
her expected return, then her expected return per bet
is given by

100 × (2IGNcasino−IGNgambler − 1)% (7)

where I G Ncasino and I G Ngambler are the ignorances of
the casino and gambler respectively. A reduction in
ignorance of 1 bit is equivalent to halving the number
of possible outcomes and doubling your expected rate
of return (Kelly, 1956; Cover and Thomas, 1991).

To estimate the significance of improvements in ei-
ther skill score, a bootstrap resampling technique was
used (Efron and Tibshirani, 1986). The time series of
scores for each forecast in the validation set was di-
vided into blocks. The length of the blocks was chosen
so that the block-averaged skill score was not strongly
correlated between successive blocks. Fifty new time
series of block-averaged skill scores were generated
by resampling the blocks, with replacement. These
50 time series were used to estimate the average skill
score, and the uncertainty on this average.

Figure 7 shows the average skill scores for the 512-
member dressed best guess and for 512-member hy-
brid ensembles constructed by dressing each of 32 dy-
namical forecasts with its own 16-member daughter
ensemble. The thickness of the curves corresponds to 1
standard deviation about the estimate of the mean ob-
tained using bootstrap resampling. Both skill scores
indicate a moderate, but statistically significant, im-
provement in forecast skill when the hybrid ensemble
is used instead of the dressed best guess. The differ-
ence in ignorance at a lead time of 2 units is 0.6 bits.
If this difference is interpreted in terms of gambling
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22 M. S. ROULSTON AND L. A. SMITH

Fig. 6. Statistical ensemble (left panels) and hybrid ensemble forecasts (right panels) of the Lorenz-95 system in a low
predictability state (top panels) and a high predictability state (bottom panels). The left panels are ensembles constructed by
dressing a best guess forecast with 512 statistical trajectories constructed using historical error statistics. The right panels are
hybrid, dynamical-statistical forecasts constructed by dressing each 32 member dynamical ensemble member with its own
16 member statistically generated ensemble constructed using the best member error statistics. In the high predictability state
the dressed best guess forecast is unnecessarily wide, whereas the hybrid ensemble is tighter because its width varies with
the width of the dynamical ensemble around which it is constructed.

returns it implies that a gambler who places optimal
bets according to the dressed ensemble can expect an
average return of 52% per bet if the fair odds are set
based on the dressed best guess forecast. Figure 8
shows both skill scores as a function of dynamical
ensemble size when the size of the hybrid ensemble is
held constant at 512 members.

To illustrate the fair comparison of dynamical en-
sembles of different sizes, Fig. 8 contrasts dynamical
ensembles of 1, 2, 4, 8, 16 and 32 members. In each

case the dynamical ensembles were dressed with hy-
brid ensembles of 512 members. The forecast skill
was evaluated as a function of dynamical ensemble
size. Increasing the size of the dynamical ensemble
leads to an improvement in both skill scores. Over the
range of ensemble sizes evaluated, each doubling in
the size of the dynamical ensemble leads to a reduc-
tion in ignorance of approximately 0.1 bit (equivalent
to a 7% increase in gambling returns). In this case the
model was held constant, but the same approach could
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Fig. 7. Average skill scores of ensemble forecasts of the Lorenz-95 system. The curves are for the case of best guess,
deterministic forecasts and 32 member dynamical ensembles. The best guess forecast was dressed with a statistically generated
ensemble of 512 members, while each member of the dynamical forecast was dressed with its own 16 member statistically
generated ensemble, thus giving a hybrid ensemble of 512 members. (a) Ignorance (logarithmic skill score), (b) ranked
probability score (quadratic). The thickness of the lines indicates the 1σ uncertainty in the average skill score estimated using
bootstrap resampling (Efron and Tibshirani, 1986).

be used if, say, computational cost was held constant.
Therefore the advantages of increasing ensemble size
over increasing model resolution can be determined
without sampling errors due to finite ensemble size
confusing the issue.

