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Abstract 

Given that is not possible to predict the precise evolution of either stochastic processes or chaotic processes from 
observations, a data-based algorithm with minimal model-structure constraints is presented for generating stochastic series 
which are realistic, in that their long-term statistics reflect those of a process consistent with the observations. This approach 
employs random analogues, and complements that of deterministic nonlinear prediction which estimates an expected value. 
Contrasting these approaches clarifies the distinction between Lorenz’s predictions of the first and second kind. Output from 
several nonlinear stochastic processes and observations of quasar 3C 345 are analysed; the synthetic time series have power 
spectra, amplitude distributions and intermittency properties similar to those of the observations. 0 1997 Published by 
Elsevier Science B.V. 
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1. Introduction analogy, one may contrast these two approaches 

Predicting the evolution of physical systems from 

observations is one of the most compelling chal- 
lenges of modem time series analysis. Given an 
observed initial condition, exact prediction is rarely 
possible even for deterministic systems. This implies 
two distinct approaches within prediction: either to 
attempt a “best” estimate of the future, or to at- 
tempt a realistic trajectory which is consistent with 
the observations. Lorenz [1] labels these predictions 
of the first kind and second kind, respectively. By 

through the distinct aims of weather forecasting and 
climate studies. Weather forecasting attempts to sim- 
ulate the precise trajectory the atmosphere will fol- 
low starting from the present set of observations 
(predictions of the first kind). Climate studies, on the 
other hand, are less concerned with matching the 
precise trajectory than with generating trajectories 
which are consistent with the dynamics of the atmo- 
sphere in the long run (predictions of the second 
kind). These goals will almost always diverge, since 
the “best” weather forecast is judged by some cost 
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function (i.e. least square error) the minimum of 
which will not, in general, resemble a trajectory of 
the atmosphere (or even a trajectory of the model). 
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Further complication arises depending on whether 
the process under study is itself deterministic or 
stochastic in nature. In general, predictions of the 
first kind aim at minimizing the difference between 
prediction and future observation for both determin- 
istic and stochastic processes. When the initial condi- 
tion is known with only finite accuracy (hereafter, an 
observation), deterministic prediction aims for the 
expected value of all trajectories consistent with the 
initial (uncertain) observation rather than any indi- 
vidual trajectory. For sufficiently large times, the 
predicted trajectory from an optimal (e.g. least square 
error) model will be constant and equal to the mean 
value of the observable; this trajectory is unphysical 
and the particular state forecast need never be ob- 
served. While a particular deterministic model may 
not behave in this way, the optimal 3 deterministic 
model will. In contrast, predictions of the second 
kind resemble a typical trajectory of the process in 
both cases; although defining “typical” requires 
some care in the stochastic case, since often any 
finite trajectory could be shadowed given some (very 
improbable) set of innovations. 

Roughly paralleling the distinction between deter- 
ministic models and stochastic models, there are two 
broad literatures on data based modelling techniques. 
Classical statistical approaches construct a global 
stochastic model (see, e.g., Tong [2,3]) under the 
assumption that the dynamics are for the most part 
stochastic; there is usually no attempt to reproduce 
fine scale variations in the dynamics 4 (for an excep- 
tion, see Priestley [5]). Alternatively, deterministic 
dynamic reconstruction methods, infer fine scale de- 
terministic dynamics, assuming the complex be- 
haviour is due to deterministic nonlinearity; extrapo- 
lation in time is thus transformed into interpolation 
in state-space (see Refs. [6-S] and references therein). 
Both approaches assume a stationary underlying pro- 
cess. Recent work combines aspects of both ap- 

’ In the least square sense. 
4 By fine-scale we mean detailed structure in the surface de- 

fined by the expected future value as a function of location in 
state-space. Bi-linear, tri-linear, . models capture the large-scale 

structure while locally optimized local (point-wise) linear models, 

for example, attempt to capture the small scale structure (see Ref. 
[4] and the references therein). 

proaches, the SEQUIN model of Borland [9], for 
example, models both the deterministic and stochas- 
tic components of the dynamics explicitly. 

In this Letter, we introduce a hybrid approach, 
with the aim of making predictions of the second 
kind for nonlinear, stochastic dynamical systems 
while minimizing restrictions arising from the choice 
of a particular model-class. Our goal is to generate a 
synthetic signal (or ensemble of signals) consistent 
with the initial condition and which reproduces the 
long-term statistics of “the” system (or process) that 
generated the data; of course in practice one can do 
no more than construct a model for one of the many 
processes which are consistent with a given finite 
data set. Through the random selection of a near 
neighbour in state-space (an analogue forecast), our 
algorithm exploits the deterministic nature of the 
process while incorporating variations in the local 
probability distribution function (PDF), thereby ad- 
hering to the stochastic nature of each observed 
trajectory. In deterministic systems, this PDF con- 
verges toward a &function, and the (correct) deter- 
ministic dynamics are recovered in the combined 
limits of data sets of infinite duration and zero 
observational uncertainty, although the equations of 
motion are never recovered explicitly. 

