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Abstract

Deterministic chaos is widely thought to place the ulti-
mate limit on our ability to forecast. While chaos cer-
tainly limits our ability to predict precise outcomes in the
perfect model experiments of which theorists are most
fond, this paper explores the role of uncertainty in real
physical systems: a simple nonlinear circuit, the weather
next week, and the Earth’s climate system. Here model
error, not uncertain observations, may pose the more
fundamental limit to prediction; this is true whether one
prefers stochastic or deterministic models. A crucial dif-
ference between the circuit and the atmosphere is one of
time scales: the duration over which we can observe the
circuit seems long in terms of all of its natural periods,
never-the-less it is error in our model(s) that prevents
reliable forecasts. How should we model physical sys-
tems on time scales over which we know our models are
flawed? How might we predict the weather, climate and
nonlinear circuits in 21007 Will we have deployed ‘im-
proved techniques’? Or will we have altered our aims in
understanding and predicting nonlinear systems?

Laws, where they do apply, hold only ceteris paribus.
Nancy Cartwright

1.0 Predicting Chaos

It is commonly held that if we understand a phenomena,
then we should be able to predict what will happen in
a given set of circumstances. Interestingly, prediction is
often a priority in just those cases where we are unable
to know, much less set, the circumstances; what confi-
dence can we have in our models then? Or under new
circumstances, noting that, given our limited experience,
the current circumstances may not appear new.

This paper aims to discuss the roles uncertainty plays in
models of reality. We will identify several distinct effects

and claim that similar roles arise when modeling any
physical system, be it as simple as an electric circuit or
as complicated as the Earth’s atmosphere-ocean system.
The fundamental question of interest here is to ask what
limits our understanding of a given system? And how
should we distribute limited resources to best improve
our understanding. Are our Laws consistent with our
observations in the particular circumstances of interest?
Or in terms of predictability: are our limits set by not
knowing where to start (that is, an uncertain initial con-
dition), problems in our Laws of physics (model error),
a lack of computational power (approximation error), or
do they lie elsewhere? After a brief introduction to mod-
eling, these questions will be addressed and the ideas of
tracking our uncertainty via ensemble forecasting illus-
trated. We speculate that even given vast increases in
computational power, observational accuracy, and much
longer periods of observation, both uncertainty and er-
ror will play major roles in forecasting physical systems
in 2100. This suggests we alter our aims when modeling
physical systems [1].

2.0 State Space Models

Faced with a real physical system, physicists tend to
write down ‘first principles’ models by noting the rel-
evant physical quantities that describe the state of the
system, and then employing the laws of physics to quan-
tify how a given initial state will change with time. The
evolution of the entire system is then represented by
a trajectory in this model-state space. The true state
space, if such a thing exists, is almost certainly inacces-
sible since it contains, among other things, us. The fact
that the model-state space and the true state space differ
is a crucial point if we are interested in studying physi-
cal systems in addition to models: at best, states in our
model-state space will correspond to projections from the
true state space. Physical systems are often fairly well
modeled in the regions of state space over which they
have been observed, in part because we can keep adding
variables to the model-state space until this is the case.



Extrapolating into the unknown is risky, unless we are in
the rosy scenario where no new regions of state space are
encountered. Just as Newton’s Laws predicted Neptune,
they predicted Vulcan; both of these expected planets
were observed for decades, although only Neptune is seen
today.

Figure 1A is a voltage trace recorded from a nonlinear
circuit [2]. Applying Kirchhoff’s Laws yields a model for
this system: a third order ordinary differential equation
which is deterministic and chaotic [3]. By chaotic, we
mean that small uncertainties in the initial state of the
model grow exponentially fast, on average. If our model
were perfect, any uncertainty in the current state might
quickly grow to ruin a forecast. Of course it might not:
exponential on average doesn’t imply fast everywhere.
Chaos doesn’t even imply that uncertainty always in-
creases with time, only that it will grow when averaged
over long enough times; often every initial uncertainty
will shrink over finite times even in paradigm systems
like the 1963 Lorenz system [4]. Determining how fast
the uncertainty in each individual forecast is likely to
grow (or shrink) is the aim of ensemble forecasting [5, 6].

Since we do not know the present exactly, it would be
foolhardy to expect to know the the future exactly. The
idea behind ensemble forecasting is to propagate our un-
certainty in the initial condition forward in time, so that
we have a reasonable estimate of our uncertainty in a
forecast. This is illustrated in Figure 1B, where 32 dif-
ferent initial conditions are followed, all starting at the
same time (¢ = 0). Each starting point is consistent
with our observations. In this case two different mod-
els were employed with 16 different initial conditions for
each model. The trajectories of one model are marked
by a ‘4’, the other by a ‘x’. Note how they bracket
reality (the solid line) fairly well until time ~ 220 when
the entire ensemble of X’s make a transition to negative
voltages, while the other ensemble, and reality, remain
positive. We will return to the question of how to inter-
pret multi-model ensemble forecasts below.