4. Example: ECMWF ensembles

To illustrate the best member method with real en-
semble weather forecasts, ECMWF temperature fore-
casts were used. The ECMWF issues a 10 d forecast
initialised with the best estimate of the state of the
atmosphere. In addition, they issue a 51 member en-

semble. The ensemble members are integrated with a
lower-resolution version of the ECMWF global model.
The leading ensemble member is initialised with the
best estimate of the initial condition, while the other
50 are initialised with initial conditions constructed
by perturbing this initial condition in the space of the
leading 25 singular vectors of the linearised model
(Palmer, 2000).

For this study, four European stations were used:
Tromsö, Heathrow, Frankfurt and Warsaw. The archive
for determining error statistics consisted of forecasts
and observations from February to December 1999,
while the verification was done with forecasts and ob-
servations from January to November 2000.
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Fig. 8. Average skill scores of ensemble forecasts of the
Lorenz-95 system as a function of the size of the dynami-
cal ensemble for a fixed lead time of 2.0 time units. In all
cases the number of members in the hybrid ensemble was
512. (a) Ignorance (logarithmic skill score), (b) ranked prob-
ability score (quadratic). The thickness of the lines indicates
the 1σ uncertainty in the average skill score estimated using
bootstrap resampling (Efron and Tibshirani, 1986).

The fraction of FBM for the forecasts, as a function
of the length of the forecast trajectory, was determined.
Figure 9 shows the estimated fraction of FBM for the
case of London’s Heathrow airport. The fraction of
FBM decreases rapidly as the forecast trajectory is ex-
tended from 1 to 4 d and then appears to stabilise,
at just over 20%, when trajectories longer than about
120 h are used. The full 10 d forecast trajectories were
used to determine the best members of the ensembles
in the archive. Figure 10 compares the growth of the
error of the best guess forecast with that of the er-
ror of the best ensemble member for the Heathrow
forecasts. The spread of the dynamical ensemble is
also shown. At short lead times, the best member er-
ror is greater than the ensemble spread, indicating that
model inadequacy and residual initial condition error
dominate. Note, however, the best member error grows
more slowly than the ensemble spread. At a lead time
of 8 d the contributions of ensemble spread and best
member error to overall error are comparable.

Fig. 9. The fraction of false best members identified in the
Heathrow temperature forecasts, as a function of the length
of the forecast trajectory used to identify the best member of
the ensemble.

Fig. 10. A comparison of the average standard deviations of
the dynamical ensembles, the error associated with the best
member of the 51 member ensemble and the best member
errors for the ECMWF forecasts of temperature at London’s
Heathrow airport.

Figure 11 compares the dressed best guess fore-
cast with the dressed dynamical ensemble forecast for
two different days. The dressed best guess ensembles
(left panels) are both constructed using the same error
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Fig. 11. A comparison of 10 d forecasts for temperature at London’s Heathrow airport for two different days. The dressed
best guess forecasts (left panels) were constructed by dressing the ECMWF best guess forecasts with 102 statistical error
trajectories. The hybrid ensembles (right panels) were made by dressing each of the 51 members of the ECMWF dynamical
forecasts with a two-member daughter ensemble.

statistics, and thus have the same spread for a given
lead time. The hybrid ensembles (right panels) are con-
structed around the ECMWF dynamical ensembles,
and their width can vary with the width of the dynam-
ical ensembles. The top panels show a forecast when
the dynamical had a large spread, but at a lead time
of 170 h the verification fell outside the range of the
dynamical ensemble. It did, however, fall within the
hybrid ensemble. The bottom panels show a day when
the ECMWF dynamical ensemble was tight. Under
such conditions the dressed best guess ensemble was
unnecessarily wide.

