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Abstract

Singular Systems (or Singular Spectrum) Analysis, SSA, was originally proposed for noise
reduction in the analysis of experimental data and is now becoming widely used to identify
intermittent or modulated oscillations in geophysical and climatic time-series. Progress has been
hindered by a lack of effective statistical tests to discriminate between potential oscillations and
anything but the simplest form of noise, i.e., “white” (independent, identically distributed) noise,
in which power is independent of frequency. We show how the basic formalism of SSA provides a
natural test for modulated oscillations against an arbitrary “coloured noise” null-hypothesis. This
test, Monte Carlo SSA, is illustrated using synthetic data in three situations: (i) where we have
prior knowledge of the power-spectral characteristics of the noise, a situation expected in some
laboratory and engineering applications, or when the “noise” against which we are testing the
data consists of the output of an independently-specified model, such as a climate model;

(ii) where we are testing a simple hypothetical noise model, viz. that the data consists only of
white or coloured noise; and (iii) where we are testing a composite hypothetical noise model,
assuming some deterministic components have already been found in the data, such as a trend or
annual cycle, and we wish to establish whether the remainder may be attributed to noise. We
examine two historical temperature records and show that the strength of the evidence provided
by SSA for interannual and interdecadal climate oscillations in such data has been considerably
over-estimated. In contrast, multiple inter- and sub-annual oscillatory components are identified
in an extended Southern Oscillation Index at a high significance level. We explore a number of
variations on the Monte Carlo SSA algorithm, and note that it is readily applicable to multivariate
series, covering standard Empirical Orthogonal Functions (EOFs) and Multi-channel SSA.
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1 Background

Searching for evidence of predictability in observa-
tional time-series provides a starting point for many
geophysical investigations since predictability indicates
some degree of determinism in underlying system dy-
namics. In its simplest guise, this search consists
in looking for trends and periodic oscillations. Pre-
dictability may be very limited in any nonlinear system,
whether it is stochastically forced or purely determinis-
tic; any trend may vary over time, as may the phase and
amplitude of physical oscillations. Nonetheless, even
limited predictability may be highly informative, mak-
ing analysis techniques which allow the detection of in-
termittent trends or oscillations extremely valuable.

Singular Systems Analysis, SSA, is based on the idea
of sliding a window down a time-series and looking for
patterns which account for a high proportion of the
variance in the views of the series thus obtained. SSA
is closely related to the standard meteorological tech-
nique of Empirical Orthogonal Function (EOF) analysis
(Lorenz, 1956; Kutzbach, 1967; Jolliffe, 1986). Those
familiar with EOF analysis may think of single-channel
SSA is as follows: if M is the number of data-points in
the window at any given time, the (overlapping) views
of the scalar series form an M -variate vector series for
which we obtain a complete set of M orthonormal EOF's
in the usual manner.

SSA was introduced into the study of dynamical
systems by Broomhead & King, 1986a; Broomhead &
King, 1986b, (BK) and Broomhead & Jones, 1989, as a
method of visualising qualitative dynamics from noisy
experimental data. Fraedrich, 1986, and Fraedrich &
Ziehmann-Schlumbohm, 1994, observed that the algo-
rithm could be used to estimate the number of degrees
of freedom necessary to model the dynamics of an at-
tractor (and thus an indication of the attractor dimen-
sion) and applied it to the analysis of atmospheric and
palaeoclimatic time-series. Vautard & Ghil, 1989, (VQ)
also applied SSA to palaeoclimatic data, modifying the
technique to exploit the assumption of stationarity and
thereby increasing its noise-reduction power. VG em-
phasised the direct physical interpretation of the indi-
vidual EOFs obtained with SSA, introducing the idea
of searching for pairs of sinusoidal EOFs in quadrature
which were taken to indicate a physical oscillation®.
This latter application of SSA has since received consid-

1SSA, like other linear analysis techniques, can only identify
unstable periodic orbits in chaotic systems in those special cases
where the the unstable orbit is observed in such a manner that it
closely resembles one or a small number of sinusoidal oscillations.

erable attention, particularly in the analysis of climate
records including atmospheric angular momentum data
(Penland et al., 1991), the historical global tempera-
ture record (Ghil & Vautard, 1991; Elsner & Tsonis,
1991; Vautard et al., 1992; Schlesinger & Ramankutty,
1994; Allen & Smith, 1994), and the Southern Oscilla-
tion Index (SOI) (Rasmusson et al., 1990; Keppenne &
Ghil, 1992; Elsner & Tsonis, 1994a).

The generalisation of SSA to multi-channel data,
originally noted by BK, has been applied both to lab-
oratory data (Read, 1993) and meteorological records
(Keppenne & Ghil, 1993; Plaut & Vautard, 1994; Robert-
son et al., 1995). The multi-channel SSA algorithm
is mathematically identical to Extended EOF analy-
sis (Weare & Nastrom, 1982; Graham et al., 1987;
Preisendorfer, 1988; Latif & Graham, 1992) or a spe-
cial case of Combined Principle Component Analysis
(Kutzbach, 1967; Bretherton et al., 1992; Berkooz et al.,
1993). Many recent applications of multi-channel SSA
have also emphasised identifying pairs of EOFs which
characterise oscillations. Allen & Robertson, 1996, ap-
ply the basic test outlined here to the multi-channel
problem; for simplicity, we restrict our discussion to
the single-channel case.

A thorough exposition of single-channel SSA, em-
phasising its application to signal-detection problems
in general and the detection of oscillations in particu-
lar, is given in Vautard et al., 1992. Following the work
of Allen, 1992, this paper will focus on those aspects of
SSA which are relevant to the problem of distinguishing
signals from noise.

2 Motivation

Discriminating between “signal” and “noise” is a
crucial aspect of applied time series analysis. While
the meaning of these two terms varies with context,
there will always be a non-zero probability of incorrectly
identifying noise as a deterministic trend or oscillation,
given limited data. The acceptable probability of such
a “false positive” or “type-1 error” must be specified,
being the “nominal level” of any statistical test. If a
test is misapplied, or prior assumptions concerning the
properties of the noise are incorrect, then the true prob-
ability of a type-1 error, the “true level” of the test, may
differ substantially from its nominal level, invalidating
statements of statistical significance. This can lead, for
example, to implausibly large numbers of spectral peaks
being “detected” in limited data at very high nominal
levels of significance. For a test to be accurate, its true
level must be as close as possible to its nominal level. Tt



is also important to ensure that the null-hypothesis is
appropriate to the problem at hand, and not determined
solely by the analysis technique employed. These some-
times conflicting aims are reflected in two slightly dif-
ferent approaches to Monte Carlo hypothesis testing in
the analysis of nonlinear systems, jointly known as “the
method of surrogate data”: Theiler et al., 1992, empha-
sise that the null-hypothesis should be well-understood
while Smith, 1992, stresses that it must be physically
interesting. Clearly, the ultimate goal is to attain both.
This paper demonstrates how this goal can be achieved
for the case of employing SSA to detect oscillations.

To illustrate the importance of an appropriate null-
hypothesis in the context of geophysics, we consider the
example of temperature anomalies, 77(t), in a generic
dissipative system with a finite heat capacity (Hassel-
mann, 1976; Allen et al., 1994). If Q'(t)dt is the anoma-
lous heating or cooling due to external sources from
time ¢ to t + 0t, then

Q'(t)ot

T'(t +6t) = T'(t)e™ 7 + — (1)

where 7 is the temperature relaxation time, and c is the
heat capacity. If 7 and ¢ are both non-zero, T"(t) will be
positively autocorrelated in time (E(T"(¢)T"(t+6t)) > 0,
where £ is the expectation operator) unless Q'(t) is
strongly anti-correlated at lag dt, which is physically
implausible for most natural heat sources. Thus equa-
tion (1) is inconsistent with the hypothesis that 7"(¢) is
an independent, identically distributed (i.i.d.) random
variable (i.e., white noise), the null-hypothesis consid-
ered in early significance tests proposed for the detec-
tion of oscillations with SSA.

If we know, on physical grounds, that a system could
not appear to be white noise, then rejection of the white
noise null-hypothesis provides us with no new informa-
tion (Smith, 1992). In particular, it does not provide
evidence for physical oscillations. For example, suppose
Q'(t) is pure white noise (unlikely in most geophysical
systems but at least not physically impossible provided
ot is sufficiently large). The discrete form of equation
(1), scaled such that 6¢ = 1, then becomes the AR(1)
model, which is widely used in time-series analysis (see
Mardia et al., 1979, and references therein):

up — up = y(u—1 — uo) + azy, (2)

where ug is the process mean, v and « are process
parameters, and z; is a Gaussian, unit-variance white
noise. The output of an AR(1) process, or “AR(1)
noise”, supports no oscillations, although its power
spectrum is biased towards low-frequencies; hence the

common name “red noise”. Its autocorrelation func-
tion decays exponentially, with an e-folding time of
T = ﬁ A large class of geophysical processes pro-
duce output indistinguishable from noise of this type
(Ghil & Childress, 1987; Zweirs & von Storch, 1995),
so unlike white noise we can seldom reject the AR(1)
noise null-hypothesis a priori. To be useful in geophys-
ical applications, an analysis technique must consider
the AR(1) null-hypothesis; if it is limited to the white
noise null-hypothesis, it may falsely indicate large num-
bers of oscillations which are not significant if we allow
the noise to be red (introducing one additional param-
eter into the noise model).

Monte Carlo SSA, introduced in section 4, tests for
the presence of modulated oscillations against an arbi-
trary null-hypothesis. We describe in detail the appli-
cation to testing against AR(1) noise, but the general-
isation to higher-order AR and moving average (MA)
processes is straightforward. While this allows us to
avoid making null-hypotheses too simple, we should also
guard against making them too complicated, since we
clearly want to detect the presence of a genuine oscilla-
tion in the data. An AR process of order 2 or higher,
for example, can itself support oscillations, which com-
plicates the issue of what we learn by rejecting or fail-
ing to reject such a null-hypothesis. Since AR(1) noise
itself has no preferred frequencies, it is a suitable null-
hypothesis to test for oscillations.

The class of null-hypotheses is not restricted to lin-
ear stochastic processes. In climate research, for ex-
ample, we could use the output of a climate model as
our source of “noise”, in which case Monte Carlo SSA
ceases to be simply a method of detecting oscillations,
but a method of detecting modes of variability in the
observations which are inconsistent with the behaviour
of that model. Given the current state of climate model
development, however, it will generally be necessary to
model at least some of the variability in a dataset as a
stochastic residual term. If we are dealing with temper-
ature data, the AR(1) process is the simplest appropri-
ate model for these residuals.

Having decided on an AR(1) noise model, we then
have to determine the process parameters v and «a. Ide-
ally, we want to select those parameters which max-
imise the likelihood that we will fail to reject the null-
hypothesis: rejecting a particular AR(1) noise null-
hypothesis is uninteresting if we would have failed to
reject another AR(1) noise null-hypothesis with a dif-
ferent choice of parameters. Parameter-specification be-
comes complicated when we have already identified a
deterministic signal in the data (such as an annual cy-



cle) and are testing whether the residual is due to noise.
These issues are discussed in sections 4.3 and 4.4.

In section 5 we discuss some fundamental problems
with the use of a data-adaptive algorithm such as SSA
for signal detection, particularly when we are dealing
with short series. In section 5.2, we propose a revised
approach to SSA which has the fundamental advantage
for signal-detection applications that it brings the prob-
ability of a type-1 error closer to the nominal level of
the test than is possible with standard SSA.

Examples of geophysical applications are given in
section 6: we consider the detection of interannual
and interdecadal oscillations in the historical record
of global mean temperature (Folland et al., 1992) and
the Central England Temperature series (Manley, 1974;
Parker et al., 1991; Plaut et al., 1995), and the detec-
tion of inter- and sub-annual oscillations in an extended
Southern Oscillation Index (Jones, 1989).

3 Signals and noise in SSA

Like many techniques based on Singular Value De-
composition, SSA involves constructing a complete, or-
thonormal set of M vectors, or EOFs, onto which we
project a dataset. These EOFs define a coordinate
system in an M-dimensional state-space, and the pro-
jections of consecutive segments of the data onto the
EOFs (known as “EOF-coefficients” or “Principal Com-
ponents”) represent a distribution of points expressed
in these coordinates. If the data are noisy, all M di-
mensions will be required to describe this distribution
completely, regardless of the coordinate system. The
interesting aspects of its behaviour may, however, be
confined to motion on a relatively low-dimensional sub-
space of this M-dimensional space. For example, the
current state of a modulated oscillation may be de-
scribed by projections onto only two vectors, a sine
and a cosine with period identical to the oscillation,
provided the time scales of amplitude- and/or phase-
modulation are much longer than the window width.

For signal detection and reconstruction we wish to
identify those EOF's (state-space directions) which are
dominated by “signal”, and eliminate those which are
dominated by “noise”. In the analysis of non-linear
systems, it is important not to confuse the dimension-
ality of the linear subspace identified by standard (or
“global” — Broomhead et al., 1987) SSA, and the di-
mension of the underlying attractor, if any such attrac-
tor exists: a point made by BK and VG, and recently
re-emphasised by Palus & Dvotrdk, 1992. This arti-
cle focusses on the direct application of SSA to signal-

detection, and does not relate to any form of attractor
dimension calculation.

3.1 The SSA algorithm

We present the SSA algorithm in detail to clarify
the implications of various assumptions which lie be-
hind it. For simplicity, we will confine our discussion to
single-channel (univariate) SSA, although our remarks
concerning signals and noise apply equally to the multi-
channel case. We begin with a series d of length N,
di. i=1,n, generated by a process which we assume to
have zero mean. If we do not know the mean of the
generating process, we can “center” the data series by
removing its statistical mean, although this introduces
some parameter-estimation complications, discussed in
section 4.3. Throughout this article, the “process” gen-
erating d includes both the system under observation
and the measurement procedure used to observe it; the
series d represents all the available information. If we
have independent knowledge of, for example, dynamical
constraints and/or the properties of the noise, this in-
formation can and should be exploited in the analysis,
but for brevity, we address these issues elsewhere Allen
& Smith, 1996

We slide a window of width M down the series to
obtain an N’ x M *“trajectory matrix”, D, where the
i*® row of D corresponds to the it" “view” of d through
the window. The total number of such views, N', de-
pends on how the ends of the series are treated. Two
methods are widely used. (i) In the original algorithm
of BK, the window stops as soon as it reaches the begin-
ning or end of the data series, giving N' = N — M + 1
and D;; = diyj—1. (i) In the algorithm proposed by
VG, we may think of the window “sliding off the ends”
(Allen, 1992) giving N' = N + M — 1, and some ele-
ments missing in D. These require special treatment,
discussed below. The rows of D define N’ points on the
system’s trajectory in an M-dimensional state-space.