Applications include (a) both forecasting and 
hindcasting, as in estimating missing observations, 
(b) simulation, which may for example, be used to 
generate stochastic input for large physical simula- 
tion models, and (c) generating stochastic surrogate 
data sets for use in time-series analysis [ 10,111. In 
applications like gap filling, the aim is for a typical 
realization, not a least-square error solution which is 
the mean over all typical solutions. 

The appeal of this approach is two-fold: its sim- 
plicity and the fact that reduces, and perhaps mini- 
mizes, the error due to mis-specification of the struc- 
ture of the model. Early attempts at weather forecast- 
ing had this approach in mind; random analogue 
prediction (RAP) is most applicable in cases with a 
vast observational record and little understanding of 
either the process or the class of models which 
describe it. Forecast errors arise both from incor- 
rectly estimating parameters of a given model and 
from having chosen a model whose structure is 
incapable of representing the underlying process. 
Errors due to model structure are, of course, inavoid- 
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able when dealing with physical observations, where 
the true nature of the process can never be known 
with certainty, and the observations always reflect 
the state of the system imperfectly. All attempts to 
determine explicit equations of motion from observa- 
tions, whether deterministic (e.g. Refs. [6-8,12]), 
stochastic (e.g. Refs. [2,5,13]), hybrid (e.g. Ref. [9]>, 
or based on large “physical simulations” (e.g. nu- 
merical weather prediction [ 141) impose a model- 
space which restricts the processes (e.g. the func- 
tions) which can be fit. Random analogue prediction 

lifts this constraint, but at the hefty cost of requiring 
a span of observations which far exceeds the time 
required for the system to return near a typical point 
on its state-space trajectory. This constraint is shared 
by deterministic dynamical reconstruction methods; 
it was recognized by Lorenz 1151, who also saw both 
the restrictions of analogue prediction and its appli- 
cability to inexact observations of either determinis- 
tic or stochastic processes. 

2. A random analogue predictor 

To obtain a local deterministic predictor [4,12,16], 
we transform the scalar signal si, i = 1,. . . N, with 
sampling time At, into M-dimensional time-delay 
vectors, xi = (Si, s. 1-_r,. . . > s;-(M- ,jr 7 > with delay 
time 7 = rA t. For sufficiently large M, the trajectory 
of reconstructed vectors xi reflects the true state- 
space evolution of chaotic systems [7,8,17]. Deter- 
ministic predictions assume that the trajectory of a 
given xi will resemble that of “nearby” states and 
predict by interpolation [4,7,X,18]. Let x be the 
present state; to predict s’, the value of the signal a 
time T hence, we determine the K nearest neigh- 
bours of x, {x~, k = 1, . . . , K} (the superscript k 
does not refer to time-order) and denote the image of 
each vector xk as sk’. The predicted s’ is then 
estimated from these K images. Specifically, for 
each xk we define the scalar displacement Ak = sk’ 
- Sk. s’ is then computed as s’ = s + A where A is 
determined by local interpolation. The predicted state 
vector X’ is then obtained through delay coordinates. 
This approach works well for low-dimensional 
chaotic systems. It may be improved by reducing the 
weight given to near neighbours which are them- 

selves neighbours in time, and by allowing K to 
vary with x [4,6]. 

How will this approach perform on a stochastic 
process? As a concrete example, we will consider the 

process 

ds( t) = [( (Y - 0.5) p - s(t)] dt 

+ [2@( t)]“2 de, (1) 

where de is an independent and identically dis- 
tributed (IID) Gaussian random increment with zero 
mean and second order moment (d E. d E > = 2d t. 
Process (1) defines a stationary, nonlinear first-order 
stochastic process; s is distributed exponentially with 
unit mean [13]. Numerical integration via local lin- 
earization [ 131 with At = 0.01 and (Y = /? = 1 re- 
veals a power-law power spectrum and intermittent 
behaviour [19,20]. 

A deterministic algorithm applied to data from 
process (l), will predict an estimate of the mean 
value of the ensemble trajectories consistent with a 
given initial condition. As the prediction time in- 
creases, the mean value of this ensemble will ap- 
proach a constant; while predicting this constant will 
minimize the prediction error, the dynamics of this 
predicted series are inconsistent with those of pro- 
cess (1). This has been illustrated for a global deter- 
ministic scheme applied to an AR process in Ref. 

