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Abstract

An algorithm that genertes realistic synthetic 24-
hour RR-tatograms by including both cardiovascular
interactions and transitions betweenphysiolaical states
is presented. Fluctuations in the beat to beat RR-
intervals of a normal healthy humanover 24 hours are
known to exhibit variability on a number of different
time scales. Shortrange variability dueto Mayer waves
and RSAare incorporated using a power spectrumwith
given spectal characteristics describedby its low and
high frequencycomponents. Longer range fluctuations
arising from transitionsbetweenphysiol@ical statesare
genemltedusingswitching distributionsextractedfromreal
data. Thesephysiolgical statesjncludingsleepstatesare
specifiedusingRRintervalswith differentmeansyariances
and trends. This algorithm provides RR tachogramsthat
are similar to thosein the MIT-BIH Normal SinusRhythm
Database Theresultingartificial RRtimesseriesgeneator
was submittedfor part 1 of the Physionet/Computerin
Cardiology Challenge 2002with entrynumber201.

1. Intr oduction

Beat-to-beatvariationsof humanRR intenals display
fluctuationsover a numberof differenttime scalesanging
from secondsto days. Some of thesefluctuationsare
relatively well understood@ndarisefrom (i) theinteractions
betweendifferent physiological control mechanismsuch
asRespiratorySinusArrhythmia (RSA) andMayerwaves,
(ii) the amountof physical and mental actiity, (iii) the
circadian rhythm and (iv) the effects of different sleep
stages[1, 2, 3]. This wide range of actvity that can
be expectedin a normal human suggeststhat the task
of classifying normal and abnormal RR recordsis not
straightforvard. Neverthelessthe detectionof abnormal
fluctuationamaybeusedto forewarnof cardiacdiseasg4].

In this paper a method for generatingartificial RR
tachogramswhich includesfluctuationsknown to arisein

normal healtly humansis presented. By incorporating
the fluctuationson short, medium and long time scales
the methodproducesealistic RR intervals over 24 hours.
For a healtly human at rest, having a heart rate with
approximately constantmean and variance, the power
spectrumin thefrequeny range0.04to 0.4 Hz is believed
to provide a measuref the activity dueto the sympathetic
and parasympathetimenes [1, 5]. A technique for
generatingdatawith a prescribedpower spectrum,which
incorporatebothRSA andMayerwaves,providesameans
of obtainingarealisticsequencef RRintervalsfor agiven
physiologicalstatespecifiedby a particularmean variance
andtrend[6]. Thistechniquepreseresthefluctuationsover
shorttime scales.

The RR tachogramof a healtly humandoesnot reflect
a heartrate with constantmeanor variancesince these
physiologicalstatesusuallychangewith time. During a 24
hour period, the heartratetendsto jump betweerdifferent
gquantisedstates,relating to different physical and mental
activity [1]. Empiricaldistributionscalculatedy Bernaola-
Galvan et al. [7] are usedto govern the duration and
mean heart rate level within eachof thesestates. The
transitionsbetweerthesestategypically occuroveramuch
shortertime than that spentin any of the states. The
techniquefor preservingthe power spectrumis usedas
a building block for generatingRR intenals both within
the statesand during transitions. Fluctuationsdue to both
a circadianrhythm (including wake-sleepand sleep-vake
transitions)and inter-sleepcycles are addedto provide a
realistic artificial RR tachogramover 24 hours. Model
parametersre initialised using pre-specifieddistributions
sothatdifferentseedproducedifferentRR tachograms.

2. Methods

2.1. Heart rate variability

Analysisof variationsin theinstantaneoukeartratetime
seriesusing beat-to-beaRR intervals (the RR tachogram)
is knowvn asHeartRate Variability (HRV) analysis[1, 5].



HRV analysishasbeenshavn to provide an assessment
of cardiovasculardisease[8]. The heart rate may be
increasedy slow actingsympathetiactivity or decreased
by fastactingparasympatheti@vagal) activity. Thebalance
betweertheeffectsof thesympatheti@andparasympathetic
systemsthetwo oppositeactingbranche®f theautonomic
nenoussystemijs referredto asthesympatheagal balance
andis believedto bereflectedn thebeat-to-beathangef
thecardiaccycle[1]. Spectrabnalysioof theRRtachogram
is typically usedto estimatethe effect of the sympathetic
and parasympathetimodulationof the RR intervals. The
two mainfrequeny bandsof interestarereferredto asthe
Low-Frequeng (LF) band(0.04to 0.15Hz) andthe High-
Frequeng (HF) band(0.15to 0.4 Hz) [5]. Sympathetic
toneis believed to influencethe LF componentwhereas
both sympatheticand parasympathetiactvity have an
effect on the HF componen{1]. The ratio of the power
containedn the LF andHF componentfiasbeenusedasa
measuref the sympathoagal balancel, 5].