We define an M x M lag-covariance matrix:
Cp =1D'D. (3)

The normalisation constant 7 is chosen such that, if
the process is stationary, £(Ci;) ~ cji—;| = E(did;),
being the series’ lag-l auto-covariance. In the BK algo-
rithm, there are no elements missing in D, so calcula-
tion of Cp is straightforward, and n = N+M+1 In the
VG algorithm, we calculate DTD by summing over all
terms in which elements are defined in both D7 and D,
and divide by the number of terms in the sum, giving

il
Ciy =nn " dydyy sy, where = ~——7- Thus



the VG algorithm effectively assumes that the contri-
bution to Cp from data beyond the series end-points
may be estimated by the contributions to Cp from data
within the series, an assumption which is only justified
if the process which generated d is effectively station-
ary on the timescales spanned by the observations (to
understand “effective stationarity”, consider this exam-
ple: non-stationarity on very long geological timescales
would be irrelevant to the analysis of a 150-year temper-
ature record; non-stationarity due to century-timescale
changes in radiative forcing could, however, affect re-
sults).

Unless we specify otherwise, when we refer to a series’
lag-covariance matrix such as Cp, we mean the matrix
which we calculate explicitly from that N-point series,
using either the BK or VG algorithm. Our general re-
marks apply to both algorithms, although VG will be
used in the examples presented here. We will also refer
to the “expected lag-covariance matrix”, £(Cp), whose
elements are the expected values of the elements of Cp,
given the algorithm (BK or VG) used to compute it.
Both the BK and VG algorithms are biased, with the
degree of bias depending on the length of the series
available and the process under investigation, so that,
in general, neither version of £(Cp) is equal to the “pro-
cess lag-covariance matrix” (the matrix obtained from
an infinitely long realisation of the generating process).

VG arrive at their algorithm by a very different route.
They argue that setting C;; equal to the most efficient
and least biased estimator of the series covariance at
lag |i — j| gives the best possible estimate of the process
lag-covariance matrix. We present this sliding-window-
based interpretation to make the role of the stationarity
assumption transparent since there has been some de-
bate as to whether or not the VG algorithm is applica-
ble to non-stationary processes (Allen, 1992; Dettinger
et al., 1995). Vautard et al., 1992, remark that sta-
tionarity is still required in their original justification:
lag-covariances may diverge for any infinitely long non-
stationary series such that the process lag-covariance
matrix is undefined. Even if the process is stationary,
problems may still arise if d is too short to reflect that
stationarity and the estimated lag-covariances bear no
resemblance to their asymptotic values.

Applying the VG algorithm to observations of a
non-stationary process can introduce significant biases
in signal identification, reconstruction and prediction
(Allen, 1992). For example, a reconstruction of a lin-
ear trend based on the VG algorithm will be biased
towards the segment mean near the series endpoints. If
the trend is positive, therefore, the estimated value of

the trend at the end of the series will be systematically
lower than its true value. The estimated value of the
residual “stationary” component will be biased in the
opposite sense.?2 Consequently, any short-term predic-
tion of this stationary component will be subject to a
significant negative bias.

Provided such biases are understood, the VG algo-
rithm does provide significant additional noise reduc-
tion when applied to short series, making it often prefer-
able for geophysical applications. Bias/variance trade-
offs are common in statistical analysis: the VG esti-
mate of Cp is subject to more bias but less variance
than the BK estimate. By construction, it generates a
Toeplitz lag-covariance matrix, whose eigenvectors are
constrained to be either symmetric or anti-symmetric
about the mid-point of the window. This proves useful
for associating frequencies with EOFs.

Whichever method is used to compute Cp, the next
step in SSA is to diagonalise it and rank the eigenvalues
in decreasing order:

Ap =ELCpHEp, (4)

where Ap is diagonal, the k*"diagonal element being
the k' largest eigenvalue and the k' column of Ep
being the corresponding eigenvector or EOF. Following
standard practice, when we refer to a “high-ranked”
EOF, we mean one whose corresponding eigenvalue lies
early in the rank-order (i.e., larger than most). Inter-
preting the results of this step is where the assumptions
concerning noise in SSA play a crucial role.

First, consider the properties of Cp in a “pure de-
terministic signal” case where the system’s trajectory
is completely confined to an attractor embedded in an
m-~dimensional linear subspace of our M-dimensional
state-space. Here Cp is identical to the lag-covariance
matrix of the signal, Cg; it will have m non-zero eigen-
values, being the first m diagonal elements of Ap.
These are the m non-zero moments of inertia of the
attractor, and their corresponding eigenvectors, the
columns of Ep, are the attractor’s principal axes of in-
ertia. Thus, in the pure-signal case, the eigenvectors
of Cp with non-zero eigenvalues have a clear physical
meaning: they define the linear subspace in which the
attractor lies. As N increases, these EOFs will converge
to the true attractor principal axes, or “process” EOFs.

Second, consider a series contaminated with white
noise, €, where £(e;e;) = 028;5. The expected lag-

21t is for this reason that Vautard et al., 1992, consistently
observe a small positive trend towards the final points of their
“detrended” global temperature series.



covariance matrix of the noise is £(Cg) = 21, where
I is the rank-M identity matrix. Since signal and noise
are linearly independent, the expected lag-covariance
matrix of the data series is:

£(Cp) = £(Cs) + E(CR) = E£(Cs) + 2L (5)

Adding 0?1 to £(Cgs) simply increases all the eigenval-
ues of £(Cp) by o2 without altering the eigenvectors.
Thus, if the series consists only of signal and white
noise, the m highest-ranked EOFs of Cp still have a
clear physical meaning. In the long-series limit, they
converge onto the process EOFs of the signal, as be-
fore. If Cg has m non-zero eigenvalues, and m < M,
these will appear as m eigenvalues of Cp lying above a
flat “noise floor”. The standard practice of “truncating
the eigenspectrum”, retaining only the p highest-ranked
eigenvalues and EOFs, is an effective method of sepa-
rating signal from noise in this situation. If p > m, all
of the signal variance will project onto these p EOFs,
and only a fraction, p/M, of the noise variance, since
white noise projects equal variance onto all EOFs. Thus
the signal-to-noise (S/N) ratio in these EOFs will have
been enhanced by a factor of M/p. Estimation prob-
lems arise with short series, but even then, if we take
the average of Cp for a large number of short series,
it will converge to £(Cgs) + ¢?I. So even with a short
series, the highest-ranked EOF's of Cp are estimates of
physically meaningful entities.

Third, consider a series contaminated with coloured
noise: i.e., any noise process for which £(Cg) is not a
scalar multiple of I. Signal and noise are still linearly
independent, so £(Cp) = £(Cg) + £(Cr). Even in
the long-series limit, however, we can no longer expect
the high-ranked eigenvectors of Cp to approximate to
the eigenvectors of Cg except under very improbable
circumstances (such as when the signal and noise have
identical autocorrelation functions). If any component
of the noise is not white, the eigenvectors of Cp will
depend on Cg, Cr and the signal-to-noise ratio. We
stress this point because a number of signal-detection
algorithms rely on truncation of the eigenspectrum to
separate signal from noise and make direct use of the
shape of the individual EOF's of Cp to identify oscilla-
tions. This is incorrect if any component of the noise
may be red.

The generalisation of these points to multivariate ob-
servations is straightforward. For example, in conven-
tional EOF analysis of a dataset consisting of L “spa-
tial” channels each of length N, with L > N, we effec-
tively obtain the principal components (PCs) by diag-
onalising an estimated temporal lag-covariance matrix,

Cp, exactly as in SSA. The difference is only that Cp
is now of rank NV, and is estimated by summing over
the spatial channels, rather than summing over “views”
through a sliding window. The correspondence is even
closer in the case of extended-EOFs, or multi-channel
SSA. The PCs obtained from multi-channel SSA with
a window width of M, with L x M > N — M + 1,
are the eigenvectors of a covariance matrix, Cp, of
rank N — M + 1. Cp is exactly equivalent to the co-
variance matrix which we would obtain by performing
single-channel SSA, with a window-width of N — M 41,
on each spatial channel individually and averaging the
results (Allen & Robertson, 1996). If L > N, the
highest-ranked PCs of a pure noise process which is
AR(1) in time, like the EOFs of single-channel SSA,
will have a well-defined sinusoidal appearance that will
not vary appreciably between realisations (Bretherton
et al., 1992). In both conventional EOF analysis and
multi-channel SSA, therefore, temporal autocorrelation
in the noise can render eigenvalue rank-order meaning-
less as a significance criterion, and lead to principal
components that are entirely due to noise masquerading
as high-variance, low-frequency oscillations. Improved
methods of discriminating between signals and noise in
multi-channel problems are urgently required. Allen &
Robertson, 1996, represents an initial step in this direc-
tion, and further work is in progress.

3.2 Problems with the interpretation of SSA

There is a growing body of literature making use of
SSA which, for reasons given below, takes the occur-
rence of a pair of sinusoidal EOFs with high-ranked
eigenvalues as prima facie evidence of a physically
meaningful oscillation. The preceding section shows
that this is unjustified. First, position in the eigen-
value rank-order is only effective in separating signals
from pure white noise, which is seldom encountered in
geophysics. If the noise is red, rank-order is unreliable.
Second, for anything other than white noise contamina-
tion, EOF-shapes depend as much on the properties of
the noise as they depend on the properties of the sig-
nal, so searching for sine-cosine EOF pairs may also be
misleading.

The assumption that significance decreases with po-
sition in the eigenvalue rank-order is widely used not
only in SSA but also in conventional EOF analysis and

numerous other techniques based on matrix-decomposition.

It is based on the assumption that variance (or power)
quantitatively reflects physical significance, which is
simply not true for systems contaminated with coloured
noise, nor for nonlinear systems in general. This point



has practical consequences for signal detection: Vautard
et al., 1992, propose a method of estimating the “statis-
tical dimension” of a dataset, v;,. They compute a fil-
tered reconstruction from only the lowest-ranked M —p
EOFs and assess whether the autocorrelation function
of this reconstruction is consistent with that of a white
noise process that is filtered similarly (the interested
reader may wish to consider the related arguments of
Theiler & Eubank, 1993; Smith, 1994). The smallest
value of p for which the white noise hypothesis cannot
be rejected is identified with vz, and EOFs 1 to vy are
taken to indicate signal. Applied to a pure AR(1) pro-
cess, the Vautard et al., 1992, test gives vy o M, with
the constant of proportionality dependent on the lag-1
autocorrelation of the noise: i.e., some of the noise is
consistently indicated as signal.

Direct generalisation of the vy algorithm to test
against red noise proved difficult ( Vautard, pers. com.)
primarily because, having established that a projection
of the data onto EOF's p+1 to M is inconsistent with the
null-hypothesis, the test does not indicate which EOFs
contribute most to the inconsistency. As demonstrated
below, we must routinely pick out “signal” EOFs whose
eigenvalues are ranked below those of other EOF's which
are attributable to red noise. Even when the noise is
white, eigenvalue rank-order is misleading when vari-
ance has been artificially suppressed at certain frequen-
cies through, for example, the removal of an annual cy-
cle. In this case, the lowest-ranked EOF's will be incon-
sistent with the null-hypothesis, as they will contain
anomalously low variance. Penland & Sardeshmukh,
1995, make a similar point concerning eigenvalue rank-
order noting that the highest-ranked complex eigenval-
ues obtained from Principal Oscillation Pattern (or Em-
pirical Normal Mode) analysis of equatorial Pacific sea-
surface temperatures (SSTs) are not the most statisti-
cally stable.

Various tests have been proposed (e.g. North et al.,
1982; Ghil & Mo, 1991) to assess the stability of an
eigenspectrum to sampling uncertainty. These should
not be confused with tests for identifying signals in
noise. Given sufficient data, the eigenspectrum of a
pure red noise process will be arbitrarily stable, so ev-
ery eigenvalue will appear “significantly” different from
its neighbours.

Interpreting the shapes of individual EOFs in SSA
is also problematic as a method of signal-identification.
VG, for example, note that a pure sinusoidal oscilla-
tion will give, in the long-series limit, a lag-covariance
matrix whose rows and columns consist of lagged si-
nusoids with the same period of the oscillation (recall

that the autocorrelation function of a sinusoid is itself
sinusoidal). This will have two non-zero eigenvalues,
whose associated EOFs make up a “sine-cosine pair”.
If we add white noise to the oscillation, this EOF-pair
appears (in the long-series limit) as two degenerate —
nearly equal — eigenvalues above an otherwise flat noise
floor. VG also note that an infinite realisation of pure
AR(1) noise will also give sinusoidal EOFs but they
appear alternately symmetric and anti-symmetric with
frequencies separated by 1/2M. This led to the pro-
posal of “pair selection criteria” to identify oscillatory
EOF-pairs against an AR(1) noise null-hypothesis. A
pair of EOF's were taken to indicate an oscillation when
their associated frequencies were separated by less than
0.75/2M and together they explained more than 2/374*
of the variance in the series at some intervening fre-
quency (Vautard et al., 1992).

In general, however, the eigenbasis of the sum of
two covariance matrices does not contain eigenvectors
which are the same as, or even similar to, the eigenvec-
tors of either of the two constituent matrices (recall the
axes-of-inertia analogy). Even in the long-series limit,
signals cannot be identified using EOF selection crite-
ria based on the expected properties of the pure-signal
and pure-noise EOFs. For example, Allen, 1992, shows
that the presence of a trend in the historical record of
global mean temperatures effectively forces the appear-
ance of an EOF-pair indicating an interdecadal oscilla-
tion, passing these pair-selection criteria. The eigenba-
sis of £(Cp) for a process consisting of a trend plus a
segment of AR(1) noise contains a pair of EOFs (nos.
3 and 4, immediately following the pair corresponding
to the trend) which, on the above criteria, indicate an
oscillation with period ~ 2M /3. For a 40-year window,
this corresponds to 26-27 years.

