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Abstract

An accurate forecast of a nonlinear system will require an accurate estimation of the initial state. It is shown that even
under the ideal conditions of a perfect model and infinite past observations of a deterministic nonlinear system, uncertainty
in the observations makes exact state estimation is impossible. Consistent with the noisy observations there is a set of states
indistinguishable from the true state. This implies that an accurate forecast must be based on a probability density on the
indistinguishable states. This paper shows that this density can be calculated by first calculating a maximum likelihood estimate
of the state, and then an ensemble estimate of the density of states that are indistinguishable from the maximum likelihood
state. A new method for calculating the maximum likelihood estimate of the true state is presented which allows practical
ensemble forecasting even when the recurrence time of the system is long. In a subsequent paper the theory and practice
described in this paper are extended to an imperfect model scenario. © 2001 Published by Elsevier Science B.V.
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1. Introduction

Sensitivity to initial conditions in the dynamics of a nonlinear system, implies that any uncertainty of the current
state of a system prevents long term forecasting of the future state. This paper exposes fundamental limits to
identifying the current state of a system. Specifically, given noisy observations of a system (of arbitrary duration)
and a perfect model of the system, there are many states indistinguishable from the true state. Given a perfect model,
one might imagine that better and better estimates of the state are obtained by collecting more and more data, and
that in the limit of an infinite quantity of data the estimates converge to the true state. This does not happen. Uncertain
observation yields, at best, a probability distribution on states in the unstable set of the true state. An interesting
twist here is that not only does sensitivity to initial conditions limit the ability to predict the future from uncertain
knowledge of the state, but that sensitivity to initial conditions also limits the ability to identify the true state.
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In practice, the ability to make good forecasts is limited both by uncertainty in the state and by imperfections
in the model. In this paper, we consider the ideal situation where one has a perfect model. In this perfect model
scenario one can make perfect forecasts for all time, if the true state of the system is known. Indeed, in this scenario
a theorem of Takens [29] implies that if one could make perfect (noise free) observations of just a single scalar
measurement of the system, then, for smooth finite-dimensional systems, one can (generically) obtain the true state
from sufficiently many (but finite in number) observations. We consider here the case of noisy observation. In the
second paper, we will extend the theory presented here to an imperfect model scenario [15].

In the first part of this paper we deal with the theory of indistinguishable states and in the second part we consider
a new approach to data assimilation and state estimation. Atmospheric and oceanographic data assimilation exploit
space–time variational methods for estimating a system’s state [4,5,32]. In broad outline these methods take a time
series of observations st , t = 0, . . . , p, of a system with dynamics modeled by a function f , and attempt find an
initial state x̂ that minimizes the sum of squares error, 1

E(x) =
p∑
t=0

(st −G(f t (x)))2, (1)

where st ∈ Rk , x ∈ Rd , and G is an observer function that projects from state space Rd to observation space Rk .
One of the difficulties with this approach is that as the assimilation period p increases the repeated iteration of

the nonlinear function f produces a complicated function f t (x) with the consequence that E(x) has many local
minima [1,23]. An alternative approach to forecasting is to look for analogues [19], i.e., to look through past records
of the system’s behavior (either observations or simulations) to find situations where the observations were like the
present observations. The difficulty with this approach is that the recurrence time of the system may be so long
[31] that no amount of observation, 2 or feasible amount of simulation, 3 would produce useful analogues of the
present state and thus the construction of perfect ensembles [27,28] is untenable. In this paper, we present a new
method of estimating the maximum likelihood state from observations that can produce model analogues of the
current state without having to simulate the model for a long period. The method we suggest can be modified to
allow for when the model f is imperfect or for dynamic noise (i.e., stochastic systems); these allowances are less
easily accomplished in a variational approach.

The first part of this paper dealing with indistinguishable states has connections with Bayesian likelihood functions
of state [1,3], but to our knowledge previous work has not revealed the intimate connection between dynamically
invariant geometric structures and the support of the Bayesian density.

The second part of this paper has strong connections and similarities with nonlinear noise reduction [6,7,9,18].
The method we present could be viewed as (or even used for) nonlinear noise reduction, but our method differs
from nonlinear noise reduction in both technical detail and underlying motivation. The results of the next section,
however, are relevant to nonlinear noise reduction, because they imply that the goal of nonlinear noise reduction
should be to obtain a distribution of states, not a single state.

2. Indistinguishable states

If one has a perfect model of a deterministic and finite-dimensional dynamical system, then the best forecast of
the future is attained by determining the state of the system and evolving it forward. If knowledge of the state is

1 In operational data assimilation there is usually an additional term (x0 − xb)
2, where xb is some prior estimate of the initial state.