Respiratory Sinus Arrhythmia (RSA) [9, 10] is the
name given to the oscillation in the RR tachogramdue
to parasympathetiactiity which is synchronousvith the
respiratorycycle. The RSA oscillation manifestsitself as
a peakin the HF bandof the spectrum. For example, 15
breathsper minute corresponddo a 4 secondoscillation
with apeakin thepowerspectrunat0.25Hz. An additional
10 secondoscillation,dueto Mayerwaves|[2], oftengives
rise to a secondpeakfound in the LF bandof the power
spectrumat approximately0.1 Hz.

2.2. Short time scales

Following [6], the effects of both RSA and Mayer
waves in the power spectrumS(f) of the RR intenvals
are incorporatedby generatingRR intenals which have
a bimodal power spectrumconsistingof the sum of two
Gaussiartistributions,S(f) = S1(f) + S2(f), givenby
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with meansf; and standarddeviations ¢; for i = 1,2.
Pawer in the LF and HF bandsare given by ¢? and o2
respectiely whereashevarianceequalghetotalareas? =
0? + 02, yieldinganLF/HF ratioy = 02 /2. An example
of the power spectrumS(f) givenby f; = 0.1, f» = 0.25,
c¢1 = 0.01, c; = 0.01 andy = 0.5 is shovn in Fig. 1.

A RR intenal time serieswith power spectrumS(f)
is generatedby taking the inverse Fourier transform of
a sequencef complex numberswith amplitudes,/S(f)
and phaseswhich are randomly distributed between0
and 27 radians. By multiplying this time seriesby an
appropriatescaling constantand adding an offset value,
the resultingtime seriescan be given ary requiredmean
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Figurel. PawerspectrumS(f) of theRRinterval process
with a LF/HF ratio of v = 0.5.

andvariance. In addition, trendsare usedto simulatethe
effect of increasinganddecreasindneartratethroughouta
particularphysiologicalstate.

For agivenphysiologicalstateof RR intervals,anumber
of operatingparametermustbespecified suchasthemean
and standarddeviation of the RR intervals alongwith the
trendthroughouthe state. The meanof the RR intervalsin
aparticularstateis specifiedaccordingto whetherthe state
is in the wake or sleepstage. Thesestagesare described
in more detail in the following sections. The standard
deviation of the RR intervals for a particularstateis given
by orr ~ U(0.01,0.02) secondsandthe trendis given
by Brr ~ U(—Ap, Ag) whereAg ~ U(1,1.25) seconds
andU (a, b) denotesa uniform distribution on the interval
[a, b]. The shapeof the power spectrumis specifiedby the
relative contritutions of the two modescomprisingthe LF
andHF bandsgivenby the LF/HF ratio whichis uniformly
distributedaccordingto y ~ U(0.5, 8.0).

2.3. Wakestages

Circadianactiity leadsto an approximatelysinusoidal
variation in baselineactiity throughoutthe day This
variationcorrespondso a high heartrate during the wake
stageand a decreasen heartrate during the sleepstage.
During the wake stage,the meanRR interval used for
initialising eachphysiological statebeginning attime ¢ in
secondss givenby

KRR = ﬂRR + Agrr Sin[ﬂ' + (27T/Tc)t] + 0.2ARrRT (2)
wherethe underlyingmeanis jirr ~ U(0.7,1) seconds,

Agrr ~ U(0.075,2.075) secondsthe circadianperiodis
givenby T, ~ N(24,1) hoursandr ~ N(0,1) where



N(a,b) denotesa normal distribution with meana and
standardleviation b.

2.4. Sleepstages

Thesleepperiodexhibits anintricate,yet approximately
regularstructure After aninitial dropin heartrate,ahuman
will typically cycle throughstagesof deepandlight sleep
with a periodof about90 to 110 minutes. The transitions
betweenthesesleepstagesare marked by changesn the
baselineheartrate and HRV, reflecting state changesin
the model. The startingsleeptime T and sleepduration
interval Ty aregivenby T, ~ U(14,16) hoursandT,; ~
U (6, 8) hours.DuringthesleepstagethemeanRRinterval
for a statebeginningattime ¢ in secondss givenby

R 1 .
KRR = URR + §BRR [1 4+ sin (27t/Ts)] (3

where Bgr ~ U(0.1,0.2) seconds,irr ~ U(0.7,1)
secondsand the period of the sleepcycle is T; = 100
minutes. This implies that the RR intenals undego
sinusoidafluctuationswith aminimumRRintenal of g g
andamaximumof igr + Brg-

2.5. Statetransitions

The size of transitions betweendifferent mean heart
rates, ARR, are replicatedusing a distribution with a
similar shapdo thatfoundfrom empiricalobsenations[7],

