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Accurate prediction of a nonlinear system from limited data requires sensitivity 
to the variation of the system’s properties in state space. Two aspects of this 
variability are examined, throwing new light on the ‘limits of predictability’ as 
well as individual predictions. A prediction scheme which embraces the variability 
both of dynamics and geometry is outlined and illustrated. The paper concludes 
with a discussion of residual predictability, proposing a simple test to detect sys­
tematic prediction error, which indicates that further improvement in prediction 
accuracy is possible.

1. S tru ctu re in th e  sen s itiv ity  to  in itia l con d ition

Variability and unpredictability are two of the hallmarks of deterministic chaos; it 
is our aim here to show how the first can be exploited to reduce the second. Figure 
la shows the error-doubling time for a variety of initial conditions on the Lorenz 
attractor (Ziehmann-Schlumbohm 1994; Smith et al. 1994). The colours reflect 
the minimum time required for an infinitesimal uncertainty to double. The red 
points double within one Lorenz second, the orange within two, the yellow three 
and so on. This illustrates the main points of this paper: that the predictability of 
the flow is both variable and highly organized. By exploiting this variability, we 
can significantly improve our predictions. Moreover, arguments based on uniform 
error growth are misleading. The argument linking the largest Lyapunov exponent 
to the ‘prediction horizon’ is a good example; Lyapunov exponents need not reflect 
practical limits of prediction.

To evaluate a set of predictors, we must choose a criteria for comparison. For 
nonlinear systems, the results will be much more sensitive to the particular statis­
tic chosen than an intuition based on independent, identically distributed ( i i d ) 
gaussian residuals would suggest. Prediction errors from chaotic systems are nei­
ther gaussian nor independent; they are correlated both in time and state space, 
and are usually chaotic themselves. We also note that short term error growth will 
depend on the nature of the initial uncertainty; the structure observed when this 
uncertainty is oriented by the largest (global) Lyapunov exponent (as in figure 
la) will differ from cases where it is determined either by the locally fastest grow-

f T his paper was produced from th e  a u th o r’s disk by using th e  T^X ty p ese ttin g  system .
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ing direction, by a random displacement, the most likely observed displacement, 
or from pre-processing of the data.

372

2. N onlinear pred iction  as in terp o la tion  in s ta te  space

The recent success of prediction methods for chaotic dynamical systems (Abar- 
banel et al1993; Eubank & Farmer 1990; Tong 1990) is due, in large part, to the
successful translation of an extrapolation problem to an interpolation problem 
(Eckmann h  Ruelle 1985). Ideally, these methods consider a point in the state 
space of a deterministic physical system. If the equations of motion are known, 
the future of an initial condition may be determined by integration. Alternatively, 
if sufficient data are available, then we can interpolate the future trajectory given 
only the observations. Yet the functions involved in chaotic dynamical systems 
are, at their simplest, nonlinear, and the data are typically distributed on a 
strange attractor. We are faced with a high dimensional (> 2) interpolation of a 
complicated function sampled on an inhomogeneous distribution. With noise.

The two basic approaches to this problem consider either global interpolation 
functions for the entire state space, or restrict attention to local regions. The 
global approach requires a complicated interpolation scheme (e.g. radial basis 
functions or neural nets). Here we will consider the ‘local’ approach (Farmer & 
Sidorowich 1987; Sugihara & May 1990), which allows much simpler interpolation 
schemes. We can test for nonlinearity (Casdagli 1992; Casdagli al. 1992) by 
evaluating a series of local predictors based on the nearest neighbours and 
determining the value, fcc, at which the observed prediction error is smallest. For 
linear stochastic systems, kc should correspond to the largest k, while for noise 
free deterministic systems, kc should be of the order of the dimension of the 
system, given enough data. For deterministic systems with noise and nonlinear 
stochastic systems, a minimum at ‘moderate’ values of k is expected.