DOI. 
Without the random term, process (1) is a first- 

order differential equation with a 1-D state-space. 
While the stochastic term formally leads to an infi- 
nite-dimensional state-space, local prediction in 1-D 
can completely exploit the deterministic component 
of the model (in absence of observational noise), and 
yield optimal 5 predictions of the second kind, pro- 
vided an appropriate element of randomness is intro- 
duced. The approach we pursue is to alter the deter- 
ministic algorithm above by selecting one of the K 
neighbours at random. Thus, the displacement A 
applied to s is not determined by interpolation of the 
Ak, but rather by choosing one of them, where the 
probability of choosing each Ak is related to the 
distance Dk = 1 xk - x I. In practice, these weights 

5 By optimal, we mean that the P(s(t + At)1 x(t)) defined by 
the model converge to those of the process in the limits defined in 

the following paragraph. 
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would ideally reflect observational uncertainty in the 
limit of large N; for simplicity, weights proportional 
to l/Dk are used below. The value of A4 should 
reflect the dimensionality of a deterministic system 
or the order of a stochastic system, and the amount 
of data; it is treated as a free parameter when not 
known a priori. 

Fig. la shows a 4096-point realisation of process 
(l), while Fig. lb shows one random analogue pre- 
diction of the same length based on this data set for 
M = 1 and K = 5. Figs. lc and Id show the ampli- 
tude distribution and power spectrum of the observed 
series and an ensemble of synthetic series. The gen- 

A 
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eralised fractal dimensions of the signals themselves 
(not their delay reconstructions) [21-231 are also 
similar. This close correspondence indicates that the 
purely data-based random analogue predictor gener- 
ates realisations with statistics similar to the ob- 
served time series. 

Different values of K in the range 2 < K < 10 
give similar results, and given our choice of weight- 
ing function, taking larger K has little impact. As N 
increases, the appropriate K will increase without 
bound, while lim,,, K/N = 0. In this limit, the 
conditional probability distribution for S( t + At) 
given x(t) for the model will converge to that of the 
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Fig. 1. (a) A 4096.point realisation of process (1). (b) 0 ne random anaiogue prediction (M = 1 and K = 5). (c) The probability distribution 

for the amplitude of the realisation (open circles), and of an ensemble of 20 RAP series (triangles). Error bars reflect 67% of the ensemble 
values, while the solid line indicates the theoretical distribution [21]. (d) Power spectrum of the original signal (grey line) and average 

spectrum from the ensemble (central solid line). The two outer lines again bound 67% of the results. 
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process for M = 1. For fixed N, the “optimal” 
value of K may vary with location in state-space, 
analogously to number of near neighbors used in 
local linear deterministic models [4]. In contrast, 
increasing M for fixed N degrades the results, con- 
sistent with the fact that process (1) is first order. 

3. Two astrophysical examples 

Si = z; + cr(zf - zi’_ ,)‘, (3) 

where (6, = 1.90693, +2 = -0.98751, 8, = 
0.78512, e2 = -0.40662, CY = 0.03 and the a, are 

IID Gaussian random variables with zero mean and 
(+ = 0.4. 

We now turn attention to two astrophysical exam- For N = 4096, good random analogues were ob- 

ples, the Barnes sunspot model [24] and an observa- tained with M = 4. Fig. 2 shows results from both 

tional dataset of the quasar 3C 345 [25]. Based on an the original series and a random analogue model 

ARMA (2, 2) model with nonlinear modifications to (M = 4, I = 2 and K = 3). Again, RAP generates 

ensure that s remains positive and tends to increase time series with statistics similar to those of the 
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Fig. 2. (a) A signal generated by the Barnes model. (b) One random analogue prediction (M = 4, K = 3 and r = 2). Panels (c) and (d) are as 

in Fig. 1. Note that the peaks in the spectra of the RAP ensemble mean are lower and broader than that of the observed series. 
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process. As the Barnes model is based on an infinite 
order process, the best value of M will depend on 
the data density (i.e. N). We note, along with an 
anonymous referee, that the model peak at 11 years 
is both lower and broader than that of the process. 
While we do not know how to translate the short- 
comings of RAP into frequency space, we point out 
that integrating over the peak, the model power 
typically falls within in the range of 0.4 to 0.8 that of 
the process. Further, we note that with a sampling 
length of N = 4096, the process itself exhibits fluc- 
tuations of 50% about its mean value. Hence we find 
the discrepancy tolerable. 