2 The return time may exceed the life time of the system.
3 The computation time may exceed the life time of the universe.
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Fig. 1. When are two states xt and yt indistinguishable given an measurement error distributed by ρ? Suppose xt is the true state of the system
and yt some other state. When the measurement error is bounded, then there is a bounded region about a state in which every possible observation
of the state will fall. For the states xt and yt in the figure these regions are represented by circles centered on xt and yt . When an observation
falls in the overlap of these regions (e.g., at α), then the states xt and yt are indistinguishable given this single observation. If the observation
falls in the region about xt , but outside the overlap with the region surrounding yt (e.g., at β), then on the basis of this observation one can reject
yt being the true state, i.e., xt and yt are distinguishable given the observation. When the measurement error is unbounded, then states are never
distinguishable on the basis of a single observation, although the probability of the states xt and yt are indistinguishable typically depends on
the relative distances of the states from the observations.

clouded by measurement error, then one must estimate the state from what has been observed up to that moment.
Is an exact estimation of the state is possible, even when given observations back to the beginning of time? The
answer is no, as we now show.

For a deterministic system with state space K ⊆ Rd and initial state x ∈ K at t = 0, the state at a time t is
Φt(x), where Φ is the evolution operator [8]. For convenience write xt = Φt(x). In particular, x0 = Φ0(x) = x.
For notational convenience we will often drop the subscript and write x for x0.

An observation st of the system state xt at time t is corrupted by measurement error. Assume that st = xt + εt ,
where εt ∈ Rd and has density ρ with respect to Lesbegue measure. 4 Assume also that observations are recorded
at t = 0,−1,−2, . . . , and that the εt are independent and identically distributed. Their mean need not be zero. The
following results will generalize considerably from these assumptions, e.g., ρ can be time varying or state dependent
and the measurement errors correlated, but such generalizations are avoided for clarity.

On the basis of a single observation st of xt there can exist many states yt each of which is indistinguishable from
xt , because of observational uncertainty; see Fig. 1. The joint probability density of xt and yt being indistinguishable
is given by∫

ρ(st − xt )ρ(st − yt ) dst . (2)

Define, by translating coordinates in the above,

g(b) =
∫
ρ(z)ρ(z− b) dz, (3)

where b corresponds to the separation between states (yt − xt ) and z is the actual measurement error. Normalize
g(b) to give

q(b) = g(b)

g(0)
. (4)

4 Measurement error is usually taken to be Gaussian or bounded uniform, but neither singular nor fractal.
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Observe that the joint probability (2) is then g(yt−xt ) and that the conditional probability that yt is indistinguishable
from the true state xt is q(yt − xt ). The normalization implies that q(0) = 1 and thus, with probability one, xt is
indistinguishable from itself.

Given a time series of observations st , t = 0,−1,−2, . . . , it follows (from the independence of the measurement
error) that the probability that two trajectories xt and yt , t = 0,−1,−2, . . . , are indistinguishable is given by

Q(y|x) =
∏
t≤0

q(yt − xt ). (5)

From which immediately follows the theorem.

Theorem 1. Given any time series of observations extending into the infinite past of the trajectory that terminates
at x: if Q(y|x) = 0, then the states x and y are distinguishable with probability one.

Some special cases of this theorem are the following.

• When the measurement error is bounded and for some t = τ , xt and yt are separated by more than twice the
bound, then q(yt − xt ) = 0. (The circular regions shown in Fig. 1 would not overlap in this case.) It follows that
Q(y|x) = 0, because at least one factor in the product (5) is zero. Thus such x and y will be distinguishable
regardless of the realizations of the measurement error, since there is at least one moment in time (i.e., t = τ )
when a single observation will distinguish x from y.

• If the trajectories of x and y have a fixed separation and the measurement error is bounded, then q(yt − xt ) has
a fixed value for all t . (The circular regions shown in Fig. 1 would have the same size overlap for all t .) Thus
Q(y|x) = 0, as the infinite product (5) converges to zero, because it is a product of numbers strictly less than
one. The interpretation in this case is that sooner or later there will be an observation that does not fall in the
overlap region of Fig. 1, and such an observation will distinguish x from y. Note that it could happen that every
measurement error places the observation in the overlap region, but there is zero probability of such a succession
of measurement errors occurring.

• If the trajectories of x and y have a fixed separation, as in the above case, but the measurement errors are
unbounded, such as Gaussian errors, then once again q(yt − xt ) has a fixed value for all t . Thus Q(y|x) = 0,
since the infinite product (5) converges to zero. The interpretation in this case is that over the entire history of
observations the evidence accumulates to distinguish the two trajectories that lead to x and y; even though no
single observation distinguishes them, as happened in the previous cases.