As a concrete example, consider the chaotic, two-dimensional Ikeda map,

Akeda(^,2/) =  (1.0 + /x[xcos(t) -  ?/sin(t)],^[xsin(t) +  ycos(t)]), (2.1)
where t = 0.4 — 6.0/(x2 +  y2 +  1) and /x = 0.90. We will make one step ahead 
predictions of the value of x, given 1024 observations and base points (x, y) with 
gaussian noise (< 7 = 0.125) added to the observations. The solid line in figure 2 
shows the out-of-sample, normalized average absolute error, E(k)  indicating kc «  
32. Yet if we consider only the five predictors with 8, 16, 32, 64 and 128, 
then we find the k = 32 predictor is the most accurate just 27% of the time 
(the distribution being 19, 23, 27, 23 and 8%, respectively). This illustrates a 
shortcoming of selecting a predictor with this approach: a global choice of k fails 
to account for the variation in the length-scales of either the dynamics or the 
data distribution. These two effects are shown schematically in figure 3. Figure 3a 
shows a one-dimensional local linear approximation to a polynomial curve. The 
circle shows the radius at which the expected value of the noise is equal to the 
error introduced by the linear approximation of the true curve. The optimal local 
radius within which data should be used, ropt, depends upon the statistics of 
the noise, the data density and the local curvature, and this is our point: that 
even with uniformly distributed data, ropt will change with the local curvature 
of the function estimated. Figure 36 illustrates additional complications due to 
the non-uniform distribution of data, these effects change not only with location,
Phil. Trans. R. Soc. Lond. A (1994)
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Figure 1. (a) Error doubling time on the Lorenz attractor. The colour code reflects the number 
of Lorenz seconds before which doubling occurs (< 1) red, (2) orange, (3) yellow, (4) light 
green, (5) dark green, (6) blue, (7) purple, (> 8) lavender. The number of rapidly doubling 
points is suppressed for clarity. (6) Variation in the absolute value of the quadratic term of the x 
component of the Ikeda map, averaged over angle. The dots show the location of the attractor.
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Figure 2. Average absolute forecast error, E,  as a function of the number of near neighbours, 
used for out-of-sample prediction of (solid) Xi of the Ikeda map, (dashed) the laser system, and 
(dot-dashed) the stochastic sunspot model. E(k ) is normalized by the average deviation. Note 
the log scale.

but also at the same location with different data-sets. Our goal is to develop a 
scheme which adjusts k to minimize the expected prediction error when the local 
curvature is not known.

(a) Imperfect predictions: colourfast chaos
Let D ( x )define a deterministic dynamical system at a point x  in state space.

For simplicity, we consider a scalar measurement function ) of D (x)  repre­
senting the future property of D (x)  which we wish to predict. The problem is 
then one of function approximation; we wish to approximate D(x)  given a par­
ticular family of predictors, F, with parameters A. We may divide D heuristically 
into two parts:

D ( x ) =  F ( \ , x ) + E f (x ), (2 .2 )

where F ( \ , x )  represents an optimal fit to D and represents the deter­
ministic structure in D(x)  orthogonal to A, cc). A, a?) is optimal in the sense 
that the remaining error is due to the structure of itself. For example, if F  is 
a linear model, it reproduces the linear behaviour of D(3 )j exactly; in this case 
E f ( x ) would consist of the quadratic and higher order terms in D{x).

In general, we expect E F(x) to be a good measurement function: when Taken’s 
theorem (Takens 1981, Sauer et al. 1991) applies to a chaotic data stream, it will 
also apply to the time series of residuals from our prediction scheme. This implies 
that the residuals will be chaotic, albeit with more complicated macroscopic struc­
ture and a smaller signal to noise ratio, and indicates the impossibility of truly 
bleaching chaotic data (Theiler & Eubank 1994); chaos is colourfast in the sense 
that the residuals of non-perfect predictors will, in general, be chaotic. Removing
Phil. Trans. R. Soc. Lond. A (1994)
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the global linear structure of a chaotic signal (i.e. ‘pre-whitening’ or ‘bleaching’) 
will not result in IID  residuals (Brock et al. 1991), although it will obscure the 
results of a nonlinear analysis, as stressed by Theiler & Eubank (1993). Similar 
results hold for more complex filters (Broomhead et al. 1992; Sauer et al. 1991), 
where the filter or predictor influences the particular value that we observe, but 
the dynamics are determined by the underlying system.f

As an explicit example of the separation in (2.2), consider local polynomial 
prediction near a point Xq. We expand D(x)  about , setting and
denoting angular orientation by the vector 0  yields

D(x) = D(xo,0) + ai(xo, 0 ) r  + a2(:Co, 0 ) r 2 + a3(xo, 0 ) r 3 + . . . ,  (2.3)
..  ̂ J ' V-------------------*

F(A,*)

where we have shown F ( \ , x )  and Ep(x)  for local linear prediction. For higher 
order polynomial predictors, additional terms would be shifted to F(A, For 
other nonlinear predictors (e.g. a particular radial basis function scheme or a 
specific neural net) this decomposition may be difficult to write down, but holds 
in principle. In linear predictors, ropt will tend to be smaller where a2(iCb, 0 )  is 
large even when the learning data are uniformly distributed.! This is observed 
in the Ikeda map; the absolute value of , 0 ) , averaged over 0 , is shown in 
figure 16.

