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Abstract. Numerical weather forecasting has functioned both as one of the 
major inspirations for the development of the theory of nonlinear dynamical sys­
tems, and as one of its leading applications. While ensemble forecasts used by 
operational forecast centres both in the US and the EC provide the best opera­
tional estimates of the reliability of a given day's forecast, many open questions 
regarding the construction and evaluation of the ensembles remain. The concepts 
of shadowing are illustrated and applied to evaluate ensembles for the thermally 
driven rotating fluid annulus. Low-dimensional dynamical systems are obvious 
test-beds for proposed improvements, yet the question arises of whether the sim­
plicity that one often observes in very high-dimensional weather models (with 
millions of apparent degrees of freedom) fails 'even in or only in ' low-dimensional 
chaotic systems; this is addressed and initial results on the uniformity of 'the 
linear range' presented for the annulus. 

Forecasting nonlinear phenomena is a driving force of the applications of 
nonlinear dynamical systems as we head into the next millennium; the fore­
casting of physical phenomena in general, and the Earth's atmosphere in par­
ticular, has been perhaps the major single force in the formation and per­
petuation of nonlinear dynamics this millennium. The role of atmospheric 
dynamics at the turn of this century has many parallels with that of celestial 
mechanics at the turn of the last: pr9viding a slightly too difficult problem. 

We consider the prediction problem given an imperfect model , an uncer­
tain initial condition and an incomplete understanding of observational noise, 
as opposed to assuming a perfect model with uncertain parameters or inex­
act arithmetic. Two physical systems are considered, the thermally driven 
rotating fluid annulus and the Earth's atmosphere [3] . The annulus has the 
advantage of being somewhat simpler physically than the atmosphere, admit­
ting rather simpler forecast models , and enabling analysis of data sets with a 
longer duration (measured in characteristic times of the system); nevertheless 
both are infinite dimensional (fluid) systems for which no perfect model exists . 

Implications of imperfect models and uncertain observations are discussed, 
illustrating the concepts of shadowing for the annulus using a radial basis 
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function (RBF) model [5]. Moving from R 5 to R 106
, the question arises of 

whether the simplicity observed in high ·dimensional systems fails 'even in or 
only in ' (EIOOI) low dimensional chaotic systems. A viable test of inter­
nal consistency is proposed, given the operational constraints in the weather 
forecasting scenario, and results presented for the annulus. 

Dynamics of Uncertainty 

Given a series of observations and some knowledge of the observational 
uncertainty, we may define a perfect model as one which is able to generate a 
solution which differs from the observations in a manner consistent with the 
uncertainty. In general, imperfect models will differ from the perfect model 
scenario in more fundamental ways than simply having inexact (estimated) 
parameters1. Often the structure of the model is wrong in the sense that the 
true dynamics cannot be represented over 'long' periods of time by any set of 
model parameters (e. g. the model consists of a truncated Taylor expansion of 
the perfect model), also the state-space of the model may differ from that of 
the system. How should the 'best' parameters in such models be defined? 

In practice, the lack of sufficient observations to completely specify a model 
state, the knowledge that the available observations are uncertain, and discrep­
ancies between the model state-space and that of the physical system make 
it inadvisable to initiate a forecast from an initial condition based solely on 
current observations. An analysis, A(t, T), for time t is formed by combining 
observations until time T using the model dynamics; thus the initial analysis 
A(O, 0) serves as the best estimate of the state corresponding to the initial 
system state given past observations for this model. Knowledge of the uncer­
tainty distribution is represented by a 'ball ' around the analysis (an isopleth 
of the corresponding probability distribution function). If the model is perfect 
then (i) there exists a model state within the t=O ball which represents the 
system state and (ii) evolution of this model state under the model will yield 
a trajectory which passes through the uncertainty balls at t=l, 2, 3, .... This 
model state need not be unique (fig. la) , and will not be if the model is also 
hyperbolic. An alternative schematic, more familiar to low dimensional dy­
namical systems, is given in fig. lb; the subset of consistent initial conditions 
is determined by considering the intersection of forward and backward projec­
tions (under the model) of past and future uncertainty bounds respectively, 
with that at t = 0.2 