While Kirchhoff’s Laws yield a model which is useful for
mathematical study, that model does not agree particu-
larly well with the observations. For this reason different
models built from the data itself are used below!. For the
aims of this paper, the origin of the model is irrelevant:
every model whether derived from so-called ‘first prin-
ciples’ or data-based will suffer from the shortcomings
noted below.

The evaluation of ensemble forecasts is a bit tricky: we
always forecast a distribution but verify with a single re-
alization. This is discussed in [1] and references therein.

IThese are radial basis function models in delay space as in [7];
more details can be found at [8] and references therein.

How can we know if we were right? In short, we cannot,
but there is an approach which allows us to falsify our
model. We can look at all the initial conditions consis-
tent with our initial uncertainty: if not even one of them
gives us a model trajectory which is consistent with the
observations (a shadow) then we know model error it to
blame. If our model cannot shadow the data in this way,
then there is no initial condition in the model-state space
which does the right thing. Over the time scales on which
the model can shadow, we can evaluate the ability of the
entire ensemble prediction system to produce probabil-
ity forecasts by contrasting predicted probabilities with
observed relative frequencies [5, 1]. Alternatively, if we
observe the system long enough that it comes back near
its original location in model-state space, then we can
say more.

3.0 Recurrence in (Model) State Space

When contrasting the circuit with systems like the at-
mosphere, we have one real advantage which is likely to
persist until the year 2100, and beyond. The circuit is re-
current in model-state space. The model defines a state
space and our observational accuracy defines a distance
in this space, effectively placing a sphere of initial con-
ditions all consistent with our ‘best guess’ state at each
point in time2. If the likely duration of observations is
long enough so that a trajectory returns close to itself
(to within the sphere about an observation made in the
distant past), then the system can be considered recur-
rent. While there are other ways to define recurrence,
this one will suffice here.

The recurrence time of the Earth’s atmosphere has been
estimated to be 103" years - as this is longer than the
lifetime of the planet (and just about everything else) we
are unlikely to observe a near return to a previous state of
the entire atmosphere. Of course, as our understanding
of the physics of the circuit grows, its model state space
may also grow until it too ceases to be recurrent in 2100.
At present, however, we observe very near returns to
previous model states. How does this help?

4.0 State Dependent, Systematic Error

A major complication of ensemble forecasting is that one
estimates a distribution of future states, each of which
is consistent with our current uncertainty, and then at-
tempts to verify this forecast with the single set of obser-
vations of what really happened. Since the starting point

20f course, a different radius may be defined for each different
confidence level, but that need not concern us here.



is different every day, each forecast distribution is also
different. We can never verify a single probability fore-
cast, although we can test for statistical consistency over
many ensemble-verification pairs [1]. But if we only look
for consistency between our model and reality at many
different locations in state space, how might we identify
local (state dependent) model error? systematic errors
which vary with location in state space? In general we
cannot. In a recurrent system, things are a bit easier
since near returns can be used to detect model error.

Figures 1C and 1D indicate how choosing to study a
recurrent system eases the identification of state depen-
dent model error. The dashed line connects a series of
15 step ahead forecasts, the solid line the corresponding
observations. The points scattered about these two lines
are not ensembles but the images (+) of observed near
returns and the forecast (x) based on that same near
return. In other words, the observations up to ¢t = 7810
are used to estimate the state of the system at ¢ = 7810,
the model is then used to make a forecast for 15 steps
later (that is, t = 7825), the process is then repeated
for t = 7811. And so on. The forecasts give rise to the
dashed line, while the solid line shows the true images 15
steps later. Next we scan the entire data set, looking for
other times at which the state of the system is near our
estimated state for ¢t = 7810; the 15 step ahead image
of each of these neighboring states is plotted as a (+)
at ¢ = 7825, while the model forecast for each of these
neighboring states is plotted as a (x), also at t = 7825.
Note how the spread of points changes with the initial
condition: the images look very predictable at ¢t ~ 7810,
but the same level of initial uncertainty yields a much
broader distribution near 7830. This is the hallmark of
chaos. But look more closely at the zoom of Figure 1D:
while the targets (+) are spread more widely indicating
sensitivity to the initial condition, the forecasts (x) are
as well. And the two tend to agree fairly closely. Con-
trast this situation with that near ¢ = 7827 where the
forecasts are systematically too low. We can see (and
correct) this local systematic error because the system
returns to this region of model-state space. In short,
how you go wrong depends on where you are at the mo-
ment, and if you never come back then it is hard to learn
from your mistakes.

