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I. Introduction 

The discovery of an inereasing number of fractal objects in the 

natural environment prompts the present study of the settling of parti- 

cles in a moving fluid. We describe here simulations of the motion of 

small objects in two-dimensional cellular flows. One of our aims is to 

see how an initial distribution of such particles deforms in time. We 

assume throughout that the particles do not interact with each other or 

affect the fluid, whose motion is two-dimensional. Even without sedi- 

mentation effects, and without many other complications that real flu- 

ids provide, intricate structures in the swarming dust arise through 

their chaotic motions. 

It is not hard to construct incompressible flows in three dimen- 

sions with chaotic Lagrangian orbits (Ar£er, 1983). In two-dimensional 

time-dependent flows with open steamlines, the fluid particles can have 

chaotic orbits, as in Aref's (1984) explorations. Even when the fluid 

streamlines are closed, the motion of particles moving in the fluid may 

be chaotic. Our preliminary results indicate that chaotic motion of 

swarms of noninteracting particles in cellular flows may produce frac- 

tal structures whose dimension seems insensitive to the control para- 

meters of the flow. 

We consider small bodies immersed in a fluid with stream function 

~(x,y,t). With the neglect of hydrodynamic mass, the nondimensional 

equations are 

= -~(x - by) (l.la) 

= -T -~(Y + ~x ) (l.lb) 

where ~ and 7 are constants. The structures seen in this problem are 

interesting, as a preprint of Maxey and Corrsin shows. We here consid- 

er the reduced problem of very viscous flows and neglect inertial terms. 

This limit has geological interest (Huppert, 1984). 
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If particle acceleration is negligible, 

x = @y ; Y = -~x (l.2a,b) 

where the stream function for particle motion is 

= yx + ~. (1.3) 

These reduced equations are equivalent to a Hamiltonian system with one 

degree of freedom and a time dependent Hamiltonian equal to %. 
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F~. 2.1. (a) Fluid streamlines (~) according to (2.1). (b) Particle 
str~amlJnos f~ ace~rr~no t~ (l.~ and ~2.1~ . For A=I ~nc] Y=0.25. 
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2. Steady Flow 

Stommel (1949) considered the motion of particles for steady $ 

with closed streamlines. His results are illustrated in Fig. 2.1 which 

shows the situation for the case 

= ~ sin~x sinzy. (2.1) 

where A is a constant. In Fig. 2.1a we show the streamlines of ~ and 

in Fig. 2.1b the streamlines of %. Experiments suggested by Stommel's 

results have been reported by Toobey, Wick and Isaacs (1977). 
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Fig. 2.2. The evolution of a line of particles with the stream function 
of Fig. 2.1. The distributions are for t = (a) 0 (b) 18 (c) 35 (d) 54 
and the unit of length marked off is 0.i in the vertical. 
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The problem with steady ~ has interesting consequences which may 

be taken over from a stellar dynamical study by Quinn (1984). A sheet 

of particles introduced into a fluid layer one cell deep is rolled up 

by the flow (2.1) as in Fig. 2.2. The density of the particles, when 

projected onto a horizontal plane, will evolve as in the upper panels 

of Fig. 2.3. If the particles are visible in the fluid, they may look 

like the lower panels of this figure. The well-defined structures in 

the projected density of the dust is a familiar phenomenon to those who 

have watched vortex rollup in suitably dyed fluids. Quinn calls the 

process phase wrapping (since y is momentum in his case). Stommel mo- 

tivated his original study with a discussion of patterns formed in the 

sea. The results of Quinn may bear on such questions as dune formation 

in shallow water along beaches, though the inertial effects may be sig- 

nifigant in such cases. 
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Fig. 2.3. The particle densities integrated (in y) for the four states 
of Fig. 2.2. The upper panels show the particle number explicitly and 
the lower panels are 'dust plots' simulating the appearance of the con- 
vected dust. 
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3. Dusty Chaos 

Stommel (1949) studied particle trajectories in the steady cel- 

lular flow of Fig. 2.1a. He found regions of retention where particles 

are trapped indefinitely. Particles are trapped when the stream func- 

tion of the fluid has an oscillatory dependence on time as well. Let 

A = 1 + ecos(wt). (3.1) 

We find that particles remain suspended in the fluid even when e~10, 

for ~~i. Results of this kind are easy to obtain numerically and sur- 

faces of section of spatial orbits are easily drawn. 