EOFs will only fail to form sine-cosine pairs in an
infinitely long segment of pure red noise. Any depar-
ture from this ideal situation can cause spurious pairs
to appear: through only a short series being available,
through the presence of a trend or through the inten-
tional suppression of an annual cycle.

A complementary problem with interpreting EOF
shapes is that perfectly genuine signals may fail to show
up as “clean” oscillatory pairs if they happen to be de-
generate with other components of the series (i.e., have
nearly equal eigenvalues). For example Allen, 1992,
notes that if we analyse the last 90 years of the historical
global temperature record using the BK algorithm, we
find that a low-frequency component of the El Niio /
Southern Oscillation (ENSO) signal is degenerate with
the interdecadal component (which turns out to be in-



distinguishable from red noise) and another noise com-
ponent. The SSA eigenspectrum contains two degener-
ate triplets of nearly equal eigenvalues. Thus this eigen-
decomposition is under-determined to rotations within
the subspaces defined by these EOF-triplets. Any lin-
ear superposition of these EOFs is an equally valid de-
composition. Rotations which do not affect the eigen-
spectrum can cause the interdecadal and low-frequency-
ENSO components to appear and disappear arbitrarily,
a situation which led Tsonis & Elsner, 1992, to con-
clude that results from applying the BK algorithm to
this series were inconsistent with those obtained from
applying the VG algorithm (Allen et al., 1992b; Allen
et al., 1992a).

Regardless of whether or not sinusoidal EOF-pairs
are attributable to noise, they are extremely effective
narrow-band-pass filters. If a component of noise has
been mistakenly identified as an oscillatory EOF-pair,
including that pair in an SSA-based “noise reducing”
filter applied to the data series will bias any subsequent
analysis. Likewise, a broadband signal will appear as a
set of EOF-pairs with associated frequencies separated
by 1/M. After SSA-based filtering, these will appear
as discrete spectral features in any “stack spectrum”
(Penland et al., 1991).

In conclusion, we stress that if pair-selection criteria
are to be used, alone or in conjunction with other tests,
it is essential that an an end-to-end check is performed
to evaluate the true significance level of the compos-
ite algorithm. Evaluating this “probability of a type-1
error” requires nothing more than a Monte Carlo ex-
periment, but setting up such experiments can become
complicated when multiple tests are involved.

Monte Carlo SSA is an attempt to reduce the signal-
detection component of SSA to its bare essentials. It al-
lows a statistical test that is as simple as possible while
still satisfying the two requirements mentioned above:
(i) the true level of the test should be easy to quantify
and close to its nominal level and (ii) the test should
not impose a physically inappropriate null-hypothesis
on the analysis.

4 Monte Carlo Singular Systems Anal-
ysis

In this section, we describe the Monte Carlo SSA
algorithm and demonstrate its application to a simple
test series. The basic idea was originally proposed in
Broomhead & King, 1986a, but, to our knowledge, it
was not implemented prior to the work of Allen, 1992.
The complexity of the test procedure depends on how

much prior knowledge we have of the properties of the
noise. We begin by assuming that all the noise parame-
ters are known a priori. While unrealistic in geophysical
problems, this may occur in laboratory or engineering
applications. We will use the VG algorithm throughout
for the computation of covariance matrices since this is
the most widely used in climate research.

4.1 Case 1: All noise parameters known a priori

Since one of the key advantages of SSA over conven-
tional Fourier methods is its ability to detect amplitude-
and phase-modulated oscillations, we use a randomly-
triggered oscillatory burst as a test case. The dotted
line in figure 1 represents the “signal”, generated as
follows: at each time-step, there is a 0.5% chance of ini-
tiating a damped sinusoidal oscillation with a period of
5.5 units, randomly chosen initial phase and unit initial
amplitude, which then decays with an e-folding time of
30 units. Two such bursts occur in this 200-point re-
alisation giving a total signal variance of 0.077 (units)?.
We then add a zero-mean segment of AR(1) noise, gen-
erated using equation (2), with unit variance and a lag-
1 autocorrelation of 0.72 (corresponding to an e-folding
time 7 of 3 units) to give the solid line. This solid line
provides our test series in which we now attempt to
detect the modulated oscillation.

Test series (signal + AR(1) noise) and uncontaminated signal
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Figure 1.  Test series, consisting of randomly-generated

damped sinusoidal bursts, with unit initial amplitude, random
initial phase, period of 5.5 units and e-folding time of 30 units,
contaminated with red noise. Dotted line shows the uncontam-
inated signal, solid line shows the series obtained after adding
AR(1) noise with zero mean, unit variance and autocorrelation

decay time of 3 units.

The standard periodogram, applying a simple tri-
angular (Bartlett, 1950) lag window (figure 2, upper
panel), contains a peak corresponding to a period of



~5.5 units, but several other frequencies are also indi-
cated as significant against a null-hypothesis of AR(1)
noise and the variance of the spectral estimate is high.
A more stable, but also more biased, spectral estimate
can be obtained from the Fourier transform of the se-
ries autocovariance function (Blackman & Tukey, 1959)
estimated out to M —1 lags, where M <« N — see figure
2 and the appendix. SSA provides a method of retain-
ing the stability of the spectral estimate based on the
autocovariance function using a data-adaptive basis in
place of the rank-M Fourier basis to reduce bias.

An alternative approach to reducing spectral vari-
ance while minimising bias is the multi-taper method
(MTM) of spectral analysis (Thomson, 1982; Park et al.,
1987; Yiou et al., 1991; Mann & Lees, 1995). MTM, ap-
plied to this test series, indicates a significant peak at
the correct frequency, but also indicates a number of
other peaks as significant (Yiou, pers. com.), consistent
with the results of Vautard et al., 1992.

If we apply standard SSA with M = 40 and plot
the the eigenvalues of Cp in the conventional “rank-
order” (i.e., in order of decreasing size), the result is
completely uninformative (the squares and diamonds
in figure 3 — we use the two symbols to differentiate
between EOF's which are symmetric and anti-symmetric
about the mid-point of the window). Breaks appear in
the eigenspectrum after EOFs 2, 4, 7 and 11, none of
which have anything to do with the signal. A search for
symmetric/anti-symmetric “oscillatory pairs” using the
pair-selection criteria of Vautard et al., 1992, suggests
that EOFs 8 and 9 indicate a 5.5-unit oscillation, but
also identifies EOFs 1 and 2 (period 30 units), 3 and 4
(trend), 5 and 6 (period 10 units) and a large number
of other pairs further down the spectrum.

The shape of EOFs 8 and 9 is not in itself unusual,
nor is the absolute amount of variance which they ac-
count for in the data series. What is remarkable about
them is the variance which they account for given their
shape (or, equivalently, given the direction they point to
in state-space). For each EOF, a vertical bar in figure
3 indicates the power we expect to find in the state-
space-direction defined by this EOF when analysing a
segment of pure AR(1) noise. These “surrogate data
bars” are obtained as follows:

Assuming we know the parameters in the AR(1)
noise null hypothesis a priori, we generate an ensem-
ble of 200-point “surrogate data” realisations (Smith,
1992; Theiler et al., 1992), using the AR(1) model of
equation (2) and the same parameters used to gener-
ate the noise in our test series. We compute a lag-
covariance matrix, Cg, for each surrogate realisation,
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Figure 2. Power spectrum of test series (modulated oscilla-
tions plus AR(1) noise) using a triangular lag window applied
to the full 200-point series (upper panel) and to the series au-
tocovariance function evaluated from —(M — 1) to M — 1 with
M = 40 (lower panel). Dotted lines indicate the 2.5'® and 97.5th
percentiles for the spectral estimate of an AR(1) process with

parameters equal to the noise in the test series — see Appendix.

using whichever (VG or BK) algorithm was used to
compute Cp. Since the process mean is known in this
example, neither data nor surrogates are centered be-
fore computing Cp or Cgr. We project each surrogate
realisation onto the EOFs of the data, defining the pro-
jection onto EOF-k as the k*" diagonal element of Ag
in

Ar =ELCREp. (6)

The extrema of the vertical bars in figure 3 indicate the
2.5t and 97.5*" percentiles of the diagonal elements of
AR corresponding to the EOFs whose eigenvalues they
over-lie: 95% of the surrogate realisations lie within
those limits.

We present the Monte Carlo approach to estimating
the distribution of the diagonal elements of A g since it
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Figure 3. Eigenvalues of Cp, rank M = 40, from the test
series plotted in the conventional “rank order” (squares and dia-
monds). Breaks occur after EOFs 2, 4, 7 and 11, none of which
correspond to a physical signal. Vertical bars show the variance
we should expect in the directions defined by these EOFs in a
segment of AR(1) noise. EOFs 8 and 9 of the data series contain

more variance than expected on this null-hypothesis.

is applicable to a wide range of null-hypotheses. In the
case of normally-distributed processes, such as AR(1)
noise, and EOFs which are approximately sinusoidal, it
is possible to compute these distributions analytically,
avoiding the Monte Carlo step. Details are given in the
appendix.

The test indicates EOFs 8 and 9 contain more power
in the data series than we would expect on this null-
hypothesis. The 8" and 9*" elements of the Ar are
greater than the corresponding elements of Ap in fewer
than 0.1% of members of the surrogate ensemble, in-
dicating that they are individually significant at the
99.9% level. EOFs 1 to 7, in contrast, contain only
the variance which we would expect them to contain
given their shape: even though they each contain more
variance than EOFs 8 and 9, they all lie well within the
surrogate data bars. EOF's 21 and 22 are also picked out
at a slightly lower significance level (98%). These cor-
respond to the first harmonic of our 5.5-unit oscillation
which we are not surprised to find contains anomalous
power given the rapid amplitude-modulation.

If the BK algorithm is used, equation (6) is equiv-
alent to sliding the window down each surrogate reali-
sation and summing the squared projections onto each
EOF. This makes it clear how the shape of each EOF
has been used in the test without our needing to de-
scribe it explicitly. If the EOF is dominated by small-
scale structure (high associated frequencies), we expect
the squared projections to be smaller than if it has only
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large-scale structure (low associated frequencies): red
noise projects more variance onto larger scales. If we
were testing against white noise, we would expect all
the surrogate data bars to be at the same level because
white noise projects almost exactly the same amount of
variance onto each EOF.

An alternative way of displaying the information in
figure 3 is to plot the data eigenvalues and surrogate
data bars against the dominant frequency associated
with their corresponding EOFs, as shown in figure 4.
Since EOFs obtained with SSA are not pure sinusoids,
identifying a single frequency with an EOF is problem-
atic. For display purposes, we associate a frequency
with an EOF simply by maximising the squared corre-
lation with a sinusoid. This is essentially equivalent to
the Reduced Fourier Transform of Vautard et al., 1992,
but it avoids the bias due to the variation of the Fejer
kernel across a finite window (MacDonald, 1989; Allen,
1992). We plot in bold the eigenvalues corresponding
to EOFs in which this maximum squared correlation is
greater then 0.85: these are relatively “clean” sinusoids.
Such a cutoff is inevitably arbitrary but is useful for the
display of data. We stress that the surrogate data test
itself does not require this association of EOFs with any
single frequency.

A clean sine-cosine “oscillatory” EOF-pair would ap-
pear as a bold square and diamond almost superim-
posed on each other. Power falls off with increasing
frequency in figure 4, as expected from red noise, but
EOFs 8 and 9 form a pair, centered on 0.18 cycles
per time-unit, which stands out from its neighbours in
associated-frequency-space, indicating a period of 5.5
units. A simple visual inspection of the squares and
diamonds in figure 4 is not, however, sufficient to iden-
tify physical oscillations. For example, the two highest
and two lowest ranked EOFs also appear to form pairs
centered on 0.03 and 0.29 cycles per time-unit: a char-
acteristic of the data-adaptive basis of conventional SSA
is that both high-ranked and low-ranked EOF's tend to
“pair up”, even in a segment of pure noise.

A number of authors have cited the stability of an
EOF-pair to varying the window width M as evidence
for the significance of the corresponding oscillation.
Such stability, however, does not distinguish a physi-
cally significant signal. Any finite segment of red noise
will contain more power than the process average at
some frequencies due simply to statistical fluctuations.
EOF-pairs will tend to occur at these frequencies over
a range of window widths. Figure 5 shows the effect of
varying the window width: our test series eigenvalues
and surrogate data bars are plotted against dominant
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Figure 4. Eigenvalues of Cp from the test series, plotted
against the dominant frequency associated with their correspond-
ing EOFs. Clean sine-cosine pairs (bold squares and diamonds
almost on top of each other) occur at frequencies of 0.18 and 0.36
(units)~! (periods 5.5 and 2.8 units). The surrogate data test
indicates these are significant at the 99.9% and 98% levels re-
spectively. Note how the two highest-variance EOF's also appear
These

would pass any selection criteria based on EOF shape but the

to form a pair, indicating a frequency of 0.03 (units)~!.

surrogate data test shows that they do not contain more variance

than we would expect from a segment of AR(1) noise.

associated frequency for M = 30 and M = 60. Note
that a pair suggesting an oscillation with period 30 units
appears as EOFs 1 and 2 in all cases but is consistently
rejected (correctly) by the surrogate data test.

Some sensitivity of results to window width is in-
evitable due to the constraint that EOFs must be mu-
tually orthogonal, but if a pair only appears for certain
values of M, this gives us reason to doubt its signifi-
cance (although it might also be a consequence of two,
perfectly genuine, signals being degenerate with each
other). Unfortunately, the converse is not true. Only in
the limit of an infinite segment of red noise will the fre-
quencies associated with EOFs scale exactly with 1/M.