In systems in which there is no principle of superposition
of solutions, assigning a single cause to a forecast error
is a dubious undertaking. Expecting to build a single
near-perfect model appears naive in the same way that
expecting to extract a single deterministic forecast from
an uncertain initial condition is naive. If the details of
the model matter, then the best we can hope for is to
sample the possible behaviors. In Figure 1B, the ensem-
bles under the two different models are quite similar up

until ¢ & 160, and both reflect the general behavior of the
system. By ¢ = 240 the two ensembles are quite different,
and in this case neither bounds the true value. By fore-
casting with the best erroneous models available, using
ensembles over both initial conditions and models offers
the chance to capture sensitivity in state space where
it is important, while exploiting differences between the
ensembles of each model to yield an indicator of model
error. We can then hope to determine whether initial
uncertainty or model error dominate a given forecast.

5.0 Operational Weather Forecasts

For many years now, operational weather centers have
performed ensemble forecasts employing a (few) dozen
starting points every day and following them out about
2 weeks into the future [6]. At present, it is unclear how
long the operational models can shadow [9, 10], nor is the
relative importance of model error and initial uncertainty
well understood [1, 11]. Even in a perfect model scenario,
with another century of accurate observations and the
computer resources of the year 2100, there will still be
ambiguity in the correct initial condition [12] and even
ambiguity in the ensemble. And if the initial probability
distribution is in error then the forecast probabilities will
be in error even if the model is perfect.

Study of the circuit clearly shows the importance of
addressing the issues of error and of uncertainty sepa-
rately. Employing initial perturbations larger than the
observational uncertainty in the hope of capturing ef-
fects of model error degrades forecasts where the model
was accurate while regions of systematic local error are
not much improved. A unified approach to using multi-
model ensembles provides an promising way forward [1],
especially if the development of the individual models
has been as isolated as possible (so that they share as
few common flaws as possible). Most other techniques,
including attempts to recalibrate probability forecasts,
are based on the assumption of some degree of recur-
rence in model-state space; it is not at all clear this can
be justified for weather forecasts. The situation is even
more clearcut when we consider climate.

Weather is often distinguished from climate in three
ways. First by the time-scales involved (days as op-
posed to centuries), second in the desired detail in fore-
cast (monthly mean values) and third by the nature of
the boundary conditions. Weather is usually concerned
with a ‘fixed’ system consisting of the atmosphere and
ocean, while climate studies often include the response
of this system to a change, like ‘suddenly’ doubling the
amount of CO5 in the atmosphere. While researchers in
weather forecasting have been arguing how to best bal-



ance resources between model complexity (e. g. higher
resolution) and quantifying uncertainty (e. g. larger en-
sembles), the climate community has striven primarily
for more complicated models over a detailed analysis of
the existing uncertainties in the current ‘best’ model.

Of course the aim of climate modeling may differ from
that of weather forecasting; a good climate forecast need
give only the big picture, not the details. Then again, a
good ensemble weather forecast will do exactly this by
giving the best picture (distribution) available while not
specifying details that cannot be determined at present.
Never-the-less, climate forecasts may aim at an even
broader picture, attempting only to get, say, an accu-
rate monthly average temperature. While it is not clear
that is can be done in a coupled nonlinear simulation
without getting the details accurately, it is clear that
one can define a credibility ratio,

At

Tave

Tered = (1)
where At is the smallest time step in the model and Taye
is the smallest duration over which a variable has to be
averaged before it compares favorably with observations.
Given only a single climate model run under a transient
forcing scenario, there are good reasons to argue that
Tave must be fairly large on statistical grounds. Most
of these reasons vanish, however, if an ensemble run is
made: consider 520 different climate model experiments,
each starting with an initial condition corresponding to
a different Monday from the 1950’s. Each one run un-
til Jan 2000. Where would the average temperature of
western Canada during January 1976 fall relative to the
corresponding distribution from the model runs? And if
the model distribution cannot capture (bound) reality in
this data, the observations used to construct the model,
what faith should we have that it can do so for parame-
ters at which the system has never been observed?

When extrapolating into the unknown, we wish both to
use the most reliable model available and to have an idea
of how reliable that model is for the extrapolation being
attempted, say a climate forecast over the next 100 years.
The argument against the ensemble experiment above is
that only a model 500 times simpler (faster) than our
best current model could be used. But what faith do we
have in our more complicated model? Other than the
fact that in 10 years time, this model will be condemned
as too simple to be worthy of serious study?