To evaluate the forecasts in the test period (January–
November 2000) the ignorance and ranked probability
skill scores were used. Temperature was quantised into
2 ◦C bins to calculate both the skill scores. The uncer-
tainty in the estimates of the mean skill scores were
again estimated using bootstrap resampling. The av-
erage skill score for each successive 10 d period was
calculated. These averages were then resampled, with
replacement, to obtain an estimate of the mean and
also the uncertainty on this estimate. Figure 12 shows
the results for the four stations. The hybrid ensembles,
constructed by dressing the dynamical ensemble, yield
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26 M. S. ROULSTON AND L. A. SMITH

Fig. 12. Average skill scores for the ECMWF forecasts at four European stations. The left panels are ignorance and the right
panels are ranked probability score. The temperature was quantised in 2 ◦C bins to calculate both skill scores. The thickness
of the lines corresponds to the 1σ uncertainty in the estimate of the mean obtained using bootstrap resampling (Efron and
Tibshirani, 1986).
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statistically significant improvements in skill over the
dressed best guess forecast at all four stations for lead
times beyond 4 d. This result is true for both skill
scores. The size of the improvement varies between
stations, being relatively small for Tromsö but quite
substantial for Heathrow. For short lead times there is
much less improvement, which is to be expected since
the ECMWF ensembles tend to be quite tight for the
first 48 h of the forecast. This is also the reason why the
skill of the dressed ensemble forecast sometimes im-
proves with increasing lead time, for short lead times.
As with the Lorenz-95 results, the improvement in the
ignorance score can be interpreted in terms of gam-
bling returns. For Tromsö the increase in gambling
returns would be about 15% per bet at a lead time of
150 h, while at Heathrow it would be over 40%.

Finally, the importance of correctly identifying the
best member will be demonstrated. Consider the sit-
uation where a user is only interested in the temper-
ature forecast at a lead time of 4 d. If the best mem-
bers of the ensembles are identified purely on how
close they are to the verification at a lead time of
4 d the variance of the best member error, at this lead
time, is much smaller than if the choice is based on
the entire 10 d forecast trajectory. The resulting skill
scores are shown in Fig. 13. The skill of the dressed
ECMWF ensemble is diminished at all lead times,
but the reduction is particularly large at the 4 d lead
time used to identify the best members, in most cases
leading to a less skillful forecast than the dressed best
guess.

5. Discussion and conclusions

The concept of best member errors is a simple idea.
Nevertheless, there are pitfalls to be wary of when
attempting to identify the best member of an ensem-
ble. Identification of the best member should be done
using multivariate forecasts, even if only univariate
forecast statistics are required. The number of fore-
cast variables required can be estimated by looking at
the fraction of false best members. Identifying the best
members in too low a dimensional space can lead to
underestimates of the error associated with the forecast
variables included in the identification, which leads to
a reduction in forecast skill.

Once the best member error statistics have been es-
timated, hybrid ensembles of an arbitrary size can be
generated. This allows fair comparisons to be made

between dynamical ensembles of different sizes, in-
cluding single best guess forecasts. The choice of error
model for dressing the dynamical forecasts is a sepa-
rate issue. Attempting to condition error statistics on
season and atmospheric state is a possibility. Due to the
high-dimensionality of atmospheric models and their
long recurrence times, any type of inverse modelling
of state-dependent predictability faces severe limita-
tions. The relatively small amounts of data that are
often available strongly suggest that empirical error
models should be parsimonious.

Using the method of false best members, it has
been demonstrated that the 51 member ensemble fore-
casts, generated by the ECMWF, of temperature at four
European locations contain information about state-
dependent predictability that is not contained in sin-
gle forecasts. It has also been shown, however, that
model and residual initial condition error make a sig-
nificant contribution to the total forecast error. This is
especially true at shorter lead times. For this reason,
the error statistics associated with individual ensemble
members must be estimated to provide a more com-
plete assessment of forecast uncertainty. The use of
the best member method to obtain probabilistic fore-
casts at specific locations might be suboptimal. Fore-
casting models predict quantities which are defined
at the resolution of the model. The forecast uncer-
tainty of a physical observable at a single location will
typically be higher than that of the model variable.
Because of this, further forecast skill improvements
may be possible by rescaling higher moments of the
dynamical ensemble distribution when downscaling
forecasts.

