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Does a Meeting in Santa Fe Imply Chaos? 

I have no data yet. It is a capital mistake to theorize before one has d~ta. 

- Holmes to Watson in A Scandal in Bohemia 
(see Doyle, 1930) 

This chapter compares the success of several nonlinear prediction tech­
niques applied to Data Set. A of the Santa Fe Time Series Prediction and 
Analysis Competition (both A. dat and A. cont. The advantages of a new 
approach making predictions based on selective use of several different de­
lay reconstructions are illustrated, and a comparison of both local linear 
and local nonlinear predictions is given. In addition, the phase coherence 
of the system and the self-consistency of the data is examined using the 
longer data set A. cont ; the latter locates a possible sensor failure in this 
data set. Limitations due to the amount of data, the sampling rate, and the 
saturation in the data, in combination with the quality of the predictions 
achieved with very little information on the value of the initial condition 
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(32 bits or less), suggest that, while the system is clearly nonlinear, evi­
dence from A. dat for sensitive dependence on initial condition, if any, is 
slight. 

1. INTRODUCTION 
The theme of the workshop was the extraction of information from data. In this 
chapter, we will approach this task with a variety of nonlinear prediction techniques 
and an examination of the data itself. For all the prediction results presented, we 
will construct the predictor from the data in file A. dat and test it on the data in file 
A. cant which is a continuation of A. dat, thus all error statistics are out of sample. 
Because the predictors are constructed from A. dat, this data set will be called the 
learning set. 

In addition to global predictors, in which each prediction is influenced by the 
entire learning set, and local predictors, based on a local (one hopes relevant) subset 
of points, we shall introduce predictors that take advantage of different reconstruc­
tions at different times (i.e., in different regions of phase space) . This approach can 
provi.de better predictions than any single "optimal" reconstruction. 

Many of the results presented at the conference, along with those reported 
here, illustrate that the system is very predictable. Examination of the data in 
the continuation set, especially following collapses (defined below), supports this 
view. We suggest that the dynamics of the underlying system might be modeled 
simply; while the series is clearly nonlinear, there is little evidence of sensitivity 
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FIGURE 1 The original data set A. dat. These 1,000 points are used as the learning 
set for the predictors presented below. 
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FIGURE 2 An artificially rectified version of A. dat; the regular growth of the 
oscillations appears more clearly after taking the square root of the data. In the second 
cycle, the negative square root has been arbitrarily taken to lllu1trate the po1slble 
degeneracy. 

to initial condition. Although the physical system may be in fact chaotic, it seems 
premature to theorize this from the presented analyses based on the data In A. dat 
alone. Finally, we suggest modifications to the observations that underly this data . 
set which could clarify these issues. 

While we shall concentrate on prediction below, related techniques can be em­
ployed to detect anomalies in the data stream, which may result from either sensor 
failure or a major change in the system's dynamics. Such an anomaly Ia, in fact, 
detected in A. cont. 

2. THE DATA 
The initial data set A. dat, shown in Figure 1, consists of 1,000 observations, equally 
spaced in time and digitized to 8-bit integers in the range 0 to 255 (inclusive). 
We will call the high-frequency oscillations "cycles," the sudden large decreases 
in the amplitude of the cycles "collapses," and the packet of growing oscillations 
between two collapses "an event." The series samples three events, in two of these 
the collapse is observed; note that if this data set were to arise from motion on 
a chaotic attractor, it would provide a sparse Image of the attractor since only 
one complete event (collapse through growth to collapse) is available. With an eye 
on prediction we note that, as only two collapses are observed, the prediction of 
collapses may be expected to prove difficult, even If the mechanism giving rise to 
them is straightforward. 
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2.1 THE PHYSICS: GENERIC? 

The measurement of intensity is degenerate in the sense that, as the square of a 
physical variable (the electric field, E), it does not distinguish +E from -E. To 
illustrate this possibility, we "rectify" the data, as shown in Figure 2, by taking the 
square root of each observation and arbitrarily taking the center set of cycles as 
negative. If, on physical grounds, there is a distinction in the dynamics between +E 
and -E, then the two lobes of any "attractor" would not be perfectly symmetric; 
this would suggest the challenge of determining whether the techniques discussed 
at this meeting could identify which oscillations correspond to which lobe. If this is 
indeed the case, it would decrease the data density in the learning set still further 
and introduce projection effects into the learning set. 