Theorem 1 tells us when states can be distinguished under ideal circumstances. The important question now is
thus: are there states that cannot be distinguished from the true state under ideal circumstances? IfQ(y|x) > 0, then
Q(y|x) is the probability that the trajectories of x and y will not be distinguished, given a series of observations
into the infinite past; here the probability is over all realizations of the measurement errors. Define

H(x) = {y ∈ K : Q(y|x) > 0}, (6)

i.e.,H(x) is the set of all possible states y that are indistinguishable from x given the entire history of the observations.
A more convenient alternative definition of H(x) can be derived as follows. Define

h(b) = −log q(b), (7)

i.e., h(yt−xt ) is the likelihood that xt and yt cannot be distinguished given an observation, or alternatively, h(yt−xt )
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is the information gained when an observation is made at time t . Now define

H(x) =

y ∈ K :

∑
t≤0

h(yt − xt ) < ∞

 . (8)

This second equivalent form of the definition of H(x) arises from considering sums of h(yt − xt ), rather than the
products of q(yt − xt ) in Eq. (5).

Clearly, x ∈ H(x), but if H(x) is non-trivial (contains states other than x), then the “true” state x cannot be
distinguished from the other states in H(x). In the next section we demonstrate for three typical measurement error
densities ρ, that H(x) is non-trivial for typical nonlinear systems. It will be seen that the unstable set of x,

U(x) =
{
y ∈ K : lim

τ→−∞ sup
t≤τ

‖yt − xt‖ = 0

}
, (9)

will play an important role, in that H(x) is a subset of U(x). It will also be seen that H(x) can have a complicated
nonlinear structure.

2.1. Examples of indistinguishability

To illustrate that H(x) is typically non-trivial we consider when the density of measurement errors ρ is (i)
Gaussian, (ii) bounded uniform, and (iii) a bounded non-uniform density.

Gaussian error density. Consider first when d = 1. Let

ρ(z) = 1√
2πσ

e−z2/2σ 2
,

and so by (3), (4) and (7),

h(b) = b2

4σ 2
.

With (8) this means that H(x) consists of all y such that
∑

t≤0(yt − xt )
2 < ∞, which implies the trajectories xt

and yt must converge in the past. Hence, H(x) is a subset of the unstable set U(x) of x; another way of putting
this is that x and y have the same α-limit set [8]. Recall that for chaotic one-dimensional maps the divergence of
trajectories is exponential on average, and so H(x) almost certainly will be non-trivial.

When d > 1 define

ρ(z) =
(

1

2π

)d/2

(detA)1/2 e−zTAz/2,

where A−1 is the covariance matrix of the measurement errors. One then has that

h(b) = 1
4b

TAb.

If the measurement errors are isotropic, thenA−1 = σ 2I , andH(x) consists of all y such that
∑

t≤0‖yt −xt‖2 < ∞.
When measurement errors are not isotropic, A will still be non-singular, and so it can be shown (by equivalence of
norms) that H(x) consists of all y such that

∑
t≤0‖yt − xt‖2 < ∞ in this case as well.

In general, for Gaussian measurement errors, H(x) consists of all y such that
∑

t≤0‖yt − xt‖2 < ∞, which is
a subset of the unstable set U(x) of x. For differentiable systems, the divergence of the unstable set is typically
exponential, so H(x) is typically a sub-manifold of the state space K .
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Uniform error. When d = 1,

ρ(z) =




1

2r
, |z| ≤ r,

0, otherwise,

and

h(b) = −log

(
1 − |b|

r

)
= |b|

r
+ O

( |b|
r

)2

.

When d > 1 there are similar results for uniform density in a sphere or hypercube, and it can be shown that in
general H(x) consists of y such that supt≤0‖yt − xt‖ ≤ r and

∑
t≤0‖yt − xt‖ < ∞. This too is a subset of the

unstable set of x, although more exclusive than the Gaussian case, because the density is bounded and because the
asymptotics of the sum are more strict.

A non-uniform bounded error. Consider a generalized Epanechnikov density [11], defined for d = 1 by

ρ(z) =



15

16r5
(r2 − z2)2, |z| < r,

0, otherwise

for which

h(b) = −log

(
1 − 3b2

2r2
+ 21b4

16r4
− 21b5

r5
+ 105b6

2r6
− 393b7

8r7 + 315b8

16r8
− 23b9

8r9

)
= 3b2

2r2
+ O

(
b

r

)4

.

There are similar results for d > 1 for the spherical or hypercube symmetries, and H(x) is a subset of the unstable
set of x again. Although asymptotically the sum is the same as the Gaussian density,H(x) is more restricted because
the density is bounded.

It is obvious from the preceding three examples that for an extensive variety of both bounded and unbounded
densities, the setH(x)will be non-trivial for differentiable and other systems. In particular, note that chaotic systems
exhibit sensitivity to initial conditions, which is typically exponential divergence, and so one expects H(x) to be
non-trivial for almost all states of chaotic systems. It is not difficult to see that these results will generalize, e.g.,
not only to time varying and correlated measurement errors, but also to systems modeled by ordinary and partial
differential equations.

2.2. Probability density of indistinguishable states

The function Q(y|x) implies a probability measure on H(x). Typically this probability measure has a maximum
at x and decreases away from x alongH(x), but this is not always the case as we show in this section. For unbounded
error densities, such as a Gaussian, H(x) can be the entire unstable set of x. Note that typically the unstable set of
x is spread about the entire attractor.

