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Most climate models are large dynamical systems involving a
million (or more) variables on big computers. Given that they are
nonlinear and not perfect, what can we expect to learn from them
about the earth’s climate? How can we determine which aspects of
their output might be useful and which are noise? And how should
we distribute resources between making them “better,” estimat-
ing variables of true social and economic interest, and quantifying
how good they are at the moment? Just as ““chaos” prevents
accurate weather forecasts, so model error precludes accurate
forecasts of the distributions that define climate, yielding uncer-
tainty of the second kind. Can we estimate the uncertainty in our
uncertainty estimates? These questions are discussed. Ultimately,
all uncertainty is quantified within a given modeling paradigm; our
forecasts need never reflect the uncertainty in a physical system.

“Laws, where they do apply, hold only ceteris paribus.”
Nancy Cartwright (1)

he traditional approach to climate modeling is to build the

most complicated model that will fit inside the largest
computer available, run it once, and see what happens. This
approach yields a single “best-guess” forecast. Yet even in high
school physics, we learn that an answer without “error bars”
is no answer at all. Although it is a nontrivial task to assign
relevant uncertainty estimates to imperfect models of chaotic
systems undergoing transient changes in forcing, doing so is
conceivable. One alternative to devoting all our resources to
one best guess is to use the same computer resource to perform
an ensemble of model runs. This alternative would, of course,
require the use of simpler models, and a balance between
running different initial conditions (to cope with chaos),
different model parameterizations and parameter values (to
identify tuning issues), and different model structures (to
mitigate model error). A single best guess from a complicated
model run without good uncertainty estimates is impotent,
whereas a beautiful set of ensemble statistics on too simple a
model is irrelevant. How do we go about assigning resource
between these two extremes? And how can we tell which
physical phenomena of economic and social interest our
current models might be able to forecast?

At best, our models hold only in certain circumstances. This
is true even for our “Laws of Physics:” Newton’s Laws are still
celebrated for their successful prediction of the planet Neptune,
although two historical facts (that one of the scientists who
predicted Neptune also predicted the planet Vulcan, and that
Vulcan was “observed” for many years) are less commonly found
in physics texts. In the case of Vulcan, the then known Laws of
Physics were applied outside their range of validity. By its very
nature, this kind of failure is inconceivable before it is observed
to have happened; because we cannot assign a meaningful
probability to this occurrence, all results at the boundaries of our
understanding must be treated as fundamentally uncertain.
To make any progress, we assume the rosy scenario holds:
(/) nothing horrible happens that takes the model beyond its
range of validity (e.g., no asteroid collides with the earth), and
(i) no small but crucial feedback mechanism is missing from our
model (i.e., our model has a range of validity). As we are forced
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to assume the rosy scenario, we can never make objective
probability statements on the basis of our climate simulations.
What we can do is establish their internal consistency: we can
determine for which phenomena and on which time scales our
models might reflect reality.

Of course, climate questions of interest in economics and
politics are usually posed with the aim of quantifying particular
changes, say, in regional weather patterns, in the likelihood of
extreme events, and so on. Even within the rosy scenario, we
cannot hope to quantify changes in some phenomena of interest
unless our model can capture (bound) those same phenomena in
the historical record. Real statisticians will immediately object,
of course, that capturing the phenomena “in-sample” does not
guarantee our ability to capture it “out-of-sample,” that is, in the
future. This is true, but we are seeking only a necessary
condition: if our models cannot capture the phenomena of
interest over the data period from which the model was con-
structed, say 1950-2000, then those interested only in economic
impacts should not even look at the statistics of those phenom-
ena in 2000-2050.