The surrogate data test indicates anomalously high
variance at 5.5-unit periods for both M = 30 and
M 60. With M = 30, however, only the anti-
symmetric EOF (the diamond) is indicated as clearly
significant. The reason is that the symmetric EOF,
number 9, is degenerate with a lower-frequency com-
ponent of the noise (EOF 7). The SSA decomposition
is thus under-determined, and the result is that neither
EOF 7 nor EOF 9 is sinusoidal, each containing a mix-
ture of power at 5.5 and 15 unit periods. In this case,
SSA has failed to isolate the symmetric component of
the 5.5-unit oscillation. A revised algorithm, described
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Figure 5. As previous figure but with M = 30 (upper) and
M = 60 (lower). The 5.5-unit oscillation is still identified as sig-
nificant, although with M = 30, one member or the pair lies inside
the surrogate data bar due to a degeneracy problem (see text).
Note that EOFs 1 and 2, without the surrogate data test, would
still indicate a period-30 oscillation. This spurious “oscillation”
is robust to varying the window width, illustrating the need for

quantitative significance tests.

in Allen & Smith, 1996, performs better.

4.2 Interpretation of Monte Carlo SSA spectra

Merely observing a pair of data eigenvalues lying
above the 97.5'" percentiles of the corresponding surro-
gate distributions is generally not enough to conclude
that we have detected an oscillation at that frequency at
the 97.5% significance level. Even if we are analysing a
segment of pure noise, the average number of excursions
above the 97.5t" percentile will be 0.025M by construc-
tion. The correct interpretation of figure 3 therefore
depends on our prior knowledge and expectations.

If we know beforehand that it is EOF-k that we are
interested in, then the position of the k*" eigenvalue of



Cp relative to the corresponding surrogate data distri-
bution translates straightforwardly into the significance
level of the test (additional complications relating to the
choice of EOF basis are discussed in section 5 below).
Often, however, we use the results of such spectra to de-
cide which EOFs to focus on. If we simply look for any
excursions above the 97.5'" percentiles of the surrogate
distributions with a window width of 40, then we are,
in fact, performing 40 “mini-tests”. The probability of
at least one excursion above the 97.5'" percentiles of
the surrogate distributions is clearly greater than 2.5%.
This is a standard problem in power spectral analysis
(MacDonald, 1989; Thomson, 1990).

Since the 40 “mini-tests” are not mutually inde-
pendent, the probability of a given number of excur-
sions does not, in general, conform to an analytically-
calculable distribution. Livezey & Chen, 1982, address
a similar problem in evaluating the statistical signifi-
cance of relationships between continuous fields where
independence of data at different locations and times
cannot be assumed. We adopt a similar two-pass Monte
Carlo approach to estimate probabilities directly. By
storing the diagonal elements of A for each surrogate
realisation and making a second pass through the en-
semble after computing its distribution statistics, we es-
timate the probability of a given number of excursions
above a pre-determined percentile directly from the rel-
ative frequency of such an event occurring in a member
of the ensemble.

The probability of there being at least 2 (4) excur-
sions above the 99.5t" (97.5") percentiles, as observed
in figure 3, in any given member of the surrogate en-
semble is 5.4% (7.1%). So, if we did not specify be-
forehand that EOFs 8 and 9 were of interest, then the
true confidence level at which we reject this AR(1) noise
null-hypothesis is ~94%. This is a lower limit, since the
data eigenvalues 8 and 9 in fact lie in the 99.9*" per-
centiles, and we have only quantified the probability of
excursions above the 99.5" percentile.

Plotting against dominant associated frequency (fig-
ure 4) might incline us to reject the AR (1) null hypoth-
esis for reasons over and above the simple occurrence of
2 (4) excursions above the 99.5'" (97.5'") percentiles:
the fact that the excursions appear in two pairs, one
of which corresponds to double the frequency of the
other, clearly suggests a modulated oscillation. These
qualitative observations might form the basis of a more
stringent statistical test, but we should proceed cau-
tiously in this direction, since there are clear dangers
in tailoring a test too specifically towards an expected
result (or worse still, towards a result which has already
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been obtained).

Increasing the window width M increases the spec-
tral resolution of SSA and also increases the potential
signal-to-noise (S/N) enhancement, but it also increases
the number of individual excursions above a given con-
fidence level which we should expect to occur purely
by chance, simply by increasing the effective number of
“mini-tests” performed: the average number of excur-
sions scales linearly with M. If, therefore, only a small
number of EOFs are indicated as individually signifi-
cant, it is essential that that the two-pass test is per-
formed to quantify the probability of that number of
excursions occurring by chance. The advantage of the
procedure presented here (which is equally applicable
to the periodograms discussed by MacDonald, 1989) is
that it is applicable to null-hypotheses whose statistics
are highly non-Gaussian, such as those generated by
chaotic systems.

Even with a relatively short window (M = 40), the
probability of at least 2 excursions above the 99.5" per-
centile occurring by chance is not negligible. A visual
inspection of the cases in which this occurs indicates
that there is a high probability of such an excursion
“looking like” an oscillatory pair. The reason is simple:
if a series contains above-average power in one sinu-
soidal EOF, then, in the long-series limit, it necessar-
ily contains above-average power in the same sinusoid,
phase-shifted by 7/2 (i.e., in the other member of the
“pair”). In this example, the probability of 2 or more
chance excursions above the 97.5'" percentile is 28%.
So if EOFs 8 and 9 were to lie in the 97.5" (as opposed
to 99.5'1) percentile, the true level at which we could
reject the AR(1) noise null-hypothesis would be only
72%. For most practical applications, the difference be-
tween rejection of the null-hypothesis at 97.5% and at
99.5% is uninteresting. But the difference between the
94.6% level and the 72% level would almost certainly
incline us to view a result very differently.

Quantifying the probability of excursions above these
high percentiles requires large Monte Carlo ensembles:
we have used 10,000 in the examples in this section.
This will only be necessary if we are dealing with a
result on the margins of acceptable significance. For
Gaussian distributed null-hypotheses, a rough indica-
tion of global significance may be obtained by assum-
ing excursions conform to the binomial distribution (see
appendix). If we are dealing with a more complicated
null-hypothesis, such as a chaotic process, then it is
preferable to pursue the two-pass Monte Carlo proce-
dure to quantify the significance level explicitly.



4.3 Case 2: Simple null-hypothesis with some
unknown noise parameters

The test outlined above evaluates the hypothesis that
a series has been generated by a particular noise pro-
cess whose parameters are known. Frequently, however,
we wish to test a vaguer null-hypothesis, such as “this
series was generated by an AR(1) process” where the
process parameters (in this case: mean, variance and
lag-1 autocorrelation) are unknown. To reject the en-
tire class of AR(1) processes on the basis of a single test,
we must identify that particular AR(1) process, or that
set of parameters ug, a and 7y in equation (2), which
maximises the likelihood of our failing to reject the null
hypothesis.?

We can deal with the fact we do not know ug sim-
ply by centering the data series (removing the statisti-
cal mean, d). In order to ensure that we are treating
surrogates and data identically, however, we must then
center each individual surrogate, thereby complicating
the estimation of a and .

The lag-l covariances of an AR(1) process are given
by

2,1
ary
— 7
— 7
so we have only to estimate the covariance at two dif-
ferent lags to obtain estimates of a and . The most
efficient estimators are obtained from the lag-0 and lag-
1 covariances Stuart & Ord, 1991. A natural estimator
for the lag-l covariance is (Vautard et al., 1992)

c =

1

N —1

=1

d)(diyi — d).

el
M

(di — (8)

Although less biased than the Yule-Walker estimate
(Yule, 1927; Walker, 1954), ¢ is still subject to some
bias because the mean of this particular segment, d, is
not identical to the process mean. If we generate sur-
rogates using parameters v and « chosen to yield lag-0
and lag-1 covariances ¢ and ¢ in equation (7), and
center the surrogates, then the expected variance of the
surrogates will be less than the variance of the data
series by a factor

N-1

> 2N — k),

=1

1 1
2
e

[ (9)

x

3Much of this discussion of parameter-estimation is closely re-
lated to the Generalised Linear Regression problem: see Mardia
et al., 1979, for a helpful introduction. In statistical jargon, we
are simply obtaining the Best Linear Unbiased Estimators of AR
process parameters in the particular context of SSA.
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where 2 = & (32) /co, the expected square on the mean
of a finite segment of AR(1) noise, normalised by the
process variance (Allen, 1992).% This bias is unimpor-
tant for the estimation of Cp in SSA, since it has only a
minor impact on the eigenbasis Ep, but it can obviously
be very important in setting the parameters of the null-
hypothesis for significance tests. If we use equation (8)
to estimate parameters naively, then the expected vari-
ance of the surrogates will be less than that of the data
series. This incorrectly exaggerates the apparent sig-
nificance of any features observed. In short, it means
that a segment of AR(1) noise would tend to appear
improbable when tested against the AR(1) noise null-
hypothesis!

We can correct for this bias by using the estimator

& =& + Gop. (10)
When v = 0 (the white noise hypothesis), ¢y reduces to
the familiar unbiased estimator of the variance, %éo.
When v # 0, equation (10) is still only implicit in the
individual ¢;, but dividing ¢ by ¢y gives an explicit
estimator for v, viz. 4, being the solution of:
¢1 _ ¥ — M2 (%)

& 1—p2(7) (D
The gradient of the RHS of equation (11) is always pos-
itive in 4, and generally close to unity, so an efficient
solution procedure is provided by Newton-Raphson it-
eration, simplified by assuming unit gradient through-
out, and starting from 4 = 2—[1) We find this algorithm
generally converges to an acceptable accuracy (estimat-
ing 7 to within ~1075 of its asymptotic value) in 2
5 iterations. Once 4 has been found, & is given by
¢ = #gﬁ), and & obtained from equation (7).

Using 4 and ¢, allows us to avoid the bias inherent
in 4 and ¢y, at the cost of introducing estimators which

4The RHS of equation (9) may be summed explicitly, which is
useful for examining its asymptotic properties (we are grateful to
D. Broomhead for this suggestion):

1 2 |N—~4V A1 ANt
KR =<+ 1 BpiLES Ay
NN |1 1)
Thus:
|y =#()| _ N?—-3N-1
lim = .
y—=1 |1 —p2(y) N2 -1

If the LHS of equation (11) is greater than (N2 —3N—1)/(N2 1),
then we cannot place an upper bound on the autocorrelation of
the noise as long as the process mean is unknown. A common
reason for this occurring is that we are dealing with data which
contains a trend or random-walk component, which must be ac-
counted for if possible (e.g. using the procedure outlined in section
4.4) before the surrogate data test is performed.



are non-linear functions of the second-order moments
of the data. Fortunately, provided the autocorrelation
time-scale 7 is at least an order of magnitude smaller
than the length of the series (this is the case in all the
series examined here, and results should be treated with
caution in any situation where this condition does not
hold), this non-linearity is weak, and 4 and ¢, are ef-
ficient and well-behaved. The small-sample properties
7 and ¢y are documented in detail in section 3.2.2 of
Allen, 1992.

Applying these estimators to our test series gives 7
within 1% of the value used in the AR(1) noise compo-
nent of the generating process, but an estimate ¢y which
is 14% larger than the process variance of the generat-
ing noise, since the test series also contains variance due
to the signal. Applying Monte Carlo SSA with these es-
timated AR(1) parameters (results not shown, but they
are visually very similar to figure 4), EOFs 8 and 9 re-
main significant at greater than the 99.5% level, but
because the noise in the null-hypothesis now contains
more variance than the noise in the generating process,
EOFs 21 and 22 no longer appear significant even at the
95% level, and 5 low-ranked eigenvalues lie below the
0.5t" percentiles of their corresponding surrogate data
distributions.

The results presented in this section allow us to re-
ject the pure noise null-hypothesis, on the grounds that
the data contains evidence of a 5.5-unit-period oscilla-
tion. The next question is, does the data contain evi-
dence of anything else? No other EOFs are indicated as
significant at even the 95% level, but this is inconclu-
sive, since having rejected this null-hypothesis, we know
that the noise variance is too high. To ensure that we
have not missed anything, the testing procedure must
continue until we arrive at a null-hypothesis that we
cannot reject.® The next step is to test the composite
null-hypothesis that the data consists of the oscillation
indicated by EOF's 8 and 9 plus AR(1) noise.

5Mann & Lees, 1995, in their red-noise test for MTM, try to
ensure that secondary spectral features are not rejected through
misspecification of the noise parameters by using “robust” esti-
mators which are not sensitive to the presence of narrow-band
spectral features. Their test has the advantage that it is single-
step procedure, but we prefer the approach described here since
it is applicable to broadband signals, occupying a significant por-
tion of the Nyquist interval, which are often encountered in geo-
physics. Moreover, by continuing to test until we arrive at a null-
hypothesis that we cannot reject, we can check that an AR(1)
process was an appropriate noise model to assume in the first
place.
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4.4 Case 3: Composite null-hypothesis with
some unknown noise parameters

Given that we have identified some components of
the data series as “signal” (either through a statis-
tical test, or from a priori knowledge), and wish to
test whether the remainder is attributable to AR(1)
noise with undetermined parameters, we have several
options. Conceptually, the simplest procedure is the
“signal-reconstruction” approach (Allen, 1992; Allen &
Smith, 1994; Dettinger et al., 1995), which works as
follows. The signal component of the data time-series
is reconstructed explicitly using the algorithm given in
Vautard et al., 1992. This involves computing the fil-
tered trajectory matrix,

D' = DEp(I - K)EL = DS, (12)
where K is an M x M diagonal matrix in which Ky =0
if EOF-k has been identified as corresponding to a sig-
nal, and K, = 1 otherwise. In the case of our test
series, K would simply be the unit matrix with the 8"
and 9*" diagonal elements set to zero (assuming we have
reserved judgement on EOFs 21 and 22). S, the “sig-
nal projection matrix”, is idempotent (SS = S), and
commutes with Cp, so SCpS = SSCp = SCp. An
explicit filtered reconstruction, d’, of the original scalar
series d is then given by averaging along the diagonals
of D’ (Ghil & Vautard, 1991), such that

min(i,M)

!
> Di i1 >

j=max(1l,i+M—N)

d =~ (13)

¢ being the number of terms in the sum (the smallest
of 1, M and N —i+1).