In this paper, we will use as an illustration the Ikeda map [13] in R2 given by

f (u, v) =
(

1 + µ(u cos θ − v sin θ)
µ(u sin θ + v cos θ)

)
, (10)

where θ = a−b/(1+u2 +v2)with a = 0.4, b = 6 andµ = 0.83. This map arises in the study of laser physics. We
use it because it is chaotic and has a complex attractor that has dimension considerably more than one, and hence
spread out in R2. It is a more difficult map to deal with than, say, the Henon map.
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Fig. 2. The sets of indistinguishable states H(x) calculated for nine states (marked with circles) of the Ikeda map [13] with measurement error
that is Gaussian with a standard deviation σ = 0.2. The background of dots indicate the attractor of the system. The states marked with a circle
are the selected true states x; those marked with plus signs are selected from H(x) so as to indicate the extent of the set that contains at least
95% of the measure. See text for details on how the sets were calculated.

Fig. 2 shows finite samples of the setsH(x) calculated for nine states x (marked with circles) of the Ikeda map (10),
where the measurement error is Gaussian with a standard deviation σ = 0.2 — see next paragraph for a discussion
of how the approximations were done. Observe that each of these approximations of H(x) lie along the attractor,
which is typically parallel to the unstable sets. Fig. 3 shows a close up of H(0.264,−0.335) and the associated

Fig. 3. Panel (a) is a close up of H(0.264,−0.335) from Fig. 2 with the true state marked with a circle, and panel (b) the associated probability
Q(y|(0.264,−0.335)) as a function of distance measured along the set H(0.264,−0.335), where the positive direction is going up (increasing)
from the true state (0.264,−0.335). The next two peaks of the density have local maximums on the order of 10−6 and 10−8. See text for details
on how the set and the density were calculated.
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probability Q(y|(0.264,−0.335)) as a function of distance measured along the set from (0.264,−0.335). Observe
that this set folds back upon itself and that the probability density is bimodal with asymmetric (skewed) peaks; in
fact more than half of the setsH(x) shown in Fig. 2 fold back like this and it appears to be typical behavior from this
map. Note that the multi-modality occurs because there are trajectories shadowing the true trajectory which move
away a short distance but are then brought back into the neighborhood of the true state; the return of trajectories
like this is implied by the fold in the unstable set in which H(x) lies. States that result from such trajectories
have a high probability of being indistinguishable from the true state, because only a small number of fortuitously
arranged measurement errors are needed. Note that for unbounded measurement error every close return to x of the
unstable set U(x) will produce a local maximum of the Q(y|x) density, however, most of these close returns occur
after the trajectory has made a series of deviations (on the length scale of the attractor) and will have a relatively
small probability, i.e., the local maximum is small. For example, the next two peaks of the density beyond those
shown in Fig. 3 have maximums on the order of 10−6 and 10−8. Clearly, a significant fraction of H(x) has been
identified.

The sets H(x) and the associated probabilities Q(y|x) shown in Figs. 2 and 3 were calculated from a trajectory
segment xt , t = −p, . . . , 0, where the final state x0 = x is the state for which H(x) is desired. The initial point of
this trajectory segment x−p is perturbed and calling this perturbed point y−p, the trajectory yt , t = −p, . . . , 0, is
calculated and

Qp(y|x) =
∏

−p≤t≤0

q(yt − xt ). (11)

Clearly, limp→∞Qp(y|x) = Q(y|x), and for the Ikeda map calculations of Figs. 2 and 3 it was found that
convergence was complete to several decimal places when p = 32. The extent of the set H(x) was estimated
by taking many perturbations of x−p (in our calculations the perturbations formed an exponential spiral about x,
but Guassian or bounded uniform perturbation of suitably chosen variance will work) until it was estimated that
at least 95% of the Q measure of the set H(x) had been indicated. If the size of the perturbation is too large
most of the Q values are too small; if the size of the perturbations are too small H(x) will not be covered. The
size of the perturbation may, in some situations, be estimated using the largest Lyapunov exponent in the obvious
manner.

The above method of samplingH(x)will only give the approximate location ofH(x). Strictly speaking,Qp(y|x)
will only converge for y ∈ H(x), however, any state selected by the perturbation method we have described is almost
certainly not in H(x); in the Ikeda example H(x) is a one-dimensional set but our candidate states are selected in
two dimensions. If p is sufficiently large, then the distance of selections from H(x) is insignificant compared to the
separation between adjacent states of the finite sample.

2.3. Generalizations

The above analysis can be generalized in number of ways. Take the case of partial observation. Let G : K → Rk

be a continuous observer function, so that, st = G(xt ) + εt . Then the indistinguishable states H(x) are those y
such that

∑
t≤0h(G(yt )−G(xt )) < ∞. Clearly, this set must include those states that are indistinguishable in the

completely observable state case, but typically each of these points is broadened into a co-dimension k subset of
K. A question of current interest in meteorology is to ask which k measurements should be made; the observations
may also be adaptive, i.e., the selected components vary at each time step [10].