What can the theory of nonlinear dynamical systems tell us
about our models of the earth’s climate? It can illustrate details
of the complexity of this project by analogy. Although it is
unreasonable to expect solutions to low-dimensional problems to
generalize to a million dimensional spaces, so too it is unlikely
that problems identified in the simplified models will vanish in
operational models. In the next two sections, we first step
through the issues involved for any nonlinear dynamical system
and then introduce a second kind of uncertainty. The fourth
section illustrates these words in symbols, introducing a partic-
ular system/model pair. Mathematicians are always at a disad-
vantage to physicists when studying model error (i.e., the dif-
ference between the real system and a particular model).
Physicists can always resort to real data from a real system, in
which case no perfect model exists and model error is unavoid-
able; mathematicians tend to create a nice mathematical system
and then a family of models. Often the model and the system are
in fact the same thing: this is the perfect model scenario (PMS).
But even when the models are intentionally imperfect, as they
are in the example below, they are imperfect in a very special
way. For this reason, attempts to model very simple physical
systems, like electronic circuits (2), can more closely resemble
climate modeling than, say, contrasting the behavior of different
climate models, each constructed by different scientists who all
share a similar education. The penultimate section turns to the
climate problem in particular and examines the options for
applying these ideas. Indeed, some major climate centers are
already running (small) ensembles, and the climatepredic-
tion.com (http://www.climateprediction.com) project aims to
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run a huge ensemble experiment. The final section provides a
few conclusions and an overview.

Predicting Chaos

Consider the earth’s climate system as a nonlinear dynamical
system. The current state of the atmosphere, ocean, biosphere,
and so on, is contained in a single vector S. This vector denotes
one point in a state space, so named because each point in this
space completely specifies one state of the system. As time
passes, the state evolves, and we have a trajectory S(t), where
represents time. This is a trajectory in state space. It is, of course,
unlikely that such a deterministic state space exists, because it
would have to include, among other things, us. Nevertheless,
assume for the moment that the world is deterministic in the
sense of Laplace (3); then there exist deterministic “Laws of
Physics” such that given the starting point S(¢,0), the future
trajectory is completely defined by some mathematical function
F(S). The ultimate climate predlctlon and the traditional aim of
weather forecasting as well, is to compute S(¢); from this
trajectory, every climate statistic could be accurately estimated.

Of course, there is a snag: nonlinearity in general, and chaos
in particular, would cause the forecast trajectory to go astray
unless the initial condition S(t,ww) were known exactly. Even
with a perfect model, a long series of uncertain past observations
of §(¢) will not define the future unambiguously (4). Thus, even
if we knew F and had the computational ability to solve the
equations exactly, the best we could hope for would be a
probability forecast, which is, in fact, what operational weather
centers attempt with ensemble prediction systems (5-7). There
are at least two additional difficulties. The first, climate forecasts
share with weather forecasts: model error (8, 9). This will explain
the profusion of tildes. The second difficulty is posed by time-
dependent forcing: external effects like the amount of CO, in the
atmosphere. As most climate experiments aim to study transient
behavior, any appeals to mathematical properties like ergodicity
are misguided. 3

In the perfect model scenario, when F is known but S is not,
traditional best-guess climate modeling makes one long com-
puter run and then takes space and time averages in the hope
that even though the model trajectory S is not close to the true
trajectory S at each point in time, their averages are similar.
Given only a single run, it is not clear how to determine just how
much averaging is required. In any event, many statistics of
economic interest simply cannot be computed from such aver-
ages: a perfect forecast of the monthly average temperature in
Berlin simply cannot tell us the number of days on which
construction was halted because it was too cold for cement to set.
For many statistics of economic interest, the statistic evaluated
either on a time average or on a climate mean state is mean-
ingless. Uncertainty of the mean value says nothing about the
likely variations observed day to day.

Alternatively, we can try to maintain our uncertainty by
keeping track of how it evolves with time (7, 10). One approach
is to keep track of this uncertainty analytically, but climate
models are nonlinear: we cannot assume that the superposition
of true trajectories is a true trajectory. Nor can we assume that
small perturbations have small effects. Thus within a matter of
days, at best (11), we must track the uncertainty manually. This
may be done, for example, by computing an ensemble of
trajectories, each consistent with all our observations. There are
additional difficulties in forming a perfect ensemble (12), be-
cause the nonlinearities link the longest time scales to the
shortest forecasts (13), but we will 1gnore these for the time
being.