The next step in the signal-reconstruction approach
is to compute the process parameters required to gener-
ate AR(1) noise such that, when added to d’, the com-
posite signal-plus-noise has the same expected variance
and lag-1 autocorrelation as the original data series.
Noise covariances cannot be estimated directly from the
residual d — d’, because d’ and d — d’ are not orthog-
onal (Allen, 1992). Noise segments are then generated
using these parameters and added to d’ to give “com-
posite surrogates”, from which the Cg are computed
and tested as in section 4.1 above.

A major disadvantage of the signal-reconstruction
approach is that it does not yield unbiased estimates
of the noise parameters, even in the long-series limit.
When AR noise is added to to the reconstructed signal,
the noise variance is distributed over all frequencies,
including those associated with the signal. Thus for



large N the surrogates will contain, on average, more
variance than the data at the signal frequencies and,
because we have set their total expected variance to be
equal to that of the data, less variance at all other fre-
quencies. A second source of bias arises with short se-
ries, since SSA-based reconstructions tend to be “over-
fitted” near the series end-points (Vautard et al., 1992).
Thus the AR parameters obtained with this procedure
do not maximise the likelihood of our failing to reject
the signal-plus-AR(1)-noise null-hypothesis.

Exactly the same problem arises if we use SSA to
filter out the component of the data which we consider
to be signal, and then fit the AR parameters to the
filtered data. To ensure that, in distinguishing between
data and surrogates, we are not simply “detecting” the
filter response function, we must filter the surrogates in
exactly the same way as we filter the data (this point
is also important if we are applying a surrogate data
test to detrended data — Schlesinger & Ramankutty,
1994; Elsner, 1995). Filtering will reduce the expected
variance of the surrogates, making it less than that of
the filtered data.

Precise optimisation of null-hypothesis parameters is
important if we wish to report a positive result: i.e., if
we wish to stress the fact that the null-hypothesis has
been rejected. Negative results are more robust. If we
fail to reject the null-hypothesis even with a sub-optimal
choice of parameters, then we would be even more likely
to fail with the correct parameters. For example, the
key result of Allen, 1992; Allen & Smith, 1994, is a neg-
ative one, viz. that SSA provides no evidence for inter-
decadal oscillations in the historical global temperature
record, so it is not affected by their use of a sub-optimal
parameter-estimation procedure.

A second disadvantage of the signal-reconstruction
approach is that SSA-based reconstructions are poorly
behaved when we are dealing with irregularly-sampled
and/or heteroskedastic data. Although we only deal
here with regularly-sampled data with equal weight
given to all data-points, an ability to generalise the tech-
nique to these other cases is clearly desirable.

Our aim is to identify null-hypothesis parameters
such that the noise, after filtering to suppress vari-
ance in the directions defined by the EOFs which we
have identified with signal, has the same expected vari-
ance and lag-1 autocorrelation as the data, filtered sim-
ilarly. To avoid explicit reconstructions, we work en-
tirely with lag-covariance matrices. An estimate of the
lag-covariance matrix of the filtered signal is given by

nD’TD’

= nSD'DS (14)
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~ SCD (15)
where 7 is an algorithm-dependent normalisation con-
stant defined as in equation (3) above. If the BK al-
gorithm is used, equation (15) is satisfied exactly. If
the VG algorithm is used, equation (15) holds only in
the long-series limit. Since, however, all we require are
efficient and unbiased estimators of the noise param-
eters, we can use SCp as an estimate of the filtered
lag-covariance matrix in this case as well. End-effects
will mean that the parameters we obtain will be slightly
different from those which we obtain by the signal-
reconstruction approach, but since those estimates were
also subject to bias, we have found no reason to favour
one over the other; in addition, we wish to avoid ex-
plicit reconstructions to allow a modified algorithm for
incomplete or heteroskedastic data.

We introduce a generalised trace operator tr; which,
when applied to a M x M symmetric matrix, is defined

thus:
1
C .
M—j ; k,k+7 >

and a “noise projection matrix”, Q = EpKEZL with
properties similar to S. To avoid repetitive use of the
expectation operator, we also introduce a matrix Cy,
being the expected lag-covariance matrix of a noise re-
alisation, Cy = £(Cg) (recall that, since both VG and
BK algorithms are biased, Cy is not, in general, equal
to the process lag-covariance matrix of the noise). In the
signal-reconstruction approach, the constraint that the
noise added to the reconstructed signal should have the
same expected variance as the original data is equiva-
lent, apart from end-effects, to requiring that Cpy satis-
fies trg (CN) = trp (CD — SCD) = tryg (QCD) Thus
the bias in the signal-reconstruction-based algorithm
arises from applying the noise filter Q to Cp and not
to Cy. Unbiased estimates of noise parameters can be
obtained by applying the filter to both matrices. Thus
if we have two free parameters in our noise model, we
estimate them by finding those values for which

tro (QCNQ) =
tr; (QCnQ) =

tr; (C) = (16)

tro (QCD)
try (QCD)

(17)
(18)

(note that Q does not commute with Cy, so we cannot
simplify QCyQ as we can simplify QCpQ).

If we are testing an AR(1) noise null-hypothesis, with
unknown mean, variance ¢o and lag-1 autocorrelation v,
then Cy = W', where Wi, = Ali=3l — 12(v). This
takes into account the effect of centering discussed in



the previous section. We estimate v by solving

tr; (QW'Q) _n (QCp)
tro (QW'Q)  tro (QCp)

using our modified Newton-Raphson scheme, and cg

from
_ tI‘o (QCD)
tro (QW'Q)”
Against a pure noise null-hypothesis, Q becomes the

unit matrix, and this reduces to the algorithm given in
the previous section.

(19)

Co (20)

We generate surrogates using these parameters, cen-
ter them, and compute Cr and Ag as in section 4.1.
Note that

£ (tI‘O (KAR)) = trp (KAD) R (21)

which provides a useful end-to-end check.

Applying this algorithm to our test series, treating
EOFs 8 and 9 as signal, gives an estimated noise vari-
ance of 1.097, and lag-1 autocorrelation of 0.72. Thus
is accurately estimated, but the estimated noise vari-
ance remains higher than the actual variance of the
noise in the test series (1.04 in this realisation). Not all
the signal has been extracted in EOFs 8 and 9, which is
inevitable, since this is a rapidly modulated oscillation.
We do not distinguish between signal and noise in the
directions defined by the EOF's which we associate with
signal (although the signal-to-noise (S/N) ratio will be
considerably enhanced in these directions over the S/N
ratio for the full series). We might be able to use ad-
ditional information to improve signal-extraction, and
therefore improve the estimation of noise parameters, if
we knew we were looking specifically for damped sinu-
soidal bursts. The aim here, however, is to demonstrate
a generally-applicable algorithm for weak modulated os-
cillatory signals.

With these revised parameters, EOFs 21 and 22 are
individually significant at the 96% level. Out of 38 pos-
sible EOFs (EOFs 8 and 9 having been eliminated from
the statistics), there is a 27% chance of 2 or more excur-
sions above the 97.5" percentiles, so, if we did not have
any other reason to be interested in EOFs 21 and 22, it
would be questionable to conclude that they represent
a significant signal.

This concludes our description of the basic method
of hypothesis-testing in Monte Carlo SSA. Before leav-
ing this discussion of our test series, however, we must
discuss one remaining unquantifiable bias in the algo-
rithm described so far arising from the fundamental
data-adaptive properties of SSA itself.
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5 Problems with data-adaptive EOF's

The guiding principle of surrogate data testing is that
we must treat data and surrogates in exactly the same
way. If we fail to do so, we may appear to distinguish
the data from the surrogates simply as a result of hav-
ing treated them differently. So far, we have failed to
adhere to this principle in one important respect. The
standard SSA algorithm determines EOFs by maximis-
ing the variance accounted for in the data series by
the smallest possible number of patterns. Thus if we
perform SSA on a segment of pure noise, a high (low)
ranked EOF is likely to account for an improbably high
(low) proportion of the variance in the particular noise-
segment from which it was derived, relative to the vari-
ance it accounts for in an arbitrary series generated by
the same noise process. Notice how the highest ranked
data eigenvalues in figure 3 are near the top of their cor-
responding surrogate data bars, while the lowest ranked
eigenvalues are near the bottom. The extent of this
artificial “variance-compression” is difficult to quantify,
since it depends not only on the length of the series, but
also on the method used to compute the lag-covariance
matrix, and on the noise characteristics (it is worst for
short series, for the BK matrix and for white noise).
It has the highly undesirable effect of making signal-
detection algorithms based on the standard approach
to SSA inherently under-conservative, i.e., making the
true probability of a type-1 error higher than the nom-
inal level of the test.

5.1 A test based on eigenspectrum shape

One response to this problem is a significance test
proposed by Elsner & Tsonis, 1994b; Elsner, 1995, and
also implemented by Dettinger et al., 1995, which we
will refer to as the Florida-Milwaukee-UCLA (FMU)
test. This is identical to the signal-reconstruction ap-
proach of Allen, 1992, except that, instead of project-
ing each surrogate lag-covariance matrix onto the data
EOFs as in equation (6), the FMU test obtains a new
EOF basis, Eg, for each surrogate realisation by diag-
onalising the individual Cg thus:

AMY = ELCRER. (22)
The elements of AEMU are arranged in the conventional
rank-order. Thus the artificial variance-compression ef-
fect noted above will be present in both the data and
the surrogate eigenspectra, consistent with the overall
philosophy of surrogate data testing.

The successful application of this test, however, only
allows us to say that the k'" eigenvalue of Cp is un-



usually large given its position in the eigenvalue rank-
order. We can say nothing about the structure of “the”
Eth EOF, or any associated frequency, as there is no
unique £*® EOF. The comparison of individual elements
of Ap with the distribution of corresponding elements
of AXMY is no longer meaningful since the k** EOF
of the data series may be associated with a completely
different set of frequencies (i.e., have a completely dif-
ferent shape, or point in a completely different direction
in state-space) relative to the ensemble average of the
k*h EOFs of the surrogates. This is particularly likely
if the k" EOF of the data corresponds to a genuine
oscillation. The FMU test compares the overall shape
of the ranked eigenspectrum of the data with the over-
all shape of the ranked eigenspectra of the surrogates
without taking into account the shapes of the corre-
sponding EOFs. As such, it is not a reliable method of
discriminating between oscillations and red noise, since
the presence of an oscillation may not affect the overall
shape of the ranked eigenspectrum.

The vertical bars in figure 6 show the distributions
of the ASMY obtained with the FMU eigenspectrum-
shape test using exactly the same surrogate ensemble
used to calculate the vertical bars in figures 3 and 4.
None of the data eigenvalues are indicated as significant,
because there is nothing unusual about the shape of the
ranked data eigenspectrum relative to the shape of the
surrogates’ ranked eigenspectra.

Eigenspectrum of test series, FMU eigenspectrum—shape test
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Figure 6. Application of the Florida/Milwaukee/UCLA

eigenspectrum-shape test to our test series, testing against a pure
AR(1) noise null-hypothesis. Vertical bars show the distribution
of eigenvalues of Cg, individually ranked in order of decreasing
size. This test does not make use of the shape of the data EOFs,
and so is not effective against red noise: no excursions above the
97.5th percentiles occur, and EOFs 8 & 9, which contain most

power at 5.5-unit periods, are not picked out as unusual.
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To be effective, tests against red noise must make use
of information concerning both the power in and shape
of EOFs. Comparing ranked eigenspectra discards all
EOF-shape information. It may be possible to rein-
troduce this information through some form of boot-
strapping (Elsner, 1995), but the problem of determin-
ing which EOF's to boot-strap to initiate this approach
remains. The FMU test requires that the eigenvalue
rank-order distinguish signals from noise; in conven-
tional SSA, rank-order is misleading. While revised ap-
proaches to SSA may exist (e.g. Allen & Smith, 1996) in
which the rank-order is meaningful (and thus for which
the FMU test should work), we present a simpler ap-
proach to dealing with artificial variance-compression
which uses the eigenbasis of the null-hypothesis, as fol-
lows.

5.2 Using the EOFs of the null-hypothesis

Standard SSA determines EOF's by assuming, in ef-
fect, that the data series is noise free. It continues to ex-
tract variance-maximising patterns all the way down to
the lowest-ranked EOF. This is appropriate for a data-
compression tool, but clearly dangerous in a signal-
detection algorithm. If we are using SSA to reconstruct
a signal which we already know to be present in the
data, or to “clean up” a time-series contaminated with
a relatively low level of noise, as in the original work
of BK, then the standard algorithm has a clear theo-
retical justification. Recent applications, on the other
hand, aim to use SSA to identify unexpected features
in a time-series. In this situation, the priority must be
to quantify objectively the probability that these fea-
tures may have occurred by chance. This makes the
use of fully data-adaptive EOFs more difficult to justify,
since effects like artificial variance-compression increase
the probability of type-1 errors by an unquantifiable
amount.

In this section, we introduce a different approach to
SSA, which allows us to retain its data-adaptive prop-
erties for the extraction of signals which have already
been detected while avoiding the problems inherent in
an algorithm which implicitly assumes the existence of
a signal before any signal has been identified.

We frame this revised approach on the assumption
that the null-hypothesis is true until we establish oth-
erwise. Thus, if the null-hypothesis is that a series
has been generated by AR(1) noise, we represent the
data using the EOFs which we expect from a segment
of that type of noise, rather than the EOFs derived
from the data itself. In support of this approach, recall
that our theoretical justification for diagonalising Cp



was that we thereby obtain an estimate of the EOF's of
the process which generated the data series. If we ini-
tially assume that the null-hypothesis is true, then we
know what these EOFs are without needing the data at
all (things are more complicated with composite null-
hypotheses when a signal has been already been identi-
fied).

We consider, first, the simple case in section 4.1
where we know the mean, variance and lag-1 autocorre-
lation of the noise a priori. The expected lag-covariance
matrix of a segment of such a noise process is given
by Cny = coW, where W;; = yli=l (no correction is
required for the effect of centering, since the mean is
known). We compute the expected EOFs of this noise
by diagonalising Cy, thus:

Ay =ELCyEy, (23)

and project both data and surrogates onto these noise
EOF's thus:

A
Ay

E{CpExN
ELCrEy

(24)
(25)

where the primes indicate that the null-hypothesis basis
has been used.