Many other generalizations within the prefect model scenario are straight forward, e.g., extension to ordinary
differential equations, time- and state-dependent measurement error, etc. In a subsequent paper [15] we extend the
theory of indistinguishable states to an imperfect model scenario.
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3. Finding and forecasting with ensembles

Theorem 1 implies that the state of the system cannot be determined whenH(x) is non-trivial; internal consistency
requires forecasts to take this uncertainty into account. Note that the maximum likelihood estimate of the state is
of no special value, since its future behavior can be quite different from the true state. Consequently, one is forced
either to find and evolve the density of indistinguishable states, or else approximate this distribution with a finite
ensemble of states. We will consider only the construction of an ensemble. The method we suggest proceeds in
two stages: first a maximum likelihood estimate of the true state is obtained, then, second, an ensemble is formed
from a selection of states from the indistinguishable set of the maximum likelihood state. The maximum likelihood
estimate of the true state could be obtained by variational methods as described in Section 1 (see Eq.(1)). As already
mentioned variational approaches have short comings, such as multiple minima. We present now a new method
of state estimation that avoids some of the drawbacks of variational approaches and is better suited to our goal of
constructing an ensemble.

3.1. A new state estimation method

The principle idea of our new method is to take observations st of a trajectory and to relax these onto a near-by
trajectory, without initially making any special effort to find the maximum likelihood trajectory.

Let K ⊆ Rd (compact) be the state space and f : K → K (differentiable) be a perfect model of a discrete-time
system. For any trajectory xt ∈ K, we have xt+1 = f (xt ). If st are noisy observations of an unknown trajectory,
then there exist δt such that

st+1 − δt+1 − f (st − δt ) = 0. (12)

For a time series of observations st , t = 1, . . . , p+1 these are a set of equations in unknowns δ = (δ1, . . . , δp+1) ∈
R(p+1)d , i.e., here are (p+1)×d parameters δ. There are only p×d equations, however, so the system of equations
is under determined. 5 One could specify in advance δp+1, in which case the solution will be a trajectory that passes
through the final state sp+1 − δp+1, but this is not helpful given our interests.

For a finite segment of noisy observations, st , t = 1, . . . , p + 1, define

et = st+1 − δt+1 − f (st − δt ), (13)

and

L(δ) = 1

2

p∑
t=1

eT
t et . (14)

One could attempt to find a solution to the system of Eq. (12) by solving the minimization problem

min
δ
L(δ). (15)

Note that using the sum of squares assumes nothing about the distribution of the errors δt , it is simply a device to
obtain a solution.

Theorem 2. L(δ) has no local minima other than where L(δ) = 0. In particular, if Df(x) is of full rank for all
x ∈ K, i.e., if f is invertible, then L(δ) has no critical points other than on the subspace (see footnote 5) where
L(δ) = 0.

5 Indeed in δ-space R(p+1)d there is a d-dimensional subspace with each point corresponding to a trajectory, it is parametrized by δ1. If f is
invertible, this is an embedding of K in δ-space.
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Proof. Differentiating L(δ) we have,

∂L

∂δt
=



eT

1 Df(s1 − δ1), t = 1,

−eT
t−1 + eT

t Df(st − δt ), 1 < t ≤ p,

−eT
p, t = p + 1.

(16)

The critical points occur where ∂L/∂δt = 0 for each t . The t = p+1 equation is zero iff ep = 0. Back-substitution
of ep into the t = p equation shows that ep = 0, and continued back-substitution shows et = 0 for all 0 ≤ t ≤ p.
Hence, ∂L/∂δt = 0 for each t iff L(δ) = 0, and so L(δ) has no critical points other than where L(δ) = 0. �

Theorem 2 implies that the minimization of L(δ) can be solved by local gradient descent, e.g.,

δ̇ = −∂L

∂δ
δ

for any initial condition when Df(x) is of full rank, and almost all initial conditions otherwise. We have success-
fully used a stiff integrator [26], Powell’s method [24], and stochastic descent [2]. We find that simplex descent
[22] and (branch and bound) global optimizations [12,14], do not work well, however, and may wander to a so-
lution L(δ) = 0 that is not near the observed time series. Convergence results are discussed in detail in the next
section.

One might argue that our new method for estimating the state (by finding a near-by trajectory by gradient de-
scent of L(δ)) has no great advantage over a variational approach. That is, one may argue that the problem of
multiple minima of the variational approach [1,23] has been replaced by an infinite subspace of solutions given by
L(δ) = 0. Although this is true, our counter argument is that because the true state is unknowable (it is indistin-
guishable from many others) it is better to have a method that guarantees a solution that is suitable for constructing
ensemble estimates of the state (as we will show), than use a variational approach that cannot guarantee such an
outcome.