A major advantage of the ensemble approach is that it removes
the a priori need to average over time—a real benefit in a
transient forcing experiment. Given 100,000 ensemble trajecto-
ries, each started in the 1950s, we can examine the distribution
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of model temperatures of Glasgow at 7:30 p.m. on August 8,
2001. Given a coupled nonlinear simulation, it is not clear that
one can get the averages right without being able to simulate the
details correctly. To quantify how well a model is doing, one can
define a temporal credibility ratio,

At
Tered = > [1]

ave

where At is the smallest time step in the model, and 7.y is the
smallest duration over which a variable has to be averaged before
it compares favorably with observations. Most variables of
economic interest will have different temporal credibility ratios
depending on the spatial length scale of interest; extent and
duration must be considered together. Given only a single
climate model run under a transient forcing scenario, there are
good reasons to argue that 7, must be fairly large on statistical
grounds. Most of these reasons vanish, however, if an ensemble
run is made. The simplest question is to ask whether an
observation falls within the range of the ensemble members: at
least one member above it and one below. Was the average
August temperature over Europe in 2001 within the range of the
ensemble values? If not, then what reason might we give for that
particular averaged variable in 2050 to bear any relation to the
eventual observation? In this way, we can begin to estimate the
space and time scales on which our models have skill and thus
their limitations as quantitative tools for policy. Note that the
ability to bound does not require an accurate probability fore-
cast, whereas the inability to bound can assist in directing model
improvements.

Of course, we are far from having F; denote this year’s best
state-of-the-art model as F and vectors in the corresponding
model-state space by S. At best, S is a projection of §, and
projections have rather nasty mathematical properties. For
example, we cannot meaningfully follow a true probability
density function in the projected space. Indeed, much confusion
has come from the fact that our model variables have the same
names as the physical variables: variables like “temperature” and
“wind speed” mean very different things in a model where a grid
point corresponds to 100-by-100 kilometer box.

Uncertainty of the Second Kind

Lorenz (14) distinguishes predictions of the first kind, where the
time order of individual forecast trajectories is important, from
those of the second kind where the goal is a probability
distribution over the states of the system. To some extent, the two
merge together when making ensemble forecasts under a perfect
model.

The climatology is the distribution of all physically relevant
states of the system in state space. This distribution is reflected
by the system’s attractor, if such a thing exists. In practice, the
climatology is often approximated by the distribution of the
historical observations. Traditionally, forecast errors have con-
trasted the forecast (either probabilistic or best guess) with
random draws from the climatology. Uncertainty of the first kind
addresses the question of uncertainty of the future state within
some distribution of possible states like the climatology or an
ensemble weather forecast. Uncertainty of the second kind
considers not our uncertainty in the state of the system, but the
uncertainty in the likely distribution of states, effectively our
uncertainty in the climate of the distant future. Model error
provides a major source of this uncertainty (8, 13).

Given a good physical model with only small uncertainty in the
parameters, and knowing the initial condition of atmosphere and
ocean for every Monday in the 1950s, what is the uncertainty in
the distribution of climate variables in the year 2000? What most
contributes to this uncertainty? Differences in the initial con-
ditions? in the parameters? in the forcing? The light that
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ensemble climate experiments can shed on these questions is
discussed in the next section. It is important to remember that
a best-guess experiment must assume that the trajectory is (i)
realistic, and (ii) representative, and also that (¢if) the future is
rosy. Ensemble climate experiments relax point (i) and test (if)
but do not mitigate (iii).

There are many more ways to be wrong in a 10 dimensional
space than there are ways to be right. But there is also a
difference between not knowing where to start, and no such
place existing. The first is a question of state estimation, the
second a question of shadowing, and thus model error. Any
initial state that yields a trajectory consistent with the available
observations is said to t-shadow (12, 13, 15) the true trajectory
or, more correctly, the true trajectory projected into model state
space. Within PMS, there will be a set of indistinguishable states
that will shadow forever (4). Without PMS, the duration over
which the observations can be shadowed, taken over all initial
system states, provides a measure of model error (9, 15). Given
the nonlinearities involved, it is not clear whether a model that
cannot produce reasonable “weather” can produce reasonable
climate statistics of the kind needed for policy making, much less
whether it can mimic climate change realistically.