In the noise-free case, kc is the minimum number of neighbours required to 
solve for F(A, a;). In the presence of noise, the number of neighbours (and thus 
the ropt) will depend on the nature of the noise level as well. It is the aim of local 
optimal prediction to vary the parameters of F  (e.g. the value of k) to balance 
the local structure of E F against that of the noise, while adapting to the details 
of the data distribution, in cases where the analytic structure of D is unknown.

3. A m ethod  o f local optim al prediction

We now consider an algorithm to determine the optimal k from the data alone. 
The data-set is divided into a learning set from which the predictors are con­
structed, and a test set for out-of-sample evaluation. The learning set is analysed 
to estimate the global parameters kc and km8iX (̂ $> fcc), the largest neighbourhood 
to be considered. To predict a point Xq in the test set, the basic idea is to consider 
a small number of points in the learning set close to x  and then employ local 
‘drop-one-out’ predictors with various k to predict each of these points in turn. 
The local k is determined from the prediction error of the known points from the 
learning set.

More specifically, to determine the best value of k at the point a^, determine 
the /cmax nearest neighbours of x$ in the learning set. From this subset, select 
the ATdrop (~ 8) points nearest to Xq with the requirement that these test points 
are well separated in time.^[ In figure 36, these points lie within the smallest 
circle. For several values of k (corresponding to the larger circles in figure 36),

f In contrast to  the series obtained by repeatedly itera ting  a non-perfect predictor.
t  In regions of very low d a ta  density, reverting to  the ‘zero-order’ m ethod of simply taking the image 

of the nearest neighbour can significantly improve the prediction error.
1[ This requirem ent is crucial to  avoid picking consecutive points from the same segment of the t ra ­

jectory which leads to  highly correlated (and misleading) estim ated errors.
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Figure 3. (a) Schematic diagram showing the need to balance the noise level against the local 
curvature in a linear fit to a polynomial function. The circle shows the radius at which the 
deviation due to the linear approximation equals the expected value of the noise. ( ) Circles 
containing 9, IT, 33, 65, 129 and 257 points near the point can be predicted (+ ). The data are 
not evenly distributed within the circles, tending to be almost linear for =  8 and remaining 
completely skewed to the one side of the prediction point until k  = 256.

construct ATdrop distinct predictors by dropping out, in turn, each of the 7Vdrop 
test points and predicting the point omitted. Finally, combine these results for 
each k to obtain an estimated prediction error at for a neighbour predictor, 
and determine the optimal radius at x$.

The choice of optimal radius is non-trivial, and detailed results will be presented
Phil. Trans. R. Soc. Lond. A (1994)
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Figure 4. Time series data from (a) laser experiment and (6) the stochastic sunspot model.

elsewhere (Smith & Drysdale 1994). Picking the k with the minimum estimated 
error frequently improves the predictor a large fraction of the time, but increases 
the overall rms error by making a few bad choices. A second approach is to 
consider the estimated error as a function of k and find the local minimum nearest 
kc. Alternatively, we can partition the entire space, and use the partition element 
to define the initial guess for k (see Smith 1992, 19936). When considering local 
minima, it is useful to check that there is not a significantly (in terms of the 
standard error of the estimated prediction error) deeper minima elsewhere. In 
the results presented below, the second method is used.

We consider data from a deterministic laser system (Weigend & Gershenfeld 
1993) and a nonlinear, stochastic model (Barnes et al. 1980). To apply these 
ideas when only a single time series, is available, we first form a reconstruction 
space via the method of delays (Sauer et al. 1991). This yields the series of M- 
dimensional vectors, Xi

x i —  («$£, S i - j i  • • • 5 j(M  — l ) ) j  ( 3 - 1 )

where j  is the delay time. Under ideal circumstances, Takens’s theorem (Takens 
1981; Sauer et al. 1991) assures us that many properties from the true state space 
dynamics are preserved by this reconstruction. In each case, we use previously 
published reconstruction parameters M  and j  to make direct, fixed step, local lin­
ear predictions, and evaluate the models out-of-sample. For delay reconstructions, 
this model is