2.2 THE STATISTICS: STATIONARY? 

We should also consider whether or not th~ statistics of A. dat are stationary or, 
more accurately, whether the statistics computed from A. dat have converged to 
those of an underlying stationary process as, technically, stationarity is defined for 
a process, not a data set. A necessary condition for such convergence is that the 
histogram of observed values be representative of that of the system. However , this 
is not suffici~nt for the reconstruction methods discussed below. These methods 
would require that the reconstruction in higher dimensions be "well explored."l11 
Given that only two collapse& occur in the learning set, this criterion could only be 
met for a very simple attractor. 

The data also appears to be undersampled, judging from the series (the beating 
of the sampling rate and the cycles is reflected in Figure 4). Thus the times and 
magnitudes of successive local maxima are poorly approximated; it is suggested 
below that an excellent model of this system could be constructed from these two 
parameters. We also note that the signal saturates at 255, this is clearly illustrated 
in the histogram of observations from the continuation set (not shown, but the 
effect is seen in Figure 9). This saturation tends to coincide with collapse, making 
it difficult to judge the true sensitivity to initial conditions. 

3. THE PREDICTORS 
In this section we consider a variety of methods to predict the short-term behav­
ior of the system. The methods considered require that the single observable first 

111This would, of col)rse, depend on the length of the date. set , the sampling rate, and the embedding 
dimension. It is quite ree.aonable to expect that e. given series reconstructed in three dimensions 
could appear "stationary" while the same date. reconstructed in ten dimensions would not. Note, 
however, the discussion of this issue in Sugihara and May (1990). 
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be embedded to form a higher dimensional reconstruction. The time ordering of 
points in this reconstruction is then used to turn the prediction problem into one 
of interpolation. 

3.1 THE METHOD OF DELAYS 

The first step in applying these methods of prediction is to reconstruct the time 
series in a geometrical framework. A trajectory, x(t), is reconstructed in M dimen­
sions from the single observable, s(t), recorded with uniform sampling time, r8 , by 
the method of delays to yield a series of vectors 

(I) 

where j (or jr8 ) is called the delay time, rd. For a deterministic system and a generic 
observable, this reconstruction preserves many of the characteristics of the original 
system for sufficiently large M (see, e.g., Casdagli et al., 1991; Packard et al., 1980; 
Sauer, Yorke, & Casdagli, 1991; and Takens, 1981). In this chapter, we will restrict 
attention to delay reconstructions of the full series where M = 4 with either rd = 1 
or rd = 4. In addition to the prediction time, rp, there remains one further time 
scale to be considered, the width of the "window" used to determine a point in the 
reconstruction space, rw. For the method of delays, rw = ((M- l)j + l)r8 • We 
have observed, however, that multivariate reconstructions of the maximum value 
and duration of each cycle (i.e., prediction of the value and time of occurrence of 
the next maxima, given the series of local maxima) provide excellent, if preliminary, 
results. This approach avoids some of the difficulties discussed below, particularly 
with respect to collapses. Predictions based on this approach should be significantly 
improved by additional data with higher resolution (in both time and intensity), so 
that the maxima are more sharply defined, and may provide the clearest evaluation 
of sensitivity to initial condition. 

3.2 MODES OF PREDICTION 

In this section, we clarify several details in the approach to making predictions that 
must be specified independently of the details of the predictor itself. 

3.2.1 DIRECT AND ITERATIVE FORECASTS. In general, we will employ direct fore­
casts with a single-step predictor invoked once per prediction. We contrast this 
single prediction a time Tp into the future, with iterative forecast predictions where 
the final prediction is based upon a number of predictions made at a smaller time 
step (e.g., i forecasts, each advancing rp / i well into the future). 