3.2. Properties of gradient descent solutions

In this section, the trajectories obtained by minimizing L(δ) by gradient descent are shown to have useful
properties for ensemble forecasting. Define the stable set S(x) of x in the analogous way to the unstable set U(x)
in Eq. (9):

S(x) =
{
y ∈ K : lim

τ→∞ sup
t≤τ

‖yt − xt‖ = 0

}
. (17)

We propose the following dictum. 6

Dictum 1. Let S(x1) ⊆ K and U(xp+1) ⊆ K be the stable and unstable sets of the end-points of a segment of
trajectory. Then the trajectory obtained by the minimization of L(δ) by gradient descent given noisy observations
along this segment will have end-points that are close to S(x1) and U(xp+1).

6 A dictum is a formal statement of opinion; while it is true for typical behavior of typical systems, counter examples can be constructed.
Typically, a dictum can be turned into a theorem by adding sufficiently many restrictions (in the present case: hyperbolicity, that the trajectory
be a typical trajectory of the attractor (Gibbs state), and so on). Turning the dictum into a theorem at present, however, does not seem warranted
since doing so provides little illumination of general behavior. What is of interest here is not the narrowly true case but the useful observation.
On the other hand, we anticipate publishing a theorem [25] (see also [33]).
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Justification. L(δ) = 0 implies that x̂t = st − δt is a trajectory of the system defined by f . This trajectory need
not be the same as the true trajectory xt . Let x̂t = xt + ηt , i.e., ηt is the deviation of x̂t from the true trajectory.
Substituting for st − δt = x̂ = xt − ηt in Eq. (13) gives

et = xt+1 + ηt+1 − f (xt + ηt ). (18)

Assuming that the ηt are small relative to the nonlinearity of f implies that

et = xt+1 + ηt+1 − f (xt )− Atηt + O(η)2 (19)

= ηt+1 − Atηt + O(η)2, (20)

where At = Df(xt ). But L(δ) = 0 implies et = 0 and so the above implies ηt+1 = Atηt + O(η)2, from which we
obtain

ηt = At−1At−2 · · ·A1η1 + O(η)2. (21)

If f is invertible, then the At are invertible too, and so we also obtain

ηt = A−1
t A−1

t+1 · · ·A−1
p ηp+1 + O(η)2. (22)

If f also happens to define a hyperbolic system, then there is a splitting of At into stable and unstable blocks.
Eqs. (21) and (22) imply that (relative to other ηt ) η1 aligns with the stable set S(x1) and ηp+1 aligns with the
unstable set U(xp+1).

Of course, the situation is somewhat more complex than this because the orientations of the stable and unstable
eigenspaces generally do not always align with those of the following period except in hyperbolic systems. Fur-
thermore, solving L(δ) = 0 by gradient descent would also seem to require Df(st − δt ) ≈ Df(xt ) at each stage of
the gradient descent. It will be seen later that in practice it seems the method generally works even when neither of
these conditions are met.

The behavior described in Dictum 1 has been observed in other nonlinear noise reduction techniques [7,9].
Fig. 4 indicates maximum likelihood estimates of the end-points of trajectory segments resulting from gradient

descent of L(δ) for nine noisy observations for various states of the Ikeda map. The algorithm for finding maximum
likelihood estimates is a modification of the algorithm just discussed and is described in the next section. For the
Ikeda map the differences between the maximum likelihood estimates, and the estimates obtained with the algorithm
just discussed are almost indistinguishable on the scale of the figure.

These results displayed in Fig. 4 also support the dictum, because the states obtained appear to lie close to the
stable and unstable sets. It is worth noticing that the estimates for the first point (plus signs) are not as close to the
stable set as the estimates of the last point (crosses) are to the unstable set. This can be attributed entirely to not
having followed the gradient descent long enough to attain the final L(δ) = 0 condition; this point is taken up in
the discussion of Fig. 5 to follow. That there is slower convergence in the stable direction can be understood as a
consequence of the magnitude of the stable and unstable Lyapunov exponents (see justification of Dictum 1).

Note that in Fig. 4 the estimated final state (plus signs) reflect the distribution on H(x) according to the measure
induced by probability of indistinguishablity Q; when compared with Fig. 2 there is good agreement with the
location of H(x) for each state.

Fig. 5 shows the evolution of δ during a gradient descent minimization using a stiff integration routine for
one of the worst cases in Fig. 4. In this case the stable component has not fully converged. At the 80th con-
trol point, nominal integration time ≈ 102, all the δ are close to their final values, but when the descent was
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Fig. 4. Maximum likelihood state estimation is illustrated here by the Ikeda map [13]. The observation error was Gaussian of mean 0 and standard
deviation 0.2, about a one tick interval. The background of dots indicate the attractor of the system, and the squares (sometimes obscured) the
states chosen to illustrate method. For each chosen state we consider what happens when it is the first or the last state of the trajectory segment
of nine points; 30 separate observations of the trajectory segment in each case. The crosses indicate the estimated state when the first state and
the plus signs the last state of the trajectory segment. See text for a detailed discussion of these results, but note that the plus signs spread out
along the unstable sets of the true states and should be distributed on the set of indistinguishable states according the measure induced by Q;
compare this figure with Fig. 2 which uses the same selection of states.