M  — l

F ( \ , x )  = Ao + ^t+i (3-2) 
e=o

where the A* are determined by least squares fit to the k nearest neighbours of 
x. The variation of the predictor with x  can be made smooth by weighting the 
contributions of points as a function of their distance from x.
Phil. Trans. R. Soc. Lond. A (1994)

 on November 9, 2018http://rsta.royalsocietypublishing.org/Downloaded from 

http://rsta.royalsocietypublishing.org/


378 L. A. Smith

The laser system has been widely discussed (Weigend & Gershenfeld 1993). 
We take a test set of 1000 points (figure 4a) and a learning set of 8192 points 
with M  =  4 and j  = 1, and predict four steps ahead. The dashed line in figure 2 
shows the expected behaviour of the out-of-sample prediction error with k with 
a minimum at k = 20. Using the drop-one-out scheme of the previous section to 
allow k to vary with x  improves the average absolute error, , relative to the 
kc predictor by 6% (median absolute error by 10%). If we suppress the worst 
10% predictions of each predictor, following Casdagli et al. (1992), this becomes 
a 6.5% reduction of E\ omitting these points also reduces the rms error for the 
kc predictor by an order of magnitude. When we examine, after the fact, how 
often each predictor from the set k =8, 11, 16, 23, 32, 45 and 64 was the most 
accurate out-of-sample, we find they were best 20, 14, 14, 12, 11, 11 and 18% of 
the time, respectively; the optimal k clearly varies with location.

One reason local optimal prediction outperforms fixed k prediction is that small 
fixed k local predictors, like iterated predictors, can get lost in data-dense regions 
where the dynamics are simple, but the series is slowly varying and nearest neigh­
bours are determined by chance (the noise). We expect significant improvement 
using local optimal prediction, for example, in the chemical experiments presented 
by Professor Olsen.

Successful nonlinear prediction has also been interpreted as evidence of deter­
ministic dynamics. This interpretation is misleading for a class of nonlinear, but 
fundamentally stochastic systems which do not meet the criteria of Laplacian 
determinism. We call such systems ‘aleatoric’ since, while the underlying driving 
mechanism appears not to be deterministic, the dynamics are governed in large 
part by deterministic laws, as with a roll of the dice. Consider, for instance, the 
stochastic Barnes model (Barnes et al. 1980) for annual mean sunspot numbers, 
Y  (figure 46). Based on an ARMA(2,2) model with nonlinear modifications to en­
sure that Y  remains positive and tends to increase more rapidly than it decreases, 
the model is

where fa =  1.90693, fa =  -0.98751, 0X =  0.78512, =  -0.40662, a  =  0.03 and
the an are iid gaussian random variables with zero mean and a = 0.4.

To avoid any bias from our knowledge of the underlying system, the recon­
struction parameters of Casdagli et al (1992) ( 3, = 1) for the observed
sunspot series were used to make one year ahead predictions. The dot-dashed 
curve in figure 2 traces the out-of-sample average absolute error as a function 
of k showing a minimum at k =  20, behaviour similar to that expected from a 
deterministic system. Further, the data density and sensitivity of the dynamics 
vary tremendously in different regions of reconstruction space, so local optimal 
prediction improves prediction and the time series of prediction errors is far from 
IID. Distinguishing stochastic aleatoric dynamics from deterministic chaotic dy­
namics in practice may require huge data-sets, either to get good statistics on 
very near returns in reconstruction space or to quantify the average decay of 
predictability more directly (Sugihara & May 1990; Casdagli et 1992).
Phil. Trans. R. Soc. Lond. A (1994)
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4. L im its on pred ictab ility

We now return to deterministic chaos and support our earlier claim that Lya­
punov exponents provide a misleading indication of predictability. In the Baker 
map, the unit square is stretched by a factor of 2 in the x direction, compressed 
by a factor of 2 in y, and the resulting rectangle is then cut and stacked to form 
an area preserving map. In this uniform case, the largest Lyapunov exponent is 
1, and initial uncertainties in the expanding direction double on each iteration. 
Contrast this situation with a class of generalized Baker’s maps, the family of 
Baker’s apprentice maps (Smith 1993a), given by

1

Pi+ 1 —

Xi/a if 0 ^  <
/3(xi — a)mod 1 a  ̂  1 ,

a y i if 0 ^  Xi < a,

a +  (1/(3)([(3(xi — a)J -1- OL  ̂ <  1,

(4.1)

where a  =  (2n — l)/2 n, f3 = 22" and [z\ denotes the greatest integer less than 
or equal to z. In this case a small fraction (1 — a) of the ‘dough’ is stretched a 
great deal (22n) before being cut and stacked, while the majority of the initial 
conditions are displaced only slightly (1/cv). For each n, equations (4.1) define 
an area preserving map whose positive Lyapunov exponent, Ai (= 1 — alog2o;) 
is greater than 1 bit per iteration. Thus the Lyapunov exponents of each of 
these maps is greater than that of the Baker map, yet for the majority of initial 
conditions, the apprentice maps are much more predictable. This is reflected in 
the error doubling time, but not by the Lyapunov exponents. For these maps, 
points of equal doubling time fall in vertical bands reminiscent of those seen 
in the Lorenz system in figure la. Local optimal prediction will adapt to this 
variability automatically. Nevertheless, characterizing the decay of predictability 
by the growth of errors will be complicated by the lack of independence between 
consecutive errors.