Difficulties of Modeling by Analogy

Obtaining a quantitative illustration of model error requires one
either to consider a real physical system or to make up a
mathematical system and then pretend to forget that a perfect
model exists. The second approach is taken here by defining a
simple nonlinear two-dimensional chaotic map, including a
seasonal cycle as the system. A “first-principles”” model with an
imperfect but mathematically relevant structure is then created
for this system. The challenges of using very good but imperfect
models of both weather and climate change are then examined
by analogy. In place of the real world system F, take the
equations

\\2
X; = -
Xigq = 1 —a(c sin<c>) +y, +ey [2]

3 X;
Viv1=bic sin(;), [3]

where the index i denotes time, and 7 is a random variable that
allows for external perturbations to the system. Note that it
would be unrealistic to assume ¥ is an independently distributed
standard normal random variable. Also recall that for suffi-
ciently large c, ¢ sin(x/c) ~ x. To reflect a seasonal cycle, assume

b=l 1 denl35))
;,=bl1+dcos )/ [4]

Initially we will consider a purely deterministic system (e = 0),
with parameter valuesa = a,a = 1.35,b = 0.2,¢ = 8, andd =
0.5. Note that if @ = 1.4, then in “perpetual January” mode
(where the cosine term is replaced by unity), the system ap-
proaches the well studied Hénon map (16) as ¢ — . The
perpetual January attractor will, of course, differ from the
January slice of the true attractor.

How do we build a model? First pick a model class, say
two-dimensional polynomial maps with a third seasonal compo-
nent. Some parameters will be estimated from the data, others
may be known exactly within the context of the model (e.g., the
number of months in a year). Our first model has the structure:

x,-+1=d>—axi2+'yy,~+svi [5]

Yi+1= B, [6]
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where vis an independently distributed standard normal random
variable. Given that the system is deterministic (that is, e = 0),
it might seem reasonable to set & = 0, thereby making the model
deterministic. Reasons for not doing so when forecasting will be
presented elsewhere. The model’s seasonal cycle is

B 2
[3,-—[301+8coslf2 . [7]

How do we determine the parameters or, even more interest-
ingly: what are the “correct” values? As argued elsewhere, there
are no correct parameter values given an imperfect model (13);
the best values depend on the application of interest. This
suggests an ensemble over parameter values, as well as over
initial conditions. Note that the Bayesian agenda provides a nice
framework for generating sets of parameters but recall that the
probability of every set of parameter values given the data will
be zero in the long run: there is no perfect model within the
available model class, and there are no infinitely long shadows.

In this simple example, the state space of the system and that
of the model both have dimension two, but x is fundamentally
different from ¥ even if they have the same name. Among other
things, the system and the model have different attractors. In
general, attractors are defined by the dynamics of the system over
rather long time scales, durations similar to the time it takes the
system to return near the same point in state space. There is
certainly no such recurrence in a climate change experiment,
where some parameters change with time in a transient fashion.
For the earth’s atmosphere, the recurrence time is estimated to
be longer than the lifetime of the planet [longer, in fact, than the
expected lifetime of the universe (17)]. And nonlinearity can link
the longest time scales to the shortest forecast horizon (12, 13).
Long recurrence times in nonlinear systems make Occam’s razor
a rather blunt instrument for model building.

To extend the analogy to include climate change, let a become
a function of time, specifically a(f) = a for t < t(, whereasa(t) =
a(l + Ar) for t > to, with the arbitrary choice t, = 1950. We
adopt a similar form for «a(7) and assume that we know the rate
of increase exactly, that is, A = A = 0.1 per century [or
0.1/(100*12)]. We can now study climate change in this simple
analog system and examine the challenges we are up against.

Suppose we have about 100 years of data from 1900 to 2001
that are used to determine relatively likely sets of parameter
values. Given a model, we can run an ensemble of packages, each
consisting of one parameter set, and an ensemble of initial
conditions. Do runs under this model structure bound the
observed monthly values of ¥ and j [taking into account the
effects of the finite size of the total ensemble, any observational
error, and the need to use bounding boxes when assessing
anything more than scalar variables (13)]? If not, then compute
seasonal (or annual) averages and repeat the tests. Knowing
which phenomena this model structure can (and cannot) bound
in free running hindcast mode tells us a great deal regarding
what it might bound in forecast mode. Examining the distribu-
tion of the ensembles tells us about the sensitivity of the model
structure; it may also provide hints regarding the sensitivity of
the system. This provides a lower bound on how much we should
trust the results and at least carries us beyond the requirements
of high school physics experiments.