Fig. 5. Evolution of deltas in a gradient descent minimization for the uppermost point of Fig. 4. The nine point trajectory segment gives a total
of 18 deltas. The gradient descent was performed with the ode15s stiff integration routine [26] of Matlab. In panel (a) the deltas are plotted
as a function of the integration control points, which are not uniformly spaced in time. The equivalent nominal integration time of these control
points are shown in panel (b); note this is base-10 logarithm time. In this example the stable component is only around 90–95% converged at
the termination of the descent; the example chosen is a worst case, typically convergence is faster than illustrated.
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terminated after a nominal time of 105, some δ components are clearly still changing. A more detailed anal-
ysis of choices of trajectory segment length, descent time and accuracy remains to be done. In comparison
Powell’s minimization algorithm [24], or modifications of it, may be faster. We have obtained more accurate
and consistent results with a stiff integrator, but this may be because the stopping criteria for Powell’s method
have not been optimized. Similarly, stochastic minimization gives good low accuracy results over similar com-
putation times; obtaining higher accuracy results would most likely require introducing an cooling schedule
[20].

3.3. Maximum likelihood trajectories

The trajectories obtained by gradient descent minimization are not maximum likelihood estimates of the true
trajectory, but this short coming is easily corrected as we will now show. Finding the maximum likelihood trajectories
when the measurement error is Gaussian is equivalent to finding δ that minimize δTδ subject to the constraintL(δ) =
0, or as it is more usually implemented, subject to the constraints et = 0 for t = 1, . . . , p. One could attempt to
solve this nonlinear optimization problem (with nonlinear constraints) using standard Lagrangian, penalty function,
boundary function, or interior point methods. Good general purpose software for this purpose is not widely available,
and the few that we have access to, and have tried, have not performed as well as the simple, easily implemented
method we describe below. (The general purpose algorithms often fail to converge or do so very slowly.) However,
we have evidence that a purpose designed nonlinear optimizer that exploits structures of the problem is as accurate
as gradient descent but faster and more efficient in terms of function evaluations, and consequently might be the
best option for large scale problems [17].

Finding the maximum likelihood trajectories when the measurement error is Gaussian is equivalent to finding δ
such that L(δ) = 0 and δTδ is as small as possible. One might be tempted to solve

min
δ
L(δ)+ aδTδ, (23)

where a > 0, i.e., to attempt to simultaneously minimize L(δ), as in (15), and δTδ. This is not advised, be-
cause the minimum may occur where L(δ) �= 0, i.e., the solution is not a trajectory. One can, however, ob-
tain a maximum likelihood trajectory to any required accuracy, either by alternately solving by gradient descent
minδ L(δ) and minδ L(δ) + aδTδ, with a small, using the final δ of one minimization as the initial condition of
the next, or by sequentially solving minδ L(δ)+ anδ

Tδ with an → 0. For a general error density ρ(δ), one should
solve

min
δ
L(δ)− a

∑
log(ρ(δ)).

The maximum likelihood states shown in Fig. 4 were estimated by minimization of (23) with a = 10−4 followed
by minimization of L(δ).

Fig. 6 shows relative RMS differences between maximum likelihood estimates and a true trajectory; the RMS
error is relative to the measurement error, which is Gaussian with standard deviation σ = 0.2. Contrasting the results
for various segment lengths p reveals that the RMS errors at time step 0 appear to have largely converged by p ≥ 6.
The asymptotic RMS error is some 50% of the noise σ , bearing in mind this variance is theoretically restricted to
the one-dimensional unstable set, which is seen to have been roughly attained from Fig. 4. This outcome is better
than what has previously been proposed as the best possible noise reduction [23]. The addition reduction may result
because the previous cited calculation were based on local linearization estimates, whereas our results are based
a fully nonlinear theory, i.e., nonlinearity of the system can provide addition information about trajectories that is
exploited in the noise reduction.
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Fig. 6. The relative root mean square differences between maximum likelihood estimates of observed trajectories and a true trajectory; the RMS
error is relative to the measurement error, which is Gaussian with standard deviation σ = 0.2. The true trajectory used here terminates near
(0.5, 0.5) and is shown in Fig. 4. This graph plots the RMS difference for each point along the trajectory segment (t = −p being the start and
t = 0 the final point) and was obtained for segments with p = 1, 2, 3, 4, 6, 16 with a sample of 60 observations of each segment.

3.4. Ensembles of indistinguishable states

We are now in a position to suggest how to draw a sample from the distribution of indistinguishable states to
form an ensemble. This is relevant to forecasting: given an ensemble of indistinguishable states and their relative
likelihood Q, we can maintain the uncertainty inherent in our observation in our forecast.