6.0 Uncertainty of the Second Kind

Lorenz distinguishes predictions of the first kind where
the time order of individual forecasts is important, from

those of the second kind where the goal is the distri-
bution of final time states of the system. To a large
extent, the two merge together when making ensemble
forecasts under a perfect model. In the year 2100, com-
puter power should allow huge ensembles of high resolu-
tion models, but as noted above quantifying uncertainty
of the first kind as an accurate probability distribution
may not have been achieved. Uncertainty of the second
kind considers not the uncertainty in the likely state of
the system, but the uncertainty in the likely distribution
of states, effectively our uncertainty in the climate of the
distant future. Model error provides a major source of
this uncertainty.

A ‘best shot’ climate model experiment must assume
that the trajectory is (a) realistic, and (b) representative,
and also that (c) the future is rosy. Ensemble climate
experiments relax point (a) and test (b), but do not mit-
igate (c). All climate experiments assume that the rosy
scenario holds: nothing horrible or unexpected happens.
Examples where the rosy scenario fails for the circuit
include a short-circuit due to an unseen ‘flaw’, or a the-
orist tripping over the equipment; in the Earth’s climate
system examples include a large perturbation (nuclear
winter), but also any unknown flaw in the model: we as-
sume that no important process, important interaction
or important external forcing has been left out.

Given a good physical model with only small uncertainty
in the parameters, and knowing the initial condition of
atmosphere and ocean for every Monday in the 1950’s,
what is the uncertainty in the distribution of climate
variables in the year 20007 What most contributes to
this uncertainty? Uncertainty in the the initial condi-
tions? in the parameters? in the boundary conditions?

Define a package as the collection of a particular model
structure, a particular set of parameterizations and a
fixed set of parameter values. For each package, run an
ensemble of initial conditions from 1950 to 2000. Each
package then has its own distribution: uncertainty of the
second kind is reflected in how much these distributions
differ. The two extreme options are (1) that they are
each rather peaked with little overlap or (2) that they
are rather similar. It seems we must aim for (2), our
competing model structures must be so good that the
details are irrelevant (within the rosy scenario). If the
details matter, we are sunk.

While anyone can download the circuit data from [8],
working with climate models is not feasible. Or is it?
Allen [13] has proposed distributing a climate model (one
package) and an initial condition to interested individ-
uals over the world wide web, allowing a single PC to
compute a single trajectory over the period 1950 to 2050.
Details (and a sign-up sheet) can be found at [14]. There



are questions of experimental design still to be resolved:
how should resources be distributed between sampling
different initial conditions and different packages? Some
trajectories are likely to become blatantly ‘unphysical’
before 2000, how much resource should go to quantify
this probability for a given package? How might one de-
tect a more subtle ‘unphysical’ trajectory in 2000-20507

Regardless of what we learn about the future, such an
experiment will teach us a great deal by contrasting the
distributions of the ensemble of models with the observed
climate over the past decades. It will make it possible to
see which variables (and credibility ratios) can be cap-
tured in the data used to construct the models, which is
surely a necessary (if not sufficient) condition for consid-
ering the same variable from a forecast.

It will undoubtedly be argued that the model(s) chosen
for such an experiment are too simple, that showing a
simple model fails for a particular variable does not imply
a newer bigger better model will fail. This argument is
as irrelevant as it is true. If model results are being
used as forecasts, and not only for pure research, then
they are incomplete without a reliable estimate of the
forecast uncertainty of every variable discussed; and in
pure research mode itself the question of predictability
is much more interesting than that of any one particular
forecast. Arguably, we are in need of a better baseline
for which variables and time scales are reliable in any
climate modeling scenario, establishing this for any good
model strengthens our confidence in its ‘newer bigger
better’ offspring. The Casino-21 experiment can provide
confidence in more complicated models, until such time
as the reliability of those models can be tested directly.

But these are short term arguments; by 2100 the out-
come will be known, at least in one realization. What
about climate forecasts made in 2100 for 22007 There
will still be uncertainty in our modeling, but assum-
ing that the available computer resources increase faster
than the complexity of the models, quantifying the un-
certainty in climate forecasts in 2100 will prove as com-
mon for state-of-the-art climate models then as it is for
operational weather models today.

Models, when they do apply, will only hold in certain
circumstances. Belief in extrapolation outside observed
circumstances is largely a question of faith: we cannot
know a priori if we are discovering Neptunes or Vulcans.
We may, however, be able to identify shortcomings of our
model even within the known circumstances and thereby
increase our understanding.
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