What then is climate change? Given the perfect model sce-
nario with both e = 0 and exact initial conditions, climate change
is no more than the difference between two trajectories, one with
constant forcing and one with transient forcing. When retaining
perfect model scenario while allowing either e # 0 or some
fundamental uncertainty in the initial condition [perhaps be-
cause of quantum mechanics, as suggested by Lorenz (14)],
things begin to get interesting. In this case, there is a many-worlds
interpretation of the ensemble consisting of all system trajecto-
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ries consistent with F given S (fyow). Some interpretations of
quantum mechanisms state that every measurement differenti-
ates “us” into one of several distinct universes—which one
depends on what has happened in our particular universe (18).
As these universes are initially identical and share the same Laws
and Physics, there is a subset of them that corresponds to the
perfect model scenario ensemble above. Unfortunately, each
“we” is unlikely to obtain information on more than one member
of this many-worlds ensemble. It is interesting to note that
Deutsch has a somewhat different notion of the magnitude of a
small uncertainty than that held by most meteorologists, leading
him to the conclusion that slightly different initial conditions
would yield only slightly different multiverses (i.e., similar
evolved perfect ensembles).

In the case of constant forcing, incomplete information re-
garding the initial condition will yield a growth in uncertainty,
and the ensemble of initial states will spread out on “the
attractor.” The information content of a forecast lies in the
difference between the ensemble and the attractor. Although it
is difficult to define what constitutes a good forecast (19), this
difference will almost certainly become too small to be of any
utility “soon” (see, however, ref. 7). If the forecast ensemble has
a finite number of members, then as t — o, the two distributions
become indistinguishable, at which point any forecast is useless
(12). But we are interested in finite times. In the case of transient
forcing, there is no attractor. A perfect ensemble will spread out
with time, but it will not be attracted toward any fixed set of
points, as the parameters of the system are undergoing a
monotonic evolution.

Thus we are left with three distributions, all of which include
one coordinate that reflects the annual cycle, and two of which
change from one “January” to the next. Name the attractor of
the system with constant (a(¢) = a) forcing uo(a), the distribution
evolving from S(fn0w) under constant foreing p1(a@, S(tow), ¢ — to),
and the distribution evolving from S(f,0w) under the transient
(climate change) foreing pa(a(t), S(taow), t — to). The discussion
above can be summarized as saying that, as t — %, w; — pg, and
that beyond the range of operational weather forecasting the best
forecast is, in fact wo. For a constant forcing, the distribution
pa(t) is the climate, whereas the trajectory S(¢) is the weather,
hence the adage, “Climate is what you expect; weather is what
you get.”

Climate change in this case is the difference between u, and
w1 as a function of time. For a given a(r), reality will trace only
one trajectory; the uncertainty between that trajectory and the
corresponding distribution is uncertainty of the first kind. In
contrast, the uncertainty as to which distribution is relevant (in
the simplest case, w; or u») reflects uncertainty of the second
kind. Within the perfect model scenario, uncertainty of the
second kind arises only from uncertainty in the forcing a(¢) if the
distribution of states at initial time is known.

Although climate change is defined as the difference between
distributions, one can always look at particular statistics, say the
mean value of the distribution in state space, (S)M], or the mean
value of a scalar like &3, depending on one’s interests. The
important point here is that, whereas one can define various
“climate statistics,” climate itself is always a distribution. By
construction, the best-guess trajectory is at best one draw from
this distribution and as such cannot reflect its width, much less
the uncertainty in its structure.

So what is the climate mean in our simple case? Consider the
mean value of £; taking the mean over uo(r) will yield a strictly
periodic function, denoted by (£(7)),.,, which has a period of 1
year (i.c., 12 months). Repeating the calculation for u,(r) will
yield (%(¢)),.,, a function of time that initially differs from the
periodic function obtained previously but (rapidly?) approaches
it as time passes.
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And for u(¢)? Here the average of £ shows an aperiodic
annual oscillation along with a systematic increase between 1950
and 2000. There are three crucial points in connection with this
behavior:

i. It is misleading to say that this increase is “superimposed”
on a periodic cycle, because the system is nonlinear; we have
no recourse to the superposition of states.

ii. In general, (%(¢)) is not a solution to the equations of
motion: the evolution of the mean under the model is not
the mean of the evolving climate. The mean is unlikely even
to lie on the attractor that defines the climate!

iti. The average (¥()) cannot be extracted from any best-guess
run.