Squares and diamonds in figure 7 show A, for our
test series while the vertical bars show the 2.5 and
97.5'" percentiles of the distributions of the A’;. This
figure may be compared directly to figure 4, which
shows the same data and surrogate ensemble on the
data-adaptive EOFs. Note how the EOFs of Cy are
regularly spaced, separated by almost exactly 1/2M.
Two elements of A',, corresponding to EOFs 15 and 16
of the null-hypothesis, lie above the 99.5*" percentiles
of their corresponding surrogate data bars, correspond-
ing to EOF's associated with periods of 5.3 and 5.6 units
(99.7th and 99.8" percentiles respectively). The proba-
bility of 2 or more such excursions occuring in a member
of the surrogate ensemble is 5.6%, giving a robust lower
limit on the level of the test of 94.4%, without the com-
plications associated with variance compression. Sim-
ilar results are obtained in the case where we do not
assume prior knowledge of the noise parameters, but
confidence levels are slightly lower, because the noise
variance is overestimated (see section 4.3).

Both the data projections and percentiles of the sur-
rogate ensemble in figure 7 are very similar to the
Blackman-Tukey power spectral estimate in figure 2. To
the extent that the basis of pure AR(1) noise resembles
the Fourier basis, there is little to choose between them.
More complicated null-hypotheses, however, involve dif-
ferent bases, requiring the full method presented below.
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Figure 7. Test series against the AR(1) noise null-hypothesis,
projecting both data and surrogates onto the EOFs of the ex-
pected lag-covariance matrix of the surrogates, Cn. EOFs are
regularly spaced, separated by ~ 1/2M, and alternately symmet-
ric and anti-symmetric. Significant power is found at frequencies

corresponding to periods of 5.3-5.6 units.

Figure 7 tells us that there is anomalous power in
the data at periods between 5.3 and 5.6 units, but it
does not provide us with an optimal algorithm for the
extraction and reconstruction of that signal. A visual
comparison of figure 7 with figure 4 is sufficient to indi-
cate that the eigenvectors corresponding to data EOFs
8 and 9 in figure 3 contain the 5.5-unit-period signal in
question, but to allow straightforward automation, we
compute cross-correlations ELEy, and find the EOFs
of the data which are maximally correlated with EOFs
15 and 16 of the null-hypothesis.

We now require an EOF basis corresponding to
the composite null-hypothesis that the data consists
of whatever signal is contained in EOFs 8 and 9, plus
AR(1) noise. In this last example, we assume all noise
parameters including the mean are unknown, and esti-
mate them using the data EOFs and the matrix Q as
in section 4.4. Using the data EOFs to represent the
noise component in Q does not introduce any variance-
compression effects, since all we require is an orthonor-
mal basis which contains EOFs 8 and 9 of the data. We
define the expected lag-covariance matrix of the com-
posite null-hypothesis through:

Cy = c0QW'Q + SCp, (26)

where W, = 11—l — 2(y) as above.

The eigenvectors of Cy will contain EOFs 8 and
9 of the data, unless these are degenerate with some
components of the noise, in which case they may be
scrambled in the diagonalisation. We can sidestep de-



generacy problems through the numerical trick of tem-
porarily setting ¢g in equation (26) to 90% of the small-
est “signal” eigenvalue of Cp before diagonalising Cy .
The precise factor used does not affect the decomposi-
tion, but it should not be too small or Cx may become
ill-conditioned.

The projections A, and A’z onto the EOFs of the
composite null-hypothesis are shown in figure 8. Notice
how the noise EOFs tend to “pair up” in the vicinity of
the signal, owing to the orthogonality constraint, and
the lack of artificial variance-compression. One remain-
ing element of A', is significant at the 95% level, num-
ber 30, with associated frequency 0.36(units)!. That
alone is not enough to reject this null-hypothesis, but
the associated frequency suggests the first harmonic, so
we might wish to investigate it further.

R Test series on nuli—hyp: EOFs, composite null

o’ o Dota on symmetric EOFs
¢ Data on anti—symmetric EOFs-{

10.00

Surrogate ensemble size: WOOOO:
LioB T 97.5th &  2.5th percentiles |

b
- 1
|

T
|
|
b
P
0N

ot &

Power in EOF—k

0.10 0.20 0.30 0.40
Frq. assoc. with EOF—k (cycles per time—unit)

Figure 8. Test series against the composite null-hypothesis
of AR(1) noise plus a 5.5-unit oscillation, using the EOFs
of the expected lag-covariance matrix of the surrogates. A
symmetric/anti-symmetric pair is used from the EOFs of Cp
and the remaining EOFs correspond to AR(1) noise subject to
the constraint that they must be orthogonal to this pair. All

noise parameters have now been estimated from the data.

Using the null-hypothesis basis, we should no longer
expect (much less, require) significant EOFs to ap-
pear in symmetric/anti-symmetric pairs. Neither of the
EOFs adjacent to EOF 30 in figure 8 is even close to the
95% significance level. EOF 30 of Cy is antisymmetric
and is closely aligned (cross product of 0.94) with EOF
22 of the data. An inspection of associated frequencies
indicates that EOF 21 of the data is the other mem-
ber of that pair, and so a signal-reconstruction should
include both.

We emphasise that once a signal has been detected
we then use the same EOFs as are used in standard
SSA to study and reconstruct it. For genuine signals
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nothing is lost. There is little risk of our “missing” a
signal which does not happen to align exactly with one
of the EOFs of the null-hypothesis since the frequen-
cies associated with the EOF's of pure AR(1) noise are
separated by 1/2M. Whatever the signal frequency, it
must lie within 1/4M of either a symmetric or an anti-
symmetric noise EOF, which is close enough for a high
proportion of the variance which would have been as-
sociated with an optimal EOF obtained from standard
SSA to project onto that noise EOF. This is particu-
larly true if the signal variance is spread over a range
of frequencies, as expected in geophysical data.

The conclusive argument in favour of using of the
eigenbasis of the null-hypothesis is that we are able to
quantify the probability of a false-positive result more
precisely than if we use the data-adaptive basis since
we are not subject to the unknown effects of artifi-
cial variance-compression. For signal detection appli-
cations, this is more important than maximising the
probability of making a weak but genuine signal appear
significant. Detection consists in distinguishing signals
from noise. An algorithm which makes a genuine signal
appear significant, at the cost of interpreting a large
(and unknown) number of noise components as signifi-
cant as well, cannot be said to have detected anything.

6 Evidence for climate oscillations

We now apply Monte Carlo SSA to a much-studied
problem: the detection of low-frequency climate oscil-
lations. We begin with the problem that first prompted
this work on significance tests for SSA, viz. evaluating
the evidence for interannual and interdecadal oscilla-
tions in global temperatures.

6.1 The historical global temperature record

The dataset we will focus on is the 136-year record
of global, annual-mean, combined land and sea near-
surface temperatures, as compiled by the Intergovern-
mental Panel on Climate Change (the “IPCC series”)
(Folland et al., 1990; Folland et al., 1992). SSA was first
applied to the IPCC series by Ghil & Vautard, 1991,
who also considered other historical records derived
from closely related datasets (Jones et al., 1986a; Jones
et al., 1986b). Ghil & Vautard, 1991, reported an in-
terdecadal oscillation with a period slightly longer than
that previously reported by Newell et al., 1989, in global
night-time marine air temperatures (NMAT) using a
more conventional Fourier analysis. Both Newell et al.,
1989, and Ghil & Vautard, 1991, note that the existence
of such an oscillation would have significant implica-



tions for long-range climate prediction and the detec-
tion of anthropogenic climate change. The stability of
Ghil & Vautard, 1991’s result was subsequently exam-
ined by Elsner & Tsonis, 1991, and Allen et al., 1992b,
in a correspondence which clearly indicated the need for
a formal significance test for SSA against autocorrelated
(red) noise.

Vautard et al., 1992, applied a number of tests to
this series, all of which considered the white noise null-
hypothesis exclusively.® As demonstrated above, test-
ing against white noise is necessarily inconclusive when
dealing with temperature data since both empirical and
physical arguments suggest that the noise will be red.
Results from tests against white noise may, therefore,
be misleading. In a 136-point segment of AR(1) noise
with the same lag-1 autocorrelation as the IPCC series,
the probability of an EOF-pair appearing as an inter-
decadal oscillation, passing all the pair-selection criteria
and significance tests of Vautard et al., 1992, is approx-
imately 50% Allen, 1992.7

Newell et al., 1989, also confine their significance
analysis to white noise on the grounds that the auto-
correlation function of the NMAT series does not de-
cay exponentially with increasing lag. While we cannot
comment explicitly on Newell et al., 1989’s results, we
note that an exact exponential decay of autocorrelation
is not expected for finite segments of AR(1) noise. In
particular, either a trend or an interannual oscillation
would force the autocorrelation function to depart con-
siderably from an exponential even in the case that vari-
ability on all other time scales (including interdecadal)
is attributable to AR(1) noise.

Figure 9 shows the IPCC series tested against a null-
hypothesis of pure AR(1) noise. For continuity with
previous work, we show results using the data-adaptive
basis, Ep, of conventional SSA. Noise parameters are
fitted to the data series following the procedure de-
scribed in section 4.3 above. Only one excursion above
the 97.5'" percentile of the surrogate distributions oc-
curs; EOF 1 lies in the 98" percentile. The proba-
bility of one or more excursions out of a possible 40
above the 97.5'" percentile is 45% (evaluated by a sec-
ond pass through the surrogate ensemble — see section

6A test against AR(1) noise has only recently been developed
for MTM spectral analysis (Mann & Lees, 1995); consistent with
the results reported here, it shows no significant evidence for low-
frequency oscillations in the IPCC series.

"The only test not addressed explicitly in Allen, 1992, is the
method of computing the statistical dimension, vy, used in Ghil
& Vautard, 1991; Vautard et al., 1992; Plaut et al., 1995. Applied
to the IPCC series, this test gives vy ~ 0.45M (Vautard et al.,
1992), the result we would expect for a pure AR(1) process.
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4.2), so the information that one such excursion occurs
is not enough for us to reject the null-hypothesis that
the IPCC series is a segment of AR(1) noise. However,
we have prior reason to focus attention on EOFs 1 and
2, since they represent all variability on >40-year time
scales, unlike all other EOFs which represent variabil-
ity only in a particular spectral interval. These EOFs,
therefore, are of particular interest for reasons other
than the fact that their eigenvalues are singled out as
improbably high by the statistical test. We can, there-
fore, say that the variability on >40-year time scales
(i.e., the non-linear trend) in the IPCC series is incon-
sistent (at 97.5% confidence) with the hypothesis that
the series was generated by an AR(1) process.
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Figure 9. Application of Monte Carlo SSA to the IPCC record
of global-mean near-surface temperatures 1858-1993, testing the
null-hypothesis of pure AR(1) noise. One excursion occurs above
the 97.5th percentiles, which in itself is not enough to reject the
AR(1) noise hypothesis. If, however, we take into account the
prior information that we ezpect any departure to occur on >40-
year time scales (i.e., in EOF 1) due to the presence of a non-
linear trend, then the fact that this excursion indeed occurs in
EOF 1 makes it much more significant (see text). We therefore
conclude that the non-linear trend in the IPCC series is incon-
sistent with the pure AR(1) noise null-hypothesis at or near the
97.5% level.

If it seems counterintuitive that we can reject the
specific null-hypothesis (that the non-linear trend in
the IPCC series is consistent with AR(1) noise) at a
much higher level than we can reject the general null-
hypothesis (that the IPCC series is a segment of AR(1)
noise), recall the discussion in section 4.2. The more
specific a null-hypothesis, the easier it is to reject.

We now test the IPCC series against the hypothesis
that it consists of the observed variability on >40-year
time scales plus AR(1) noise. We treat EOFs 1 and 2



as signal EOFs, following the procedure for a composite
null-hypothesis given in section 4.4. EOF 2 is included
even though it is not indicated as significant in figure
9. Having concluded that variability on >40-year time
scales is inconsistent with the null-hypothesis, we treat
all EOFs corresponding to such variability as signal,
whether or not the test indicates them as individually
significant, to maximise the chance of our detecting sig-
nificant variability on some other time scale.

The time scale of decay of autocorrelation in the
noise, after eliminating >40-year time scale variability,
is 1.4 years (using the signal-reconstruction approach,
Allen & Smith, 1994, found a time scale of 1.6-1.7
years, depending on whether or not ENSO variability
was eliminated: the small discrepancy is due to our
use here of the unbiased parameter-estimation proce-
dure). Results are shown in figure 10. No further ex-
cursions outside the 2.5 and 97.5'" percentile limits
occur, even though there is a 43% chance of at least
one occurring purely by chance. Moreover, we have
used the data-adaptive basis that maximises the chance
of high-ranked EOF's appearing significant through the
artificial variance-compression effect. Excursions near
the 95th percentiles occur in EOFs 9 and 10 (dominant
associated period of 5 years) and EOF 17 (2 years).
Note how eigenvalue rank-order fails completely as an
indicator of statistical significance: EOFs 9 and 10 (as-
sociated frequency of 0.2 (years) '), which are unam-
biguously associated with the low-frequency component
of ENSO (Ghil & Vautard, 1991; Allen, 1992; Allen &
Smith, 1994), are indicated by the Monte Carlo SSA
test as more significant than the 6 EOFs which precede
them in the rank order.

To determine whether our failure to detect inter-
decadal oscillations in figure 10 is a consequence of in-
adequate signal-to-noise enhancement with M = 40, we
increase the window width to 60 and repeat the test.
With M now almost half the length of the series, the
artificial variance-compression effect will be very pro-
nounced such that high-ranked EOF's will contain im-
probably high variance even if the data consist of a sam-
ple of pure noise. Even so, the data-adaptive basis still
fails to indicate interdecadal oscillations. We do not
recommend the use of the data-adaptive basis in this
situation, because of the variance-compression problem.
Figure 11 shows the data projected onto the basis of the
null-hypothesis (section 5.2). No excursions above the
97.5th percentiles occur: with M = 60 there is a ~68%
chance of at least one such excursion occurring purely
by chance.