ARR = 0.5Aagrr(1 + €"/10)u/|u| 4)

whereAagrr ~ U(0.03,0.13) andr andu arenormaland
uniformdistributionswith » ~ N(0,1) andu ~ U(0,1).
Thelengthof eachtransitionbetweenstatess 7rans ~
U(5,30). RRintervalsduringeachtransitionaregenerated
by using a V-shapedbridge to spanbetweenthe first and
last RR intenal of the neighbouringstates. The V-shaped
bridge givesthe effect of undershootingwhenthe control
mechanismadjuststo a new level of RR interval andwas
foundto be presenduringa numberof transitionsbetween
statesfor RR intenvals from the MIT-BIH Normal Sinus
Rhythm DataBase(NSRDB)[11] hostedat the Physionet
web-site[12]. The shortrangevariability producedby the
power spectrumss superimposeon this V-shapeo mimic
theeffect of RSA andMayerwavesduringthetransition.

2.6. Duration of states

Usingthe empiricalpower-law distribution estimatedy
Bernaola-Gal@netal. [7], thelengthof time = spentin a
givenstateis governedby a power law distribution with

7= (v/a)™” (5)
wherea = 5466.8, 8 = 2.2 andu ~ U(0, 1).
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Figure2. RRintervalsfrom record162650f NSRDB: (a)
22 hours,(b) 2 hoursand(c) 12 minutes. Vertical linesin
panels(a) and(b) indicatethe regionswhich areblown up
andshown in panelg(b) and(c).

2.7. Ectopy and artefact

An analysisof ectopicbeatandartefactincidencein an
accompanping paper[13] is usedto provide an algorithm
for generatingrealisticectopy andartefct. Ectopicbeats
areaddedwith anindependenprobability of oneperhour
Artefactsare addedwith a probability proportionalto the
meanheartrate within a physiological stateandincreased
for statetransitionperiods. The frequeng of artefactsin
relationto statechangesnay alsobe usedto classifyreal
(normal)andartificial RR interval time serieg13].

3. Results

The Computersn CardiologyChallenge2002suggested
that the RR generatormodels should be constructedto
replicateRR intenal recordingsoundin NSRDB[11, 12].
An example of one such recording (labelled 16265 in
NSRDB)is shown in Fig. 2. Thisillustratesthe circadian
rhythm (Fig. 2a), variouslevels of physiological actiity
reflectedby fluctuatingRR intervals with differentmeans,
variancesandtrends(Fig. 2b) and modulationof the RR
intervalsdueto RSA andMayerwaves(Fig. 2c).

The modelusedfor generatingartificial RR tachograms,
entry number 201 in event 1 of the Computersin
CardiologyChallenge2002,wasusedto simulatetwo long
recordsof RR intenals. Thesetwo recordsare labelled
19 and 31 in the databaseof recordingsused for the
classificationcompetition(event1). Thetime seriesof RR
intervals for entry 19 is showvn in Fig. 3. The artificial
tachogram(Fig. 3) replicatesmost of the characteristics
of the real humanRR tachogram(Fig. 2), including the
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Figure 3. Simulationof RR intervals correspondingo

entry (a) 19 in the Computersin Cardiology Challenge
2002:(a) 20 hours,(b) 2 hoursand(c) 12 minutes.Vertical

lines in panels(a) and (b) indicatethe regions which are
blown up andshown in panels(b) and(c).

circadianrhythm (Fig. 3a), switching betweendifferent
states(Fig. 3b) andactuity over shorttime scalesdueto
RSA andMayerwaves(Fig.3c).

4, Conclusion

A nenv model for generatingrealistic RR intenals
has been presented. This model provides a building
block for incorporatinglow frequeng variability related
to the interactions of the control mechanismsdue to
the sympatheticand parasympathetimeres. In this
way, both RSA and Mayer waves, which often yield
spectralcomponentat approximately0.25Hz and0.1 Hz
respectiely are presered. The ratio betweenthe low
frequeny and high frequeny componentsis modelled
stochasticallyFluctuationswith longertime scalegon the
orderof minutes)dueto statetransitionsare modelledby
allowing theRRintenalsto have differentmeansyariances
andtrends. The duration of thesestatesare given by a
powerlaw distribution. Variability on time scalesof the
order of hours, such as the circadianrhythm and sleep
stagesare modelled by a combinationof deterministic
sinusoidsandstochastimoise.

While the overall model is relatvely comple, it
summarisesnary of the important physiological control
mechanismghatinfluenceheartrate over 24 hours. Each
of the models parameterdiasa very clear physiological
meaningsuggestinghatif the modelis tunedto replicate
a particular human RR tachogram,it may be possible
to usethe derived parametewvaluesto facilitate medical
classificationanddiagnosis.
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