Before leaving the perfect model scenario to rejoin our modeling
analogy of the real world, we discuss the utility of climate mean
statistics even if they are known exactly. Assume that the
transient forcing is realized: what does knowing the many-worlds
mean tell us about what we will experience in the future? Not
much, really. Although the trajectories of £ in each of the many
worlds may be interesting, superimposing all of them yields a
wide distribution of possibilities for every month in the future,
which will, among other things, bound reality. Their many-worlds
mean, on the other hand, will bear little resemblance to any of
them and will not reflect their variability or their extreme values,
two issues of immediate economic and social interest. Given the
distribution w(r), we can compute the 5 and 95% (or 0.1 and
99.9) bounds on any variable of interest. We can also look back
in time and see how often ¥ falls outside of these bounds in the
past. Within PMS, this will happen about 10% (or 0.2%) of the
time; departure from this target for operational models yields
insight and suggestions for model improvement.

Now back to the analogy with the real world. Again we can run
our model in ensemble mode, considering a range of reasonable
values for the parameters. This is done for each package of
model structure, parameterizations, and parameter values, which
in turn considers an ensemble of the initial conditions. The
model-climate statistics will, of course, share the limitations of
the true climate statistics while adding new shortcomings of their
own. They cannot, for example, be expected to reproduce the
accountable probability density function (PDF) statistics given
by the many-worlds ensemble. It is not clear how to interpret
operational distributions using multiple packages and imperfect
model structures; this distribution will not resemble the PDF of
the system. Empirically, we can determine how well the ensemble
bounds the observations (that is, attempt to compute the 95th
percentile), noting that this will require some kind of model
output statistics (MOS) (20) to account for projection effects.
Indeed, MOS is simply a special case of the projection operator
discussed above. Projection effects must also be accounted for in
the context of fingerprint methods for detecting patterns of
climate change (21, 22). In general, there remains the open
question of whether any projection operator exists under which
current climate models could be said to shadow the historical
record.

In the simple model above, the ensemble runs under the model
fail to bound the single run under the system designated as truth
much too often. In particular, the model ensembles miss the
extreme values in the observations. This is true in-sample, that
is, when examining the historical data used to determine the best
parameter values for each package. Given these results, it is
reasonable to assume that a first-principles modeler would see
where the problem was, namely that large values of x gave
systematically worse predictions, the modeler might then guess
that the forecasts would be improved by adding a higher order
term in x. This suggests changing the model structure by
replacing Eq. 4 with
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In many ways, this second model will be better than our first
model. But it remains imperfect; indeed, any polynomial model
with a finite number of terms will be imperfect. The issue is one
of model class. Let our model class consist of all polynomial
models with terms up to 10th order: there is still no perfect
model for any of the functional forms at our disposal. There is
no question that the model class containing our computer-based
climate models does not contain a member corresponding to the
real world, and philosophers are divided as to whether any model
class exists that contains any real physical dynamical system with
sustained dynamics, even the electric circuit.

We must always work in the rosy scenario, but, by testing our
ensembles in sample, by adjusting our aims to bounding boxes
rather the probability density functions, we can do much useful
work nonetheless. For instance, we can investigate just how bad
uncertainty of the second kind is by the contrasting distributions
from various packages. When the experiment is repeated with
ensembles over model structure, each package again yields its
own distribution; uncertainty of the second kind is reflected in
how much these distributions differ. The two extreme options are
(/) that they are each rather peaked with little overlap or (ii) that
they are rather similar. It seems we must aim for i, at least when
grouping packages over model structure. Our competing model
structures must be so good that the details are irrelevant (within
the rosy scenario). If the details matter, we need to devote
resources to model development, hoping that the existing data
contain enough information to improve the model or at least
disqualify some packages. Alternatively, if the distributions are
broadly similar, we might investigate larger ensembles with the
aim of finding what distinguishes them and hence get a handle
on model improvement.