328 Leonard A. Smith 

3.2.2 RUNAWAY AND UPDATE EXTENSION. For the competition, we were asked to 
take an initial condition and iterate it as far as possible, using the output of the 
predictor to continue the series. We will denote these as runaway extensions in 
contrast to update extensions, where the true value is incorporated after each step 
of the prediction. While the former are of interest when extending a true series 
into the future, the latter allow the evaluation of a predictor at a fixed Tp, which 
eases parameter determination and interpredictor comparisons. All the results in 
the paper, with the exception of Figures 6 and 7, are based on update predictors. 

3.2.3 ENTRAINMENT. Finally, we note that for quantized data, the system may 
repeatedly produce the same exact string of observed data values and then diverge. 
If this string is as long as the window considered by a predictor, r w, a deterministic 
runaway predictor cannot reproduce the behavior; it will become entrained within 
a periodic cycle quite unrelated to the primary dynamics of the system. A related 
problem distinguishes direct and iterated forecasts, namely that iterated predictors 
can't get through regions where, for example, the series appears to be constant 
for a time greater than 7wi direct predictors can effectively "jump" over such a 
data segment. Depending upon location in phase space it is possible to combine the 
advantages of both iterative and direct forecasts by selective usage. This approach, 
illustrated below, combines two reconstructions with different delay times. 

3.3 GLOBAL PREDICTORS 

Having produced a four-dimensional reconstruction of the (nL = 1000) points in 
A .dat with 7d = 1 and Tp = 1, we first consider a global predictor, F(x) : R4 

......, R\ 
which estimates s for any x. F(x) is constructed about nc centers 

Cj, j = 1, 2, . .. , nci Cj E R4 (2) 

chosen from the learning set in such a manner that they are spread out on the 
reconstruction. We will consider F(x) of the form 

n c 

F(x) = L:>'jc/>(llx- Cjll) (3) 
j=l 

where c/>(r) are radial basis functions (Powell, 1987), in this contribution, either 
cf>(r) = r3 or cf>(r) = e-r•;c• where the constant, c, is based on a multiple of the 
average distance between data points considered in the fit, dnn· The>..; are constants 
determined by a least-squares fit to the observations in the learning set: 

b =A..\ (4) 
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where >. is a vector of length nc whose jth component is Aj and A and b are given 
by 

(5) 

and 
(6) 

where i = 1, . .. , nL and j = 1, .. . , nc. 'fraditionally, the weights wi associated with 
each point in the learning set reflects its accuracy; alternatively, the wi may be 
tuned to improve the fit in under-represented regions of the reconstruction (e.g., 
near the collapses). For global reconstructions, we shall restrict attention to the 
case where all w i are equal (but note the discussion in L. A. Smith, 1992). Details 
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FIGURE 3 Variation of the average error with location in phase space as denoted by 
the nearest center. Positive and negative errors are averaged separately. Note the great 
variation at different locations on the reconstruction. 



330 Leonard A. Smith 

of the construction of this type of predictor may be found in Broomhead and Lowe 
(1988), Casdagli (1989), and Farmer and Sidorowich (1988). We call function F 
constructed in this way an RBF predictor. 

There are several advantages of global predictors. The reconstruction is smooth 
and the coefficients are fixed. Thus, since all the computational overhead is done 
at the outset, large test data sets are easily evaluated. The global reconstruction 

50 0 

FIGURE 4 Global, multlreconstruction predictor results in an update mode. The upper 
panel showed the observed (solid) and predicted (symbol) values. Note that, as the 
predictions are fairly accurate, they reveal the beating between the cycles and the 
sampling rate. The lower panel shows which of the two predictors (denoted by either 
1 or 2) was used for the prediction at each given instant. 
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FIGURE 5 The prediction profiles of three global reconstructions with one-step ahead 
(update) predictions. The curves indicate the fraction of the teat Itt that It predicted to 
within a given error; thus, lor a given value of the error, the hlgheet curve represents 
the best predictor. The solid and dotted lines reflect the profiles of two different fixed­
delay predictors, while the dashed line Is that of a (more accurate) third predictor 
combining the two, as described In the text. 

also provides a natural partition of the phase space which can serve many uses. For 
instance, variation in the quality of predictions with location provldee an estimate 
of the expected error in a given prediction (L. A. Smith, 1992) . Figure 3 ilhows the 
average positive and negative error in the neighborhood of o.wh center, illustrating 
the strong variations which occur in practice. In some regions thcr Is a definite 
bias in the predictions (i.e., they are always too low), this can occur when there is 
not sufficient data (weight) in these regions and the least-squares fit to the entire 
data set simply under-fits them; alternatively, one cause of variation In the quality 
of "mean zero error" regions is the variation of projection effects within a given 
delay reconstruction. It is this second point we shall discuss here. 