5. R esidual pred ictab ility

We began by examining the structure of error doubling times on a strange 
attractor and observed organization in this structure. To conclude, we suggest 
adopting the same approach to look for residual predictability, using a ‘colour 
code’ based on the (signed) prediction error rather than the doubling time. Orga­
nization in these errors means improved prediction is possible. In higher dimen­
sions, where visualization is more difficult, we test for structure in the residuals 
by considering nearest neighbour pairs in the reconstruction space, and simply 
count the number of pairs where both of the associated prediction errors have 
the same sign. If the residuals are independent and identically distributed ( i i d ) ,  
then the expected number of pairs with like signs is easily determined. As an 
IID  sequence should remain i i d  under any general regrouping (see, for example, 
Dawid 1984), contrasting the expected and observed number of pairs with like 
signs provides an immediate, quantitative evaluation of the prediction scheme. 
There are, of course, many more powerful tests,* like the BDS test which consid­
ers delay reconstructions of the series of the residuals themselves (Brock et al.
Phil. Trans. R. Soc. Lond. A (1994)
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1991); the advantages of our test include simplicity and the use of the delay space 
coordinates of the original data to examine small length scales where traces of 
predictability are most likely to be found.

The difficulty of predicting the evolution of a nonlinear system varies with 
the state of the system. Fortunately, this variation is highly organized, and we 
may exploit it both to improve our predictions and our estimate of the degree 
to which we believe them. This organized variability also requires careful consid­
eration when interpreting global bounds on predictability. The goal of nonlinear 
prediction is to remove all recognizable structure from the time series, and it is 
useful to look for structure in the residuals within the framework of the original 
reconstruction space of the observations. Ultimately, our goal is to exploit the 
structure in the dynamics to eliminate structure in the residuals.
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Discussion
R. J. B h a n s a l i ( Department of Statistics and Computational Mathematics, Uni­
versity of Liverpool, U.K.). Dr Smith stated talk that the residuals obtained after 
fitting the ‘local’ model will not be ‘white noice’ with probability one. This led 
me to wonder why he cannot iterate further and attempt to forecast the residuals 
themselves from the past? In a sense, the main reason why a time-series fore­
caster seeks to have ‘white’ residuals is to ensure that what remains after fitting 
an appropriate model is unforecastable from the past. I can see some theoretical 
as well as practical difficulties in ensuring that this is so for the approach he takes 
for nonlinear prediction. I feel, however, that, at least in principle, it should be 
possible to improve over a forecasting procedure which does not yield residual 
which are ‘white’ in the sense of being purely random.
L. A. SMITH. First, let me clarify that this is not a property particular to local 
predictors; global models tend to have even more structure in their residuals than 
local models. In general, we expect that non-perfect predictors of any sort will 
yield non-‘white’ residuals when applied to chaotic systems.

Whether or not one can detect this from the in-sample residuals is a separate 
question. If so, then adopting a more general prediction scheme is in order; it­
erating the prediction procedure is a good example. Even when the in-sample 
residuals are not distinguishable from an HD series, we expect that, given enough 
data, the out-of-sample residuals are. Here again one may use this new data in an 
iterative manner to predict their residuals; but in this case the fair comparison is 
with the original model trained on the entire data-set (including the previously 
‘out-of-sample’ observations). In both cases, the prefered approach will depend 
on whether the parameters in the predictor have their optimal values, in a least 
squares sense. Even with the parameter values which minimize the out-of-sample 
r.m.s. error, the predictor will not yield white (i id ) residuals; these are two dis­
tinct goals when forecasting nonlinear systems. If the parameters are not optimal, 
then further refinement of the initial model with additional data is profitable (i.e. 
it can reduce the r.m.s. error). If the optimal values have been obtained then a 
more flexible prediction scheme is called for; again iterated prediction provides an 
example. In short, I agree with Dr Bhansali that it should be possible to improve 
over a forecasting system in which residual predictability is observed.
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