Finally, we consider the 800-point light curve of 
the optically violent variable quasar 3C 345 [25] 
(Fig. 3a), which h as been interpreted as consistent 
with a nonlinear stochastic process [20]. Typical of 
observed data, this series is much shorter than the 
numerical examples and contains several gaps. To 
apply the random analogue predictor, one-point gaps 
were filled by linear interpolation, while time-delay 
vectors requiring observations from longer gaps were 
omitted. Fig. 3 shows the results for the case M = 
2, r = 74 (close to the first zero of the signal auto- 
correlation function) and K = 3. Again, satisfactory 
correspondence of statistical properties is obtained to 
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Fig. 3. (a) Light curve of the OVV 3C 345. For visualisation, gaps have been filled by linear interpolation. (b) One random analogue 
prediction (A4 = 2, K = 3 and r = 74). For consistency, each random analogue prediction is m-sampled as the real light curve. (c) The 

probability distribution for the amplitude of the realisation as in Fig. 1, here the filled squares show the mean result for the raw predictions 

(i.e. without imposing observational gaps). (d) Power spectra as in Fig. 1. 
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the extent to which they are known. This test was 
particularly stringent due to the extremely limited 
statistics available. Note that when the data density is 
low, trajectories become unrealistic when the predic- 
tor ventures into regions unexplored in the observa- 
tions. To circumvent this, whenever the distance 
between the current state and its nearest neighbour in 
state-space exceeds half the diameter of the set, we 
back up 5 steps and continue with a different random 
seed, inspired by a similar technique introduced by 
Grassberger for tracing strange repellors. To illus- 
trate the agreement between the observations and the 
simulations, gaps reflecting those in the observations 
have been introduced into the predicted data; the 
filled squares in Fig. 3c indicate the results when the 
full predicted signal is analysed. 

4. Discussion and conclusions 

The random analogue predictor provides time se- 
ries of arbitrary length with statistical properties 
which resemble those of the observations, and thus a 
general approach to predictions of the second kind 
for low order, nonlinear stochastic processes. Two 
particular applications are (1) to estimate missing 
observations, as gaps are common in geophysical 
and astrophysical observations, and (2) to produce 
arbitrarily long series which, in turn, provide forcing 
functions for other models, as in atmospheric forcing 
of the ocean surface [26] or the impact on generating 
power plant simulations of electrical grid frequency 
fluctuations [27]. Work is now in progress on these 
issues, exploring more complex stochastic processes, 
and the use of ensemble prediction (see Refs. [ 14,281 
and references therein). 

The reconstruction approach to prediction trans- 
lates the problem from extrapolation to interpolation; 
for purely data-based models, reliable results are 
limited to regions of state-space explored in the data 
set. In our case, this limitation is reflected in the 
inability to generate events which significantly ex- 
ceed the range of the observations. For example, the 
observed distribution from a long realisation of pro- 
cess (1) will have a large amplitude tail which is not 
reproduced by models based on a short realisation. 
This simply reflects the difference between interpola- 
tion and extrapolation. No general method can both 

avoid spurious behaviours and realistically forecast 
extreme behaviours, without additional information. 
While information is often supplied by the functional 
form of a traditional model, it is difficult to justify 
the relevance of this restriction in regions where 
there are no observations. 

The figures illustrate the extent to which RAP 
mimics the statistics of the observations. Clearly, our 
ultimate goal is to correctly approximate the condi- 
tional probability P( A 1 x) of the underlying process 
without assuming a functional form for either its 
mean as a function of location, or the (local) shape 
of the distribution. To the extent that we succeed, we 
obtain a better estimate of the process dynamics. As 
noted by Farmer and Sidorowich [ 161, local forecast- 
ing provides a test for determinism: if P(A / x> 
converges to a function of x for large data sets, the 
system is deterministic; contrasting ensemble predic- 
tions based on the models of Ref. [16] with those 
given in this Letter suggests a direct test for deter- 
minism in the presence of observational uncertainty. 
RAP has also been incorporated as a method for 
generating (stochastic) surrogate data [29] for Monte 
Carlo tests for deterministic chaos in observed time 
series. Here RAP provides a systematic approach to 
constructing what Juneja et al. [30] have called syn- 
thetic data in the context of turbulent fluid flow. If a 
given “chaos test” cannot identify the observed data 
set from within a collection of appropriately gener- 
ated RAP surrogate series of the same length then 
the conclusion of “chaos” is questionable [ IO,1 11. 

In short, RAP provides a data-based framework 
for analogue forecasting with minimal assumptions 
regarding model structure. As such, it provides a 
useful addition to the toolkit for the analysis of 
nonlinear systems. 
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