Once we have used a particular partition to classify each point In the data se­
ries , there is no need for the restriction to a single delay reconstruction for making 
predictions; given a single, global delay reconstruction to define partitions, we then 
pick the particular delay reconstruction that works best in euch partition and use 
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it.l2l Such a multireconstruction predictor is given in the next section. First, we in­
troduce a graphical method to compare different predictors through the cumulative 
distribution of prediction error, or predictor profile, for short (L. A. Smith, 1990). 
This graph represents the fraction of the test set that can be predicted within a 
given accuracy, and clarifies the effect of outlying "bad" predictions that may bias 
statistics like the average predictor error. Prediction profiles for two m = 4, rp = 4 
global RBF predictors are shown in Figure 5. The figure shows, for example, that 
the predictor corresponding to the solid line predicts 20% of the test set with an 
error of less than 1 bit (log2 (error) < 0.0). In one, rd = 1, while rd = 4 in the other. 
Note that the Td = 1 predictor has more very small errors and more large errors 
which are large; where it is accurate, its predictions are superior to the rd = 4 
predictor, yet where it is inaccurate, they are far inferior. The point is that these 
two predictors work best in different locations in phase space; by recording those 
locations and using the appropriate predictor for each initial condition, we obtain 
the third curve in the figure. Although this multiple-delay predictor can't make any 
prediction better than "both" of its composi~es, it tends to pick the better of the 
two and hence gives a better prediction profile than either of them. 

3.3.1 MULTlRECONSTRUCTION PREDICTION: A GLOBAL EXAMPLE. We illustrate 
what is happening by examining the predictions and which predictor is used where. 
The upper panel of Figure 4 shows an out-of-sample segment of the observed (solid) 
and predicted (symbol) time series. The lower panel notes which of the two predic­
tors was used to make each prediction. For the small amplitude oscillations (and 
near local minima), the rd = 4 predictor is preferred; it provides a good estimate of 
phase and amplitude which is more easily obtained in a longer window. When the 
oscillations are large and more irregular, the shorter delay contains the more rele­
vant information. This makes sense; it may be a bit naive to attempt to compute an 
"optimal delay time" if there is no need to average over the entire reconstruction. 

3.4 LOCAL PREDICTORS 

An alternative to the single global predictor is to construct a local predictor from 
the points in the neighborhood of each data point. For local methods other than 
the nearest neighbor, this involves defining a local neighborhood, usually with a 
fixed radius or fixed number of k neighbors. Neither is optimal; it would be nice, 
but computationally expensive, to choose a neighborhood with respect to the local 
characteristics of the underlying function. Casdagli and Weigend (this volume) in­
vestigate the variation of predictions with k using local linear maps in a variety of 
circumstances. 

l2l Multiple reconstruction local predictors could also be constructed, utilizing either the error in 
a withheld subset or the in-sample error to determine the best delay. 
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set, a sudden, rather disorganized-looking behavior may ensue as it suddenly finds 
a sharp increase in the distance to nearby points; this behavior may continue until 
the predictor "drifts" near a region where the data density is higher and, perhaps, 
becomes re-entrained. Other "overtrained" predictors may exhibit similar behavior. 
In the instance shown here, the nearest-neighbor predictor became entrained in less 
than ten steps. 

Note that this predictor does collapse (two cycles late) and that the phase of 
the observed and predicted data nearly coincide after the collapse. This suggests 
that phase information is preserved through the collapse, a question investigated 
below. 