Recall that our proposed method of obtaining an ensemble is to first obtain a maximum likelihood estimate x̂
of the true state x and then select ensemble members from the indistinguishable set of the maximum likelihood
estimate H(x̂). We desire that the ensemble constructed in this way “capture” truth, i.e., we require that there is a
good chance that x ∈ H(x̂). Now, there is an essential symmetry that x ∈ H(x̂) iff x̂ ∈ H(x), and so the following
dictum provides a justification that x ∈ H(x̂).

Dictum 2. Let st , t = 0,−1,−2, . . . , be an observation of the trajectory of x with errors εt = st − xt having
density ρ with mean zero and ρ(ε) a decreasing function of ‖ε‖. Let Ψp(s) = Ψp(s−p, . . . , s0) map the last p
observations to the maximum likelihood final state given these observations. Then

lim
p→∞Ψp(s) ∈ H(x)

with probability one.

Justification. Referring back to the justification of Dictum 1, we have that xt + ηt = st − δt . Using Eqs. (21) and
(22), with slightly different indexing, gives
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δt = st − xt + At−1At−2 · · ·A−pη−p + O(η)2, (24)

or

δt = st − xt + A−1
t A−1

t+1 · · ·A−1
1 η0 + O(η)2. (25)

These imply that each δt is composed of two parts: the actual observation error εt = st − xt , and the deviation from
truth (indistiguishablity component) parameterized by η−p or η0. These two components are not independent, but
to a first approximation the minimization of, e.g., δTδ involves a fixed residual εTε and a term involving η−p or η0,
ignoring the mixed-product terms. Clearly, the term involving η−p or η0 attains its minimum where η−p is aligned
with S(x−p) and η0 is aligned with U(x0) for large p. This assumes hyperbolicity. Of course, the δt are determined
by the realization of the noise εt in a complex way, however, if the noise has zero mean, then δt has expected value
equal to ηt as given by Eqs. (21) and (22).

We propose two methods of selecting states from the indistinguishable set H(x) to form an ensemble: (i) renois-
ing the maximum likelihood trajectory estimate, and (ii) perturbation of an initial state, similar to that used for
Fig. 3.

Given that the error density ρ is known, one can obtain an ensemble approximation of the density of indistinguish-
able states inH(x) by renoising a maximum likelihood estimate of the trajectory. Given a time series of observations
s, obtain the maximum likelihood estimate y = Ψp(s), where p should be large enough that variations of s−p,
and hence y−p, do not significantly effect y0, i.e., y−p and y0 are largely independent as far as Ψ is concerned.
Generate simulated observations S (surrogates) from y by adding ρ-random-variates to y, and for each of these
obtain Y = Ψp(S); the Y and initial y form the ensemble. The ensemble so produced is a selection from H(y)

by the probability measure induced by Q, in the limit of p → ∞. (Note that one could alternatively renoise the
observations s, instead of renoising y, which adds a certain amount of bias.)

The alternative method (which is likely to be more efficient) is to use a method similar to that used in Fig. 2 to
calculate H(x) and Q(y|x). That is, one takes a segment of the maximum likelihood trajectory, yt , t = −p, . . . , 0
and generates a perturbation z−p of the initial point y−p in order to calculate the probability Qp(z|y). The states
z = z0 and probabilitiesQp(z|y) form a weighted ensemble. There may be some benefit in perturbing a state that is
not the initial state of the maximum likelihood trajectory, but rather a little way from the beginning of the trajectory
segment where the uncertainty in both the stable and unstable direction is less, but we have not yet pursued this in
detail.

Note that by making the ensemble large enough it will straddle the true state x. When Dictum 2 holds, the
maximum likelihood estimate of the state y lies in H(x) and by symmetry x ∈ H(y). As the ensemble size is
increased there will be states in the ensemble that approximate x arbitrarily closely. For a more detailed discussion
of how large an ensemble should be see [16].

4. Conclusion

In this paper, we have demonstrated for typical dynamical systems, in particular, any system displaying sensitivity
to initial conditions, that it is not possible to determine the state of the system when there is measurement error,
even when given arbitrary amounts of historical observation and a perfect model. This is contrary to what one might
have guessed, i.e., this is unlike many statistics (like means and variances) that converge to the true value as more
and more data is collected. Instead we have shown there is a set of states that are indistinguishable from the true
state given the observations; there is a probability distribution on the indistinguishable states.
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Indistinguishable states imply that a probabilistic approach to forecasting is required even with perfect models
of deterministic systems. We have considered an ensemble forecasting approach, and described a new method of
ensemble construction that first obtains the maximum likelihood estimate of the true state, and then determines
states which are indistinguishable from this maximum likelihood state along with their relative probability. Our
new approach to estimating the maximum likelihood state has advantages over variational approaches. Ensemble
forecasting has been operational at both American and European weather centers for sometime [21,30]; it follows
from our results that this approach is required in nonlinear noise reduction, in prediction, and in forecast evaluation
of lower-dimensional dynamical systems as well.
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