In Fig. 3.1 we illustrate the motion of a particle for the para- 

meters indicated in the caption. In the first panel we show an orbit in 

the x-y plane. In 3.1b we show a stroboscopic view of the same orbit, 

that is, the x and y coordinates of the particle at the succession of 

times t=0,P,2P,..., where P=2~/w. 

Fig. 3.1. (a) A trapped orbit in the time-dependent case for e=0.5, 
y=0.25, oJ=1T/2.2. (b) The orbit seen stroboscopically. 

Fig. 3.2 gives a corresponding pair of plots, for different val- 

lues of the parameters, showing islands. The system displays the text- 

book behavior of Hamiltonian chaos (Lichtenberg and Lieberman, 1983) 

but we are more interested in the behavior of swarms of particles. 



311 

'4 

-.% 

Fi 9. 3.2. Same as 3.1 but with ~=w/2.25. 

Pig. 3.3a shows stroboscopic views of the orbits of 32 particles 

that were uniformly distributed on the line y=3/2 at t=0. The largest 

of the concentric closed tori in the upper right outlines a region of 

particle retention. The particles shown outside this region fall to 

the bottom boundary of the cell where they are dealt with by the peri- 

odic boundary conditions. In 3.3a, the blank region surrounding the 

region of retention corresponds to chaotic motion. The region of cha- 

otic motion is shown in Fig. 3.3b for a long run following four parti- 

cles. The chaotically falling particles spend some time entrained in 

individual cells. The large lacuna on the lower left in 3.3a is an- 

other region of particle trapping, into which no particles can enter 

from the outside. Fig. 3.4 is similar to 3.3 but with an increase in e 

to show the development of the region of chaotic fallout; the intial 

conditions have been changed to emphasize the islands. 

The two large islands embedded in the chaotic region of Fig. 3.4a 

contain particles that remain in the initial cell. Their orbits reson- 

ate with the fluid oscillations. The fluid velocity is maximum when- 

ever they are at their extreme y-values. A higher order resonance pro- 

duces the island chain forming within these large islands. 
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Fig. 3.3. Orbits with falling particles subjected to periodic boundary 
conditions and shown stroboscopically for e=0.01, y=0.25, ~=~/2.25. 
(a) For thirty-two particles starting out uniformly on y=3/2 and fol- 
lowed for 300 oscillation periods of the fluid flow. (b) For four par- 
ticles starting out on y=2, so as to be in the chaotic region, and fol- 
lowed for 500 periods. 
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Fig. 3.4. Same as in Fig. 3.3 but with e=0.05. This time, the orbits 
in (a) have been followed for 400 oscillation periods and those in (b) 
for 3000. To the left edge of the chaotic region integrable orbits are 
found, though they are not shown in the figure. 
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Strung out along the left of this page is Fig. 3.5 showing 

the locations of 512 particles that were initially spread along 

the line y= 2.0 in the x interval [1.85,1.90]. Particles from 

this interval fall through chaotically. The particles spread in 

vertical extent, but stay within the original cell width. In 

this case, the abcissa is the value of y (not mod 2). We wish 

to see whether a fractal structure develops. However, there are 

not enough points in Fig. 3.5 to do this. In Fig. 3.6 we show 

the results of a calculation designed to suggest the detail in 

the loops of Fig. 3.5. In this calculation we applied the peri- 

odic boundary counditions in y and Fig. 3.6 shows only the upper 

half of a cell. There are long intertwined filaments extending 

into the lower half of the cell where the segment was stretched 

exponentially. This poses a resolution problem that we circum- 

vented in two ways. First, we projected the points in Fig. 3.5 

onto a vertical line and used the Grassberger-Procaccia algor- 

ithm (1983a,b) to calculate a correlation exponent of 0.78. 