3.4.2 LOCAL LINEAR AND QUADRATIC PREDICTION. Given the coordinates of points 
within a neighborhood, a local linear predictor finds the best linear combination of 
these distances for interpolating the future observation. A local quadratic predictor 
works similarly but includes the quadratic terms. For small data sets, determining 
the correct size for each neighborhood is crucial; if it is too large, higher order 
nonlinear effects will be included while, if it is too small, the quadratic and RBF 
predictors may overfit the data. (Techniques to avoid overfitting with neural nets 
are discussed in Weigend and Rumelhart (1991).) A major difficulty is that "large" 
will vary with location over the reconstruction (in terms of either the k nearest 
neighbors or :>ome fixed distanced in reconstruction space) . While considering the 
average ratio of the observed error to the expected (local, in-sample) error can pro­
vide an idea of whether the local predictor is overfitting the data, it also suffers 
from averaging over the space. A truly local solution based on information theoretic 
grounds , suggested by A. Mees, currently under investigation in collaboration with 
K. Judd. In trials based on A. dat, the local quadratic map often yields the better 
results, although there is enough variation that the best approach might well be to 
generate an ensemble of predictions (with uncertainty estimates) and form a suit­
able weighted average. Beven gave an example of this approach in a hydrological 
context (Beven & Binley, 1992). 

3.4.3 LOCAL RADIAL BASIS FUNCTION PREDICTION. Local REF predictors are sim­
ilar to the global REF predictor above but use only local data. This has the ad­
vantage of not assuming that the neighborhood will be small enough to be linear , 
but care must be taken not to overfit the data in the locally linear case. Runaway 
predictions using this method are shown in Figure 7; they provide quite reasonable 
estimates of the behavior until the collapse, but do not predict the collapse. Indeed, 
it is very difficult to make this predictor collapse; this is due, in part, to the low 
weight that the two collapses in the learning set have (low because there are only 
two realizations out of many observed cycles) . This can be changed either by tak­
ing smaller neigqborhoods or, independently, by increasing the weights w, of the 
points in the regions of reconstruction space corresponding to a collapse, thereby 
forcing an improved fit to that region. Alternatively, one could try to detect (by, 
say, a simple threshold method) when the next collapse should occur and then 
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to extend predictions through the collapse by visual inspection, following Wan's 
example (Wan, this volume) . 

We repeat that only Figures 6 and 7 correspond to the requirements of the 
contest (i.e., runaway predictors starting at the end of .A . dat and predicting the 
first 100 points of A . cont). Both these sets of predictions were based on 32 bits 
(an initial vector of 4 data points, each of 8 bits) . The quality of these predictions 
and the observation that they, along with the striking visual pattern matching pre­
dictions presented at the conference, "fail" only at the transition, suggests that 
a simple model might explain the majority of the dynamics. Such a model would 
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FIGURE 7 Runaway local nonlinear RBF predictions using¢ = r3 with 16 centers 
distributed between the 32 nearest neighbors of the point to be predicted 
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FIGURE 8 Local predictor results for ABF, quadratic, linear, and nearest-neighbor 
predictors. 

be nonlinear, of course (we are measuring IE21), but quite possibly not chaotic. It 
would be Interesting to determine just how well the amplitude of the cycles after a 
collapse could be predicted, and also whether those occasions where the amplitude 
appears to continue to decrease for a few cycles after the collapse could be identified, 
although the saturation of the signal noted above might make this difficult. 

Before pursuing that idea, we compare the local predictors for the case M = 4, 
Td = 1, Tp = 4; the prediction profiles are shown in Figure 8. These graphs reflect 
the quality of direct update predictions at a fixed step (four samples) into the 
future. Since the nearest-neighbor predictions are quantized, so are their errors, 
hence the steplike appearance In the figure. Note that while this predictor gives the 
fewest accurate predictions ( 40% of the predictions are accurate to 1 bit or better), 
it also gives slightly fewer large errors crossing to the left of the other three curves 
at approximately log2 (error) = 3.5. The local RBF predictor yields slightly better 
predictions than the local quadratic, which is significantly better than the local 
linear. These results are all based on a neighborhood of k = 32 nearest neighbors 
with nc = 16. 