The model is never perfect. If the system is uniformly hyperbolic and the 
model is good then there will exist a system trajectory which stays close to, or 

t ) The und(!,rlying physical system may have dynamics which can not be represented by a 
system of ObEs (or PDEs) , or may not be closed in the thermodynamic sense. 
2l The consistent subsets of fig. 1a are the intersection of the states within the uncertainty at 
t = 0 and the backward projections (onto t = 0) of uncertainties at times t = 1, t = 1, 2, .. 
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FIGURE 1. (a) Perfect model scenario: the 'true' trajectory (horizontal line), analyses 

(+)and corresponding uncertainty (circles). Subsets of initial conditions consistent with 

observations at t = 0,1 (solid line), t = 0, 1, 2 (long dashes),- __ demonstrate the collapse of 

the subset of consistent initial conditions to a non-empty subset containing the 'true' initial 

state as more future observations are obtained. (b) Schematic reflecting the existence of a 

shadowing trajectory from projection of uncertainty distributions . (i) Imperfect model; an 

t-shadowing trajectory exists, passing through the shaded region . (ii) No t-shadowing tra­

jectory exists as there is no intersection between projections of past and future uncertainties 

and the current uncertainty. 

E-shadows the model trajectory. (The Anosov-Bowen lemma states that every 
'good' model can be c:-shadowed [1].) But the question of interest here is find­
ing model trajectories sufficiently near the observed system trajectory to be 
consistent with the observational uncertainty distribution. In general, we can 
make precise statements about the dynamics of the model (we know its func­
tional form), but not about the system itself (we know only the observations). 
And inasmuch as the Herron map is not hyperbolic, it is doubtful that current 
weather models are. In reality, there may be a time r" the I.-shadowing time, 
at which all initial conditions consistent with the observational uncertainty at 
t = 0 are inconsistent with some observation at timeT E (0, r.] (see fig. lbii). 
Note that this time, r,, is a function of the initial state of the system, the 
initial analysis and associated uncertainty, and the particular model. 

Variational data assimilation schemes may needlessly degrade the analysis 
at t < r and t > r due to the model error. By explicit use of the distribution 
of measurement uncertainty and the acceptance of systematic (if unknown) 
macroscopic model error, I.-shadowing is able to cut a trajectory at a location 
like fig. lbii . This suggests regions for model improvement and provides a 
measure of optimality, the distribution of T" which may be used to contrast 
models with similar average forecast errors. Unlike a root mean square error 
cost function, kShadowing times will not penalise realistic model sensitivity. 
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Low-dimensional dynami<;:s in the Annulus 

The thermally driven rotating annulus is an infinite dimensional laboratory 
analogy of the mid- latitude circulation systems in the Earth's atmosphere. 
Fluid is held between concentric cylinders each held at constant temperature 
(the inner one being cooler), and the entire apparatus (including the temper­
ature probe) rotates at a fixed rate D. For large D, the flow appears spatially 
irregular and local co-rotating temperature measurements are chaotic [4 ,5,7]. 
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FIGURE 2. An observed temperature time series (solid) from the annulus and an 

L-shadowing trajectory (dot-dashed) from a RBF model which stays 'close' to the observed 
trajectory for 30 time steps. Four 6-step ensemble predictions are shown: an ensemble of 
128 points, normally distributed within 0.075 degrees of (each component of) the initial 
observation, is initiated at times 11 , 17, 23 and 29 (circles) and iterated under the model 
to give a distribution after 1,2,3,4,5 and 6 steps (dots) , the mean of which is denoted ( + ). 

Figure 2 shows ensemble predictions for a RBF model of the annulus; in R 5 

the distributions of the ensembles show regions of rapid error growth , return 
of skill, and model error (e.g. at times 12, 13 and 31 respectively). At time 
31 the scenario illustrated in fig . 1bii occurs; no shadowing trajectory exists. 
Even in low dimensional systems, models are imperfect. 