It is not inherently surprising that the IPCC series
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Figure 10. Testing the IPCC series against a null-hypothesis
of the observed >40-year time-scale variability plus AR(1) noise.
No interdecadal or interannual oscillations are indicated at the
97.5% confidence level, even with a >40% chance of at least one
such excursion occurring by chance.
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Figure 11. As previous figure but with a window width of 60
to increase the potential signal-to-noise enhancement, and using
the EOF's of the null-hypothesis.

can be represented by such a simple model, viz. a non-
linear trend added to a two-parameter noise process. It
consists, after all, of only 136 noisy data-points. We
do not claim that all <40-year-time scale climate vari-
ability can be represented by an AR(1) process with
an autocorrelation decay time of 1.4 years: simply that
all variability indicated by SSA in the IPCC series is
consistent with this model. Applying SSA to the IPCC
series does not provide any significant evidence for in-
terdecadal oscillations in global temperatures, and even
on interannual time scales, the evidence for oscillatory
behaviour is weak.

We stress that if we were to introduce more infor-



mation, in the form of other data-sets or physical mod-
els, we might well find that there are components of
the IPCC series which are attributable to oscillatory
phenomena. Indeed, EOFs 9 and 10 are found to cor-
respond to ENSO, and EOFs 5 and 6 may be associ-
ated with a decadal sea-surface temperature oscillation
in the equatorial Atlantic, reported by Allen & Smith,
1994, and (independently) by Mehta & Delworth, 1995,
who also find a similar phenomenon in a coupled gen-
eral circulation model, providing further evidence that
it represents a genuine signal, and by Mann & Park,
1994, using a Multi-Taper-based analysis.

There may well be an oscillation, somewhere in the
climate system, with a characteristic period of 20-30-
years, and our failure to detect it in the IPCC se-
ries might simply be due to this oscillation having a
dipole structure such that its impact on the global
mean temperature is weak. Indeed, Latif & Bar-
nett, 1994, find model-based and observational evidence
for interdecadal-time-scale variability in North Pacific
SSTs whose overall pattern (a North-West to Central
Pacific dipole) closely resembles the pattern associated
with the interdecadal component of the IPCC series re-
ported in Allen & Smith, 1994. While suggestive, this
does not necessarily indicate that the phenomenon re-
ported by Latif & Barnett, 1994, is the origin of inter-
decadal variability in global temperatures since there
is a high chance that any signal on this time scale
would show a consistent phase-relationship with the in-
terdecadal component of the IPCC series, given that
the series is only long enough to span ~3 cycles.

6.2 Consequences: over-confident prediction

Failure to detect an interdecadal oscillation in the
IPCC series has practical consequences. Vautard et al.,
1992, attempt predictions of global temperature to the
year 2000 using an SSA-based empirical model derived
from the IPCC series. Such forecasts will clearly be in-
fluenced by the assumptions that the interdecadal oscil-
lation exists and reached a maximum in the late 1980s.
These assumptions are simply not justified by the evi-
dence provided by these scalar series.

In light of these results, it may seem surprising that
Vautard et al., 1992, report skill to remarkably long
lead-times in predicting the SSA-filtered IPCC series.
While acknowledging that this area requires further in-
vestigation, we note that part of this skill is attributable
to the fact that they are validating their forecasts not
against raw data but against SSA-based filtered recon-
structions of the IPCC series, as given by equation (13),
(see their figure 16a). Predictions of filtered reconstruc-
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tions on lead-times less than the window-width contain
a strong element of artificial skill, for the following rea-
son. Suppose we are attempting to forecast the 1993
value of the “interdecadal component” of the IPCC se-
ries (the filtered reconstruction using only EOFs 3 and
4 and a 40-year window), using only data prior to 1983.
The quantity which we are attempting to forecast actu-
ally consists of the projection of the data from 1954 to
1993 onto EOFs 3 and 4, each multiplied by the final
element of the corresponding EOF and added together.
Thus, although no data after 1983 is used in the fore-
cast, so there is no “look-ahead”, three-quarters of the
quantity being forecast actually consists of data prior
to 1983, so some skill is inevitable.® Even though the
forecasts appear to be “out-of-sample”, a large fraction
of the variance is, effectively, hindcast; simple tests on
stochastic systems reveal how misleading this can be.

6.3 The extended Southern Oscillation Index

The dataset we now analyse is the 3-month averaged
difference in pressure between Tahiti and Darwin, be-
ginning in March 1866 and ending in February 1993.
The data, kindly provided by P. D. Jones, are iden-
tical to those used in Jones, 1989, to compute a nor-
malised SOI. Our analysis differs from that of Jones,
1989, in that we leave in the annual cycle; this allows
us to demonstrate the algorithm described in section
4.4, by testing for subsidiary peaks in data containing
a single dominant signal.

Since the spectral resolution of single-channel SSA
is limited by 1/M, we use M = 60 3-month inter-
vals, corresponding to a window-width of 15 years, to
obtain sufficient resolution to distinguish the “quasi-
biennial” (QB) and “quasi-quadrennial” (QQ) compo-
nents of the ENSO signal (Rasmusson et al., 1990; Jin
et al., 1994; Jiang et al., 1995). Previous applications
of SSA to the SOI (e.g. Keppenne & Ghil, 1992) have
typically used windows of 50—-60 months, applied to a
shorter SOI series with the annual cycle removed. Using
a 50-60-month window typically gives two EOF-pairs
with associated frequencies of ~26 and ~52 months
(Dettinger et al., 1995). In the past, these have been in-
terpreted as representing distinct spectral features but,
because they are separated by almost exactly 1/M, they
are equally consistent with the interannual variability in
the SOI being a broadband signal which is artificially
split up by SSA into discrete frequencies. Allen, 1992,

8The origin of artificial skill in predictions of filtered recon-
structions on lead-times less than the window width emerged
through conversations with Chris Strong; Tom Mullin and co-
workers have noted a similar effect.



applied a 120-month window to the standard 1935-85
SOI with the annual cycle removed and found the six
leading EOFs formed three pairs with associated peri-
ods of 30, 41 and 62 months: 3 oscillatory pairs, again
separated by almost exactly 1/M.°

Figure 12 shows the extended SOI tested against a
null-hypothesis of pure AR(1) noise. We use the basis
corresponding to the null-hypothesis as described in sec-
tion 5.2, to avoid artificial variance-compression. The
spectrum is clearly dominated by the annual cycle, and
since the noise here also includes variance due to the an-
nual cycle, no other excursions occur above the 97.5"
percentiles of the surrogate distributions.
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Figure 12. Testing the quarterly Southern Oscillation Index
against pure AR(1) noise, using the EOF's of the null-hypothesis.
We confidently reject this null hypothesis; the data is clearly dom-
inated by the annual cycle, which we remove via the methods of

section 4.2 before repeating the procedure to obtain figure 13.

Figure 13 shows the same data tested against a null-
hypothesis of AR(1) noise added to the annual cycle
using the eigenbasis of the composite covariance ma-
trix defined in equation (26). With the AR parameters
adjusted using the procedure in section 4.4, seven ex-
cursions above the 97.5'" percentiles occur, out of a
possible 58 (the EOFs corresponding to the annual cy-
cle having been eliminated from the statistics). The
probability of this many excursions is less than 0.8%,

9 Another example of the tendency of SSA to split a broad-
band signal into discrete frequencies is found in Vautard et al.,
1992’s analysis of the IPCC series. Using a 40-year window, they
report five spectral peaks in the 5-10-year range, with associated
periods of 9.6, 7.5, 6.2, 5.2 and 4.7 years. The separation of these
peaks is 0.027 £ 0.004 cycles/year, which corresponds closely to
1/M = 0.025 cycles/year. Note that a trend also introduces a bias
towards peaks separated by 1/p in Maximum Entropy Method
(MEM) spectral estimation, where p is the number of poles in
the MEM estimate.
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indicating that we can reject the hypothesis that the
SOI consists of an annual cycle plus AR(1) noise at
>99% confidence without any additional information.
While not surprising, this demonstrates that the use of
the null-hypothesis basis does not make Monte Carlo
SSA unduly conservative.
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Figure 13.
dex against the observed annual cycle plus AR(1) noise. With

Testing the quarterly Southern Oscillation In-

adjusted noise parameters, anomalously high variance is now in-
dicated in EOFs corresponding to periods of 45, 28, 9.8 and 6.6

months.

The significant EOF's in figure 13 are located in four
distinct spectral regions, two interannual and two sub-
annual. Inspection of cross-correlations identifies them
unambiguously with EOF-pairs 3 & 4, 9 & 10, 23 & 24
and 25 & 26 of the data covariance matrix. The peri-
ods associated with these pairs are 45, 28, 9.8 and 6.6
months respectively. If we include these into the null-
hypothesis and repeat the test (figure 14) we observe
excursions above the 97.5" percentiles in EOFs corre-
sponding to frequencies below that of the QQ mode,
consistent with the period of the QQ mode being much
less well defined than that of the QB mode (Penland &
Sardeshmukh, 1995).

This simple analysis of the extended SOI provides
some support to the notion that the QQ and QB inter-
annual components of ENSO are distinct spectral fea-
tures: they both appear significant in figure 13, and
are separated in the frequency domain by EOFs whose
variance is well within that expected from the noise.
Note, however, that QB mode only appears more sig-
nificant than variability on 3-year timescales because we
have been testing against AR(1) noise. Both spectral
components contain similar variance, so tested against
the white (or “locally white”) null hypothesis, they
would appear equally significant. Furthermore, the
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Figure 14. Testing the quarterly Southern Oscillation Index
against the observed annual cycle, 45, 28, 9.8 and 6.6-month oscil-
lations plus AR(1) noise. Further excursions above the 97.5th per-
centiles occur mainly in EOF's corresponding to frequencies below
that of the 45-month “QQ” mode, indicating spectral broadening

towards lower frequencies.

well-known phase-locking between ENSO and the an-
nual cycle has not been taken into account. This could
easily cause multiple frequencies to appear, separated
by integer multiples of the annual cycle, in an underly-
ing broadband phenomenon.

The two subannual components of the SOI, which
would certainly have been missed had we relied on
eigenvalue rank-order as a criterion of significance, also
merit further investigation; it is interesting to note that
Robertson et al., 1995, also detect a 9—10-month signal
in SSTs generated by a coupled model. Further investi-
gation would have to take phase-locking into account to
distinguish the effects of a non-sinusoidal annual cycle
from those of a 9-10-month oscillation.

6.4 The Central England Temperature Series

The Central England Temperature record (CET se-
ries) is the longest set of instrumental temperature ob-
servations available: a monthly series from 1659 to the
present has been obtained by combining the diaries of
several observers (Manley, 1974) using indirect infor-
mation and interpolation to fill any gaps (Parker et al.,
1991). Plaut et al., 1995, have applied SSA to this se-
ries and report detecting evidence of oscillations with
periods of 25, 14, 7.7 and 5.2 years against the null-
hypothesis of white noise. Here, we address the ques-
tion of whether SSA can distinguish between the CET
series and a segment of AR(1) noise.

Figure 15 shows the CET series tested against a null-
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hypothesis of >40-year variability (contained in EOFs 1
& 2) plus AR(1) noise. For consistency with Plaut et al.,
1995, we use 12-month means of the CET series from
March 1659 to February 1993 (335 years), M = 40, and
the data-adaptive EOFs of standard SSA (hence the
significance of high-ranked EOFs is enhanced through
artificial variance-compression).

CET series vs. trend + AR(1) noise, dato EOFs, M=40
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Figure 15. Testing the Central England Timeseries of annual
temperatures from March 1659 to February 1993 against a null-
hypothesis of >40-year variability and AR(1) noise. With this
window width, SSA does not indicate interannual or interdecadal

oscillations at the 97.5% confidence level.

EOF-pairs (adjacent, similar-variance squares and
diamonds) are observed at frequencies of 0.04, 0.07,
0.13 and 0.20 cycles/year. These correspond to the four
components identified by Plaut et al., 1995, but none
of them is significant even at the 95% level. No excur-
sions occur above the 97.5'" percentiles, and four occur
below the 2.5t percentiles, but repeating the test using
the null-hypothesis basis confirms that this is a con-
sequence of artificial variance-compression “starving”
the lowest-ranked EOF's of power (see figure 16). We
conclude, therefore, that SSA with M = 40 does not
provide evidence that the CET series is distinguishable
from >40-year variability plus AR(1) noise.

We can increase the possible signal-to-noise enhance-
ment in SSA by increasing the window width, at the
cost of increasing the number of EOFs and thereby re-
ducing the statistical significance of individual excur-
sions outside the surrogate data bars. Figure 17 shows
the CET series tested with a 100-year window. We now
use the null-hypothesis basis, since with this longer win-
dow, the effects of artificial variance-compression are
quite pronounced. One EOF with an associated period
of 22 years now appears in the 98" percentile of the
corresponding surrogate distribution, and two more ex-
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Figure 16. As previous figure, but using the EOFs of the
null-hypothesis. Note how EOFs 3 & 4 and 5 & 6 are forced, by
the constraint that they must be orthogonal to EOFs 1 & 2, to
“pair up”. No excursions occur below the 2.5th percentiles, since

there is no artificial variance-compression in this case.

cursions above the 97.5'" percentiles occur at higher fre-
quencies. This might seem encouraging, but the prob-
ability of three or more excursions occurring above the
97.5th percentiles is 42%, so on the basis of this data
alone, we should still hesitate to conclude that the CET
series is distinguishable from a trend-plus-AR(1)-noise.
Variability on 14, 8 and 5-year time scales is consistent
with this null-hypothesis.

The use of a longer window also allows us to exam-
ine evidence for oscillations on 60-80-year time scales.
A 65-70-year global temperature oscillation, apparently
originating in the North Atlantic, was recently reported
by Schlesinger & Ramankutty, 1994, also through the
application of SSA to the IPCC series, although El-
sner & Tsonis, 1994b, observed that the results in
Schlesinger & Ramankutty, 1994, were consistent with
the hypothesis that the IPCC series consisted of a
segment of AR(1) noise. More recently, Schlesinger
& Ramankutty, 1995, used a version of Monte Carlo
SSA, and the FMU eigenspectrum-shape test described
above, to support their earlier claims. Since, however,
they only tested the significance of the two highest-
ranked EOFs without inspecting the remainder of the
spectrum, their results remain inconclusive (it will al-
ways be possible to fit the variance in an EOF-pair using
a 2-parameter noise model, so failure to do so — i.e., re-
jection of the null-hypothesis on the basis of EOFs 1 &
2 alone — may simply indicate inadequate noise-model-
specification).