We conclude this section by admitting that no motivation for the choice of the 
particular RBF;was given. An advantage of r3 is that it introduces no additional 
free parameter. In practice, it is often the case that the exponential, a R:: 1 with 
the constant c = adnn• provides a fit of similar quality and that, by adjusting a 
and observing the predictor profiles, a better fit can be achieved. (Note that dnn 
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is a local quantity.) It is also observed that such a fit is often more parsimonious 
than the original for, while we have introduced an additlonBI ptuamctor, more of 
the )..i of the fit are linearly related (due to zeros introduced In a. singular value 
decomposition), thus reducing the total number of degrees of freedom employed in 
the predictor. ~. 

4. THE OVERLYING ENGINEERING 
4.1 NOISE, SENSOR FAILURE, AND ERROR DETECTION 

How similar techniques also can be applied to detect sensor failure and error de­
tection is discussed by L. A. Smith et a!. (1991). The basic Idea is straightforward 
and, of course, related to our earlier comments on stationarity. If a deterministic 
system has explored the phase space of a given reconstruction and a ronsonably 
good predictor has been constructed, then the observation that t he expected error 
is persistently, unexpectedly large would indicate either a change in th systems 
dynamics or an error in the sensor. When a good predictor cannot be constructed, 
because the required dimension is too great or the underlying system Is stochastic, 
errors can be suspected when the nearest center distance grows very large. This 
test is applicable to stochastic systems which, while filling regions In any given 
reconstruction completely, generally do not fill all regions of the emb ddlng space. 
In the current application an instance is the detection of the string of zeroes in the 
continuation set; the series goes to zero for seven time steps near· data point 6454. 

We also note that, as suggested at the conference (Hubner et al., this volume), if 
the primary source of noise in this system arises from quantization effects, methods 
of noise reduction (see Grassberger, Schreiber, & Schaffrath, 1991) should be applied 
here. 

5. THE UNDERLYING PHYSICS 
The contributions presented have demonstrated tha~stunningly simple t\nd remark­
ably complex methods of prediction can be applied to this data set with Interesting 
results. But have we suggested anything about the physics or dynamics of the under­
lying system? The length of time ahead that we were able to predict based on only 
32 bits ( 4 data points of 8 bits eac~) makes the system appear very predictable; the 
difficult predictions appear at the collapses, but even they may not be too complex. 

Examining a series of local maxima (not shown), we note that they tend to 
rise until hitting a threshold near 255 and then suddenly collapse. Figure 9 reveals 
just how linear this progression is by plotting the local maximo. of successive cycles 
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as maxi+l against maxi; the bubble at larger values is due, in large part, to poor 
estimates of the larger maxima resulting from the large sampling time. We have 
suppressed a scatter of small maxima (as small as four) which usually arise imme­
diately after a collapse, some of which are due to beating between small cycles and 
the sampling rate. While the majority of values fall above the diagonal (indicating 
growing amplitude) , a significant number fall below, denoting a different dynamical 
behavior which can be identified in the series. Note that the saturation at 255 is 
also visible in Figure 9. Plotting the time between maxima as a function of maxima 
(see Figure 14 in the Appendix) suggests that the frequency of the oscillation is 
a decreasing function of amplitude; this may be related to the physical processes 
occurring in the experiment. 
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FIGURE 9 A plot of the square root of each local maximum against the one previous 
showing a clear linear trend. The ballooning at large maxima arises, in part, from 
variation due to sampling error. The scatter of small local maxima arise just after 
collapse; however, the interesting sparse band of values just below the diagonal 
indicates a "slow collapse" (maxi > max.+l, are real and can be identified in the next 
two figures) . ' 
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Assuming that the growing cycles can be modeled, we consider the collapses 
where most of the prediction results presented at the workshop (which made it 
that far) went wrong. Phase coherence and amplitude prediction can be considered 
separately. To investigate whether or not the phase is randomiz_ed during collapse, 
we compare the evolution of data strings that actually saturat~ at 255. If we line 
up 11 consecutive instances where the observed maximum was 255, we see a great 
organization in both the forward and backward time (see Figures 10, 11 , and 12) . 
Figures 10 and 11 reveal that the first maxima after the collapse tend to coincide; 
further, the relation between larger amplitudes and longer period cycles is revealed 
in Figure 10 as the larger amplitude cycles are clearly displaced to the right as the 
time since collapse increases. Figure 12, where the direction of time is reversed, 
shows an extraordinary coherence in phase 9 T 8 before saturation. 