The best member method is applicable to all types
of ensembles, not just those currently operational. If
the ensemble members can be distinguished a priori
(e.g. they are run under different models or initialised
at different times), then each member will have dif-
ferent error statistics. In the ECMWF operational en-
semble, for example, the leading ensemble member is
distinguishable from the other 50 as it is the centre
about which the others are generated3; hence it could
be dressed differently. The value of the present pa-
per lies in introducing the hybrid ensemble approach;
this approach allows a fair comparison between
very different forecast strategies, thereby easing their

3This is a topic for future discussion. In the results
presented in this paper, all 51 members were treated as
indistinguishable.
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Fig. 13. As Fig. 12 but where the best members of the ensembles were identified using only the 4 d forecast. This leads to
misidentification of the ensemble best members and subsequent underestimation of the appropriate errors.
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improvement and evaluation of their relative economic
value.
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Appendix: The best member method

Let y be an m-component vector describing the ver-
ification. The verification can be decomposed into a
dynamical component, x, and a statistical component,
ε:

y = x + ε. (A1)

Note that the terms dynamical and statistical are being
used in an operational sense. The dynamical compo-
nent contains all processes contained in the forecasting
model. The statistical component includes all contri-
butions that are to be dealt with statistically, such as
model inadequacy and residual initial condition error.
The dynamical component need not be strictly deter-
ministic if, for example, the model contains stochastic
parameterisations. Conversely, the statistical compo-
nent may include processes that are, in fact, determin-
istic, but which will be dealt with in a statistical man-
ner. Let xi be an ensemble of N dynamical forecasts
(i = 1, . . . , N ). The best member of the ensemble is
the member that has the “correct” dynamical compo-
nent. If the verification is known, and the best member
is identified, the contribution of ε can be determined.
Over many forecasts, the statistical properties of the ε

component can be estimated. For the following analy-
sis, it will be assumed that ε has a multivariate normal
distribution with uncorrelated components. The prob-
ability that the ith ensemble member has the correct
dynamical component is

pi =
exp

[
−∑m

k=1(yk − xi,k)2
/

2σ 2
k

]

∑N
j=1 exp

[
−∑m

k=1(yk − x j,k)2
/

2σ 2
k

] (A2)

where yk is the kth component of y, and xi,k is the kth
component of xi . If xl is the correct dynamical compo-
nent then E[(yk − xl,k)2] = σ 2

k . If �2
k is the variance

of the kth component of all the ensemble members
then an approximate expression for pl , the probability
assigned to the true best member, is

pl ∼
exp(−m/2)

exp(−m/2) + (N−1) exp
[
−∑m

k=1

(
�2

k + σ 2
k

)/
2σ 2

k

]

(A3)

To simplify eq. (A3) assume that all the σk are identical
and all the �k are also the same:

pl ∼ exp(−m/2)

exp(−m/2) + (N−1) exp(−m/2−m�2/2σ 2)
.

(A4)

If N � 1 eq. (A3) becomes

pl ∼ 1

1 + N exp(−m�2/2σ 2)
. (A5)

An examination of eq. (A5) provides some insight into
the conditions required for the correct identification of
the best member. For a confident identification pl ≈ 1.
Therefore, it is required that

N exp(−m�2/2σ 2)  1. (A6)

From eq. (A6) it can be seen that if � � σ then the
best member can be easily identified. That is, if the
spread of the ensemble members is much greater than
the uncertainty due to the statistical component, then
the ensemble member that comes closest to the ver-
ification is highly likely to be the best member. If,
however, � ≈ σ and m is small then this is not the
case. This is because if the size of ε is comparable
to the spread of the xi , then the xi closest to y is not
necessarily the correct x. In this situation, the chance
of choosing the correct best member can be improved
by increasing m. That is, the best member is identified
as the closest xi to y in a higher dimensional space.
In practice, this can be done by comparing the fore-
cast to the verification at multiple points in space and
time. This means, that even if, one is only interested
in forecasting a univariate quantity, the best member
must be chosen on the basis of a multivariate fore-
cast. From eq. (A6) it can also be seen that the prob-
ability of correctly identifying the best member falls
as the ensemble size, N, increases. This makes sense;
the more ensemble members there are, the higher the
chance of misidentifying the best member. If N is in-
creased then m should also be increased to ensure that
the best member of the enlarged ensemble is correctly
identified.
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