High-dimensional Atmospheric Dynamics 

The computational complexity of high-dimensional numerical weather pre­
diction (NWP) models poses an operational restriction limiting real time en­
sembles to abdut 26 members. This suggests the use of constraints so that 
the "most relevant" perturbations are investigated. A topic of much discus­
sion is the optimal choice of constraining sub-space, which is often defined 
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using singular vectors of the linear propagator, M, over an optimisation time 
topt· Singular vectors (SV) [2], employed by ECMWF, are the right singular 
vectors of the linear propagator over [0, toptJ; they represent the directions of 
the linearised system which grow most rapidly over [0 , toptl· The Lyapunov 
vectors (LV) are the left singular vectors of the linear propagator in the limit 
topt -+ oo, over time [-topt, OJ and represent the directions of the linearised 
system which have grown the most. If the model is perfect and the pertur­
bation infinitesimal the breeding vectors (BV) [8], employed by NCEP, evolve 
toward the local orientation of the first global LV. Given an imperfect model 
and finite perturbation the BV contains information on model error; in this 
case there may be no LV, as no trajectory need pass through the analysis. 

Ideally, the best (possible) representation of the system initial condition for 
a given model is included in the ensemble; such a current initial condition 
may be defined by trajectory which shadows farthest both from the past and 
into the future. Defining the perturbation from the current analysis to such an 
initial condition as the 'dream perturbation', the projection of the constrained 
vectors onto this dream perturbation provides a method for (a posteriori) 
evaluation of ensemble construction. 

The treatment of nonlinearity in NWP is based upon several assumptions 
which may be shown to fail even in low (m rv 22) dimensional dynamical sys­
tems. A prime example is the assumption of uniformity in the time scale over 
which the linear propagator yields a reasonable approximation to the dynamics 
for different initial conditions. One familiar with high (m"' 220 ) dimensional 
nonlinear dynamical systems, and the Earth's atmosphere, might respond that 
the huge fluctuations observed in low dimensional systems happen only in low 
dimensional systems: the 'even in or only in' (EIOOI) dilemma. 

The use of SV subspaces assumes that the linearised model remains a good 
approximation for the optimisation time, about 2 days operationally. We plan 
to evaluate this assumption for NWP models by exploiting the common prac­
tice of running twin perturbations in operational ensembles in order to avoid 
the computational cost of additional model runs. Specifically, for every initial 
condition in the ensemble with perturbation 8, 8 E Rm, from the control, a 
twin initial condition with perturbation -8 is included in the ensemble. These 
twin trajectories reflect the time scale over which the linear propagator might 
provide a reasonable approximation of the dynamics of finite perturbations, 
thereby providing both a direct measure of the uniformity, or otherwise, of 
this time scale with initial condition and a test of the internal consistency of 
SV ensembles. Taking the control run as the origin, consider the dynamics of 
each pair of twin perturbations, a+(t) and a-(t). In the linear approximation 
a+(t)+8-(t) = 0 , thus we monitor the time at which the quantity B(t) exceeds 
a given threshold, where 

(1) 
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and II· II is one of several possible metrics. Results from twin experiments run 
under a RBF model for the annulus show that, for uncertainties comparable 
to the analysis error and a 20% threshold (i.e. e < 0.2), linearity breaks down 
rapidly and non-uniformly. Choosing an optimisation time of 4 time steps, SV 
perturbations to 90% of analysis values show a break down of linearity within 
within 6 time steps; only "'20% are linear until optimisation time. Linearity 
breaks down non-uniformly and slightly later in the BY subspace (90% within 
7 time steps) . 

CONCLUSIONS 

While Lyapunov exponents place no a priori limit on the predictability 
of a dynamical system [6], the ~-shadowing time does place an upper bound 
on the predictability given the combination of a specific model of a given 
system and some particular (distribution of) uncertainty. Even this bound 
is of limited utility in practice, since it assumes infinitely large ensembles. 
However, ~-shadowing offers an alternative to the usual prediction error cost 
functions in defining the 'best ' model of a system; it penalises model error 
while utilising realistic model sensitivity, rather than penalising both model 
error and sensitivity. Shadowing failure at an anomalous result yields a trajec­
tory containing useful information over its duration and indicating regions for 
model improvement. An assumption of NWP ensemble formation was tested 
for a · low-dimensional system and the applicability of these results to high­
dimensional systems queried due to the EIOOI dilemma. Twin experiments 
are currently being run for an operational NWP model, the results of which 
will address an aspect of this dilemma. 
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