A second reason why Schlesinger & Ramankutty,
1995’s results require further investigation is that they
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Figure 17. Testing the CET series against the null-hypothesis
of >100-year variability and AR(1) noise using a 100-year win-
dow. The null-hypothesis basis must be used to avoid the effects
of artificial variance-compression. Three EOFs appear significant
at the 97.5% level, one indicating power at 22-year periods, but
with M = 100 the probability of three or more excursions above
the 97.5t0 percentiles is >40%, so the trend plus AR(1) noise null
hypothesis cannot be rejected on the basis of this data alone. No

oscillations are indicated at 60—80 year periods.

were attempting to use SSA to examine possible os-
cillations with periods longer than the window width.
They predicted the form of the trend in the IPCC se-
ries using an energy balance model, and tested whether
the variance contained in EOFs 1 and 2 was consis-
tent with the hypothesis of AR(1) noise plus a trend of
this form. This approach cannot distinguish between a
trend which is inconsistent with that predicted by the
energy balance model and an oscillation with a period
longer than the window-width: both would introduce
unexplained variance into EOFs 1 and 2. It is therefore
of interest to establish whether evidence for a 65-70-
year oscillation can be found in a longer time-series.

Figure 17 indicates that the variance on 60-80-year
time scales in the CET series is consistent with the hy-
pothesis of long-term variability (>100-year time-scale)
plus AR(1) noise. Since we would expect any oscilla-
tion in North Atlantic temperatures to have an impact
on temperatures in Central England, this analysis does
not support the suggestion that the unexplained non-
linearity in the IPCC series is due to a 65-70-year os-
cillation originating in the North Atlantic. Analysis of
other datasets may clarify this issue.

The conclusion of our analysis of the CET series is
thus a conditional. If we use a relatively large window
to maximise possible signal-to-noise enhancement, we
do find there is more power on 22-year time scales than



we would expect (at the 97.5% confidence level) given
a null-hypothesis of >100-year variability plus AR(1)
noise. If we had prior reason to expect anomalous be-
haviour on this time scale in the CET series, then SSA
would provide evidence in support of that expectation.
In the absence of prior expectations, however, these re-
sults are consistent (at this confidence level) with the
hypothesis of no significant interannual or interdecadal
oscillations in the CET series.

7 Summary

SSA represents an extremely powerful analysis tech-
nique. Its applicability to non-stationary processes and
phase- and amplitude-modulated oscillations makes it
an ideal tool for the analysis of climate data. Yet the
same properties which allow SSA to extract weak sig-
nals under unfavourable conditions also produce sugges-
tively physical-looking patterns from pure noise. SSA

must be used in conjunction with an adequate hypothesis-

testing procedure.

Building on the foundations laid by Vautard & Ghil,
1989, this paper has illustrated these pitfalls and pre-
sented a methodology to avoid them, implementing sug-
gestions made in Broomhead & King, 1986a. In section
3 we showed that, contrary to widespread current prac-
tice, the occurrence of a pair of sinusoidal EOFs /4 out
of phase with each other does not provide prima facie
evidence for a physical oscillation. Indeed, EOFs will
only fail to form such “oscillatory pairs” under very spe-
cial circumstances (e.g. an infinite series of pure AR(1)
noise). We also demonstrated that eigenvalue rank-
order is not a reliable indicator of statistical or physical
significance, except in those cases (rare in geophysics)
when the stochastic component consists solely of white
noise. The standard practice of “truncating the eigen-
spectrum”, discarding all EOFs except those with the
largest eigenvalues, is simply incorrect when employed
to discriminate between signal and autocorrelated noise.

Stability of a result to varying the window width is
not a sufficient condition for a physically significant sig-
nal; spurious EOF-pairs can be stable over a range of
window widths. Likewise, confirming results using data
from different sources cannot provide a substitute for a
formal hypothesis-test: much of the “noise” in geophys-
ical data consists genuine but unpredictable physical
processes rather than observational errors, and there-
fore will be strongly correlated between contemporane-
ous datasets. A random (and insignificant) fluctuation
in global temperatures, for example, would appear in
many local series; analysis results from different series

26

would be far from independent, making the overall sig-
nificance level difficult to compute.

In section 4 we presented a method of distinguishing
signals from arbitrary noise processes via SSA, based
on the notion of “surrogate data”. A Monte Carlo en-
semble of surrogate series is generated using the null-
hypothesis as a model, and a test is applied to establish
whether it is possible to distinguish the data series from
a member of the ensemble. In geometric terms, the test
consists in asking, for each EOF, “does the data con-
tain significantly more (or significantly less) variance in
the direction in state-space defined by this EOF than
we would expect if the null-hypothesis is true?” While
we only consider the AR(1) noise null-hypothesis, the
procedure is equally applicable to others: for example,
identifying modes of variability in a dataset that are in-
consistent with the behaviour of a climate model, treat-
ing the model as the source of “noise”.

As with any analysis technique, Monte Carlo SSA
is more complicated when the null-hypothesis we wish
to test is not specified a priori. In sections 4.3 and
4.4 we address the problem of testing whether the data
might arise from an unspecified AR(1) process or some
deterministic signal plus an unspecified AR(1) process
(i.e., cases when the noise parameters — variance and
lag-1 autocorrelation — are unknown). The approach we
propose is a method of fitting AR(1) parameters to the
data such that the process we test is, on some measure,
that which is most likely to cause us to fail to reject the
null-hypothesis. In this way, if we reject that process,
we have reason to believe that all other AR(1) processes
would also be rejected at the same or higher confidence
level. The algorithm proposed makes it unnecessary to
preprocess data to remove a trend or annual cycle be-
fore the analysis. Such preprocessing can lead to spuri-
ous results because the implicit response function of the
preprocessing algorithm can masquerade as a physical
signal.

The basic principle of surrogate data testing is that
both data and surrogates must be treated in exactly the
same way. Conventional SSA, however, selects the EOF
basis which compresses the maximum possible variance
in the data series into the highest-ranked EOF's, implic-
itly assuming that none of the data is noise. In section
5.2 we introduce a variant on SSA which is based on
the assumption that all of the data is noise except that
which we have established as signal. This, together with
the Monte Carlo SSA test, gives us a signal detection al-
gorithm in which, if the user-specified significance level
is 97.5%, there really is a 2.5% chance of incorrect re-
jection of a valid null-hypothesis. To the best of our



knowledge, this property is not shared by any other
signal-detection algorithm involving SSA.

In section 6 we demonstrate the application of these
techniques to three well-known climatic time-series. We
show that the 136-year IPCC series of global annual-
mean near-surface temperatures is consistent with a
non-linear trend with added AR(1) noise (i.e., this null-
hypothesis cannot be rejected at the 97.5%, or even the
50%, confidence level). The IPCC series does not, in it-
self, indicate either interannual or interdecadal oscilla-
tions. In contrast, the 126-year series of quarterly mean
sea-level-pressure differences between Tahiti and Dar-
win shows a prominent annual cycle together with sig-
nificant additional peaks at 4-year, 2-year, 9—10-month
and 6-7-month time scales. These latter sub-annual
peaks, which are clearly significant against an AR(1)
noise null-hypothesis, would be missed by any analy-
sis using variance or eigenvalue rank-order as a signif-
icance criterion. An analysis of the 335-year Central
England Temperature series shows no interannual or in-
terdecadal oscillations if a window width of 40 is used.
Some evidence of an oscillation with a 22-year period
emerges with a 100-year window, but this evidence is
inconclusive since the probability of the observed num-
ber of excursions above the 97.5'" percentiles occurring
purely by chance in all the EOF's tested is >40%. No
evidence is found in support of a North Atlantic oscil-
lation with a period of 65—70 years.

These negative results from our analysis of the two
temperature records do not indicate any flaw in the ob-
servational records themselves; the correct conclusion
to be drawn is simply that is difficult to establish that
the low-frequency temperature variability of the climate
system should be characterised in terms of oscillations,
modulated or otherwise, solely on the basis of short
scalar time-series. In short, the AR(1) model proves
very hard to beat. In as much as AR(1) noise is exactly
what we expect from a randomly-forced dissipative sys-
tem with a finite heat capacity, this is not surprising.

SSA, as introduced by Vautard & Ghil, 1989, and
extended by others, provides a much-needed tool in cli-
mate research. Monte Carlo SSA, as presented in this
paper, hones this tool, allowing it to be applied to a
significantly wider range of tasks. We have presented
the technique in sufficient detail to make it generally
available, but in conclusion, we stress that the basic
idea is very simple, and equally applicable to conven-
tional EOFs and related analysis techniques. We find
the eigenvectors of an estimated covariance matrix, and
use a Monte Carlo procedure to establish which, if any,
of these eigenvectors account for more power in the data
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series than we would expect if the null-hypothesis is
valid.

Many practitioners have come to distrust the results
of formal statistical tests because of implausible signif-
icance claims that often result either from misspecifi-
cation of the null-hypothesis or from inappropriate use
of a test. Yet when an ostensibly innocent step, such
as taking EOF's, can generate oscillatory patterns from
pure noise, we cannot afford to rely on purely sub-
jective criteria to identify signals of interest. Appli-
cations of time-series analysis techniques in geophysics
have tended to focus on extracting weak signals which
would otherwise be invisible in the noise. An equally
important application is to tell us which of many all-too-
visible patterns really indicate deterministic and pre-
dictable behaviour.

Appendix: Parameterizing the distribution of
surrogate projections

The Monte Carlo step to obtain the surrogate dis-
tributions represents the main computational burden
of the algorithm described above. While necessary if
we are dealing with complex null-hypotheses, such as
“noise” which has been generated by a chaotic system,
it may be eliminated if (i) the noise distribution is Gaus-
sian (as is the case for AR(1) noise); (ii) the expected
noise covariance matrix, Cy = &£(Cg), is known an-
alytically and (iii) the EOFs of interest are approxi-
mately sinusoidal. In this situation, the approximate
distribution of the diagonal elements of Az = ETCRE,
where the columns of E are the data EOFs, the sur-
rogate EOFs or some other orthonormal basis, can be
calculated analytically. Dropping the r subscripts for
clarity, we have

M M
Niyiy + Apgry = Z Z ZElz;CijEjk~ (27)

k€[k k2] i=1 j=1

If EOF-k; and EOF-k; form a pair of sinusoids in
quadrature with angular frequency w, then with the VG
summation convention for C (and with the BK conven-
tion, neglecting end effects),

M M
§ :E :efzwkzc(i_j)euuk]

Moy + Ao, =

=1 j=1
M M
= Z ZC(,;]') COka(i — ])
i=1 j=1
M-1
= (M — |€])cq coswil, (28)
{=1-M



ce being the estimated series covariance at lag ¢. The
equality (28) is exact if and only if wM = 2nm where n
is integer, 0 < » < M, in which case Ay, 5, = Aok, At
intervening frequencies, normalisation constraints mean
that EOF-k; and EOF-k; cannot be a pair of equal-
amplitude sinusoids, but this turns out to be relatively
unimportant for estimating distributions.

Equation (28) is simply M times the standard spec-
tral estimate for a periodogram smoothed with a tri-
angular (Bartlett, 1950) lag window. Its asymptotic
distribution is given by

A~ E(4) 2, (29
where
E(Arr) = (ETCNE) k. (30)

and the equivalent degrees of freedom, v ~ 3N/M (see,
for example, Priestley, 1981, section 6.2). Since we use
the normalised EOFs to compute £(Agx) in equation
(30), the approximation in equation (28) plays a role
only in the estimate of v, which is not exact in any case
if wM /2 is non-integer.

Surrogate projections onto non-sinusoidal EOFs are
still chi-squared distributed, with a somewhat larger v.
Equation (29) thus gives “surrogate data bars” which
are approximately correct for sinusoidal EOFs and con-
servative for non-sinusoidal EOFs: when the EOFs of
interest are sinusoidal, it provides a simple and com-
putationally efficient alternative to the Monte Carlo
procedure. Applied to the sample series used in this
paper, testing against an AR(1) null-hypothesis, the
chi-squared test gives results which are very similar to
those estimated from a 10,000-member surrogate en-
semble using the basis of the null-hypothesis. Differ-
ences are more apparent using the basis derived from
the data, but overall conclusions are unchanged since
the chi-squared approximation is reasonably accurate
for the sinusoidal EOFs which we are primarily inter-
ested in.

The Monte Carlo procedure also estimates the prob-
ability of n excursions above the m'™ percentile. For
the AR(1) null-hypothesis, this is well approximated by
the binomial distribution which we would expect if the
excursions are independent, so it too can be param-
eterized. Again, the Monte Carlo procedure provides
an essential “fall-back” if significance claims are in any
doubt.

The number of degrees of freedom, v, in equation
(29), is independent of the noise autocorrelation. This
may appear counterintuitive (see, for example, Unal &
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Ghil, 1995) but it is consistent with the Monte Carlo
results and with the spectral analysis literature. The
explanation lies in the fact that the noise has been gen-
erated by a linear stochastic process and thus a lagged
coordinate system exists in which the noise would be
ii.d. Introducing autocorrelation (transforming back
from these lagged coordinates) scales the noise distri-
butions but does not change their degrees of freedom.
These issues are discussed in more detail in Allen &
Smith, 1996.

An exact treatment of sampling uncertainty in SSA
is complicated by the fact that Cp = D”D does not
conform to a standard Wishart distribution (Mardia
et al., 1979) (the “sliding window” algorithm implies
that the rows of D are not independent). Equation
(29) is reminiscent of the error formula for the eigenval-
ues of the data lag-covariance matrix proposed (in the
context of spatial EOF analysis) by North et al., 1982,
and adapted for SSA as equation (3.1a,b) of Ghil & Mo,
1991. Those formulae, however, indicate the sampling
uncertainty of the eigenvalues of Cp, which may or may
not reflect null-hypothesis-violating power in any par-
ticular EOF. In contrast, equation (29) describes the
distribution of variance which we should expect in a
given eigendirection on a specific null-hypothesis.
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