There is one complication we have not yet mentioned: how
to contend with unphysical packages. These are models with
parameter sets that appear reasonable enough but produce
physically unreasonable results, say, when run from 1950 to
2000. For example, the first initial condition tried in a given
package may crash the computer before the simulation reaches
the year 2000. Such a package cannot be dismissed out of hand
on the basis of one 1950-2000 run. It might be the case that
all packages with this model structure become unstable with
the same probability Pgiverge per unit time. In that case, those
that happened to make it to 2000 are no more stable in
2000-2050 that those that did not. Thus multiple initial
conditions for each package are required, both to estimate
Piverge and to examine structure of the distribution even if
Piverge = 0. And how might one detect and account for a more
subtle “unphysical” trajectory in 2000-2050?

Of course, the system may also be unstable! This fact is usually
ignored in the rosy scenario, because there is little hope of
simulating a system in a region of state-space far from the
observations.

Operational Climate Modeling

Allen (23) has proposed distributing a climate model (one
package from a small collection) and an initial condition to every
interested individual over the World Wide Web, allowing a
single personal computer to compute a single unique trajectory
over the period 1950-2050. There are questions of experimental
design still to be resolved (24), yet climateprediction.com can
begin to address many questions in the context of what were
recently state-of-the-art models. Regardless of what we learn
about the future, such an experiment will teach us a great deal
by contrasting the distributions of large model ensembles with
the observed climate over the past decades. It will make it
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possible to see which variables (and credibility ratios) can be
captured in the data used to construct the models.

It will undoubtedly be argued that the model(s) chosen for
climateprediction.com are too simple, and that showing a
simple model fails for a particular variable does not imply a
newer bigger better model will fail. This argument is as
irrelevant as it is true. If model results are being used as
forecasts and not only for pure research, then they are
incomplete without a reliable estimate of the forecast uncer-
tainty of every variable communicated to policy makers.
Arguably, there is at present no good baseline for any climate
modeling scenario that establishes which variables and time
scales are reliable. Composing a baseline for any good model
strengthens our confidence in its “newer bigger better” off-
spring. Therefore the climateprediction.com experiment can
also provide a realistic baseline for confidence levels for more
complicated models until such time as the reliability of those
models can be quantified directly. A great deal of work has
gone into testing and verifying the components that compose
state-of-the-art models, yet in a very real sense, as coupled
nonlinear models per se, they are not yet out of high school,
at least not in terms of the questions their designers are asked
to answer.

Conclusion

“There is no more common error than to assume that,
because prolonged and accurate mathematical calcula-
tions have been made, the application of the result to
some fact of nature is absolutely certain.”

Alfred N. Whitehead (25)

The perfect model scenario is a useful but misleading fiction.
And there is no simple stochastic fix. This does not imply that
increasing resolution, improving parameterizations, introducing
stochastic physics, and the like, will not significantly improve our
current models but it does suggest that careful thought is
required in quantifying exactly what we mean by “improve.”

When extrapolating into the unknown, we wish both to use the
most reliable model available and to have an idea of how reliable
that model is. One argument against the ensemble experiments
above is that only a model much simpler (faster) than a current
state-of-the-art model can be used. But what faith do we have in
today’s most complicated models, other than the fact that in 10
years time, well within the range of the forecast being made, this
same model will be condemned as too simple to be worthy of
serious study?

We have shown how ensembles can be used in-sample to
identify minimum scales for averaging and discussed the assign-
ment of resources between making more realistic models and
making relevant quantitative estimates of just how realistic they
are. If we cannot obtain an accurate probability forecast, then
model improvements should be aimed elsewhere, perhaps to
obtaining a bounding box. Feedback for model development is
important; model “improvements” aimed at reducing forecast
errors actually due to uncertainty in the initial condition may
have already made our models overly stable.

Models, when they do apply, will hold only in certain circum-
stances. Belief in extrapolation outside observed circumstances
is largely a question of faith: we cannot know a priori whether we
are discovering Neptunes or Vulcans. We may, however, be able
to identify shortcomings of our model even within the known
circumstances and thereby increase our understanding.
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