From these observations we conjecture that a predictor based on the values 
of successive maxima could accurately predict the time and amplitude of the next 
maximum; initial trails show this breaks down at the collapse, in part, because the 
saturation at 255 makes these points appear identical. 

These observations suggest, as a model, a simple, linearly growing oscillation 
whose period increases slightly with amplitude. Noting that the signal tends to 
maintain its phase through the collapse, we have neither determined whether the 
behavior of the amplitude is random or deterministic, nor explained the interest­
ing segments for which the maxi > maxi+ 1 just after a collapse. In any event, the 
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FIGURE 10 Eleven superimposed segments of the time series in A. cont aligned by 
an observation of value 255. Note the phase coherence after the collapse and that 
the loss of phase coherence toward the right can be attributed to the larger amplitude 
oscillations having a longer period (as suggested in the text). 
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FIGURE 11 An enlargement of the inital section of the previous figure showing the first 
of two cycles after an observation of 255 in A. cont. 
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FIGURE 12 Here we show in reversed time (i.e., time increases to the left} the 
behavior of the series just prior to an observation of 255. This figure is intended to 
illustrate the coherence of signal just prior to a collapse. 
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FIGURE 13 A plot of the square root of each local maximum against the previous 
one for the original (higher resolution) data set. The ballooning at large maxima is 
decreased. The scatter of small local maxima arise just after collapse; however, the 
sparse band of values just below the diagonal are real. 

phase coherence is interesting and the increase in period may suggest a physical 
mechanism (such as Joss of resonance) that triggers the collapse. It would also be 
interesting to treat the output of such a simple model (squared and sampled) as 
surrogate data and to determine whether the actual observations can be distin­
guished from such series (L. A. Smith, 1992; Theiler eta!. , 1992a).l31 This approach 
could be used to discriminate the dynamics of the amplitude after collapses, for 
instance whether to collapse (retaining phase information) to a random part of the 
cycle and repeat, or to determine the amplitude after collapse based on the data 
just before the collapse. While the short-term predictability of this system has been 
clearly established at this meeting (e.g. , the contributions of Sauer {this volume) 

131Alternatively, one could shuffle the order of segments of the data between collapses; while the 
majority of statistics computed would remain unchanged (collapses are rare events) , long-term 
determinism would clearly be lost in these surrogates. 
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and Wan (this volume)) , it remains a capital mistake to theorize on the dynamics 
over the collapse without sufficient data. 

APPENDIX: A CLOSER LOOK 
After the conference and discussions with James Theiler and Tim Sauer, some 
doubts were raised about interpreting the balloon of Figure 9 as due to a long sam­
pling time. To address these doubts, the original data (Hubner et a!., 1989) were 
obtained, thus providing a longer data series at twice the sampling rate. Figure 13 
corresponds to Figure 9 for the higher resolution data set. Although not resolv­
ing the problem of saturation, we see that the balloon is effectively deflated and 
this suggests that a piecewise linear map could model the series quite well. Then 
one could then extend such a model to extrapolate true values corresponding to 
saturated observations. It would be interesting to see if this would provide a method 
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FIGURE 14 A scatter plot of the period between local maximum against the maximum 
from the full NH3 data set. The majority of that data clusters near periods 13 to 17, with 
the greater maxima associated with longer periods. 
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to determine the height of the first maximum after a collapse, In particular, to 
distinguish the collapses of small, increasing amplitude oscillations from those of 
intermediate amplitude which decline before growing. 

In addition, a reviewer requested an illustration of tile claim that the period 
of a cycle tends to increase with increasing amplitude (see Section 5). This effect, 
also clearer in the higher resolution series, is reflected In the distributions shown in 
Figure 14. In this figure, there was no attempt to remove the spurious local maxima 
due to either beating or noise. 
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