Fi@. 3.5. The locations after 50 periods of particles that start- 
ed in the interval 1.85<x<1.90 on y=2.0. For e=0.5, y=0.25, 
=~/2.25. 

+ 

Fi@. 3.6. A closeup of one 
of the loop-like features 
in Fig. 3.5 but calculated 
as explained in the text. 
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Fig. 3.7. The evolution of an initially simple particle distribution. 
Shown for a sequence of times separated by one period of oscillation of 
the fluid. The range in x is 0.0 to 0.i. The height of the box is 110 
cell heights. The vertical offset of each curve is linear with time. 
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The second method focused on the vertical separation of initially 

nearby particles. In Fig. 3.7 we show the (scaled) y-coordinate of each 

particle as a function of x 0 , the initial x-coordinate, for a sequence 

of times. Portions of these curves with very large slopes correspond to 

initial line segments of particles that have been stretched over many 

cell heights. The stretching and folding in x-y space of the original 

line of particles produces the self-similar structure seen in Fig. 3.8. 

We broke the x 0 coordinate into steps of size ~x 0 and found the length, 

L, of each curve as a function of ~x 0 . Then we fit L to the formula 

L ~ (AX 0 )-~. (3.2) 

As a function of time, ~ behaves as shown in Fig. 3.9. The precise form 

of this evolution depends on how we perform the calculations; the pla- 

teau at ~=0.76 is characteristic and is independent of the initial par- 

ticle density and extent. This plateau does not last indefinitely at 

fixed resolution. As expected, it persists longer if the initial dens- 

ity is higher. We therefore assign the value 0=0.76. We do not have a 

good way to determine the precision of this result but, on the basis 

of many such calculations, we would estimate that the internal errors 

are less than 10%. 

We found that ~ was not sensitive to e and y. We have results 

when these parameters are in the range 0.i to 0.8. For e less than a- 

bout 0.i, the effect of time dependence is so weak, that the particle 

spreading is very slow, while for large e the time steps required be- 

come prohibitively small. 
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The increase of L with decreasing &x 0 suggests that a fractal ob- 

ject is being formed. We expect its dimension to be approximately 1+o 

(Mandelbrot, 1975). The agreement of ~ with the Grassberger-Procaccia 

correlation exponent reinforces this belief. Like others before us, we 

have learned that it is easier to find a process that makes fractal ob- 

jects than to understand its dynamics. 

1. O0 

O. 50 -- 

O. 00, ~ + + + 
0.0 

+ 

P 
50 

+ 

+ 
+ 

+ 
+ 

+ + + + 
+ + + 

I P 
10.0 15.0 20.0 

time 

Fig. 3.9. The evolution of ~ of (3.2) in time. 

4. Conclusion 

When studying sedimentation, one often neglects the fluid motion. 

Yet, as we have seen, the effect of fluid motion on the trajectories of 

settling particles can organize particle motion. When particle effects 

on the fluid are allowed, we have a self-consistency problem that may 

be relevant to the formation of structures in fluid dynamics. While 

their delicate features are sensitive to noise, diffusion and Brownian 

motion, mean effects may survive to feed back on the diffusive process. 

Our calculations already reveal features that hint at such macroscopic 

implications. 

The problem that has most interested us in this study is the for- 

mation of fractal swarms. This work raises the problem of finding a 

dynamical argument to postdict the dimension of the swarms. This ques- 

tion of the dynamics of deformation of a line of passive particles is a 

first step in the understanding of the stretching of an active vortex 
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pointing out that simple numerical simulations provide a hint about the 

former problem. 

This study is a direct outcome of work (Smith, 1984) begun as a 

result of a lecture by Herbert Huppert in the GFD Summer Program at the 

Woods Hole Oceanographic Institution. We are indebted to Hassan Aref 

and Walter Robinson for helpful discussions. The work has received sup- 

port from the NSF under grant PHY 80-2371 to Columbia University and 

from the NASA Cooperative Agreement NCC 5-29 through GISS. 
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