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20.1 INTROD UCTION 

It is we ll known that the analys is of com plex geophys ical time series is a diffi cult task and 
that recent developments in non-linear dynam ic system theory have suggested a variety of 
ne\v approaches including pred icti on tec hn iques (Casdagl i, 1989; Farmer and Sidorowich , 
1988). In addi tion to their obvious appl ications, these methods may be used to test implicit 
assumptions made in alternative techn iques (e .g. that the series is a realization of a linear 
stochastic process) through the method of surrogate data (Smi th . 1992; Theiler era/ ., 1992). 
The comparison with surrogate series provides a quamitative measure of the quality of different 
models of the da ta and , in tu rn , an indication of whether the underly ing dynamics is linear 
or non-linear, de terministic or stochast ic . 

Th is chapter illustrates non- linear prediction by way of two-dimensional interpolation in 
a toy model of particulate transport, and then applies it to the predicti on of observa tional 
da ta. The particulate transport model used, one of the firs t to show the effects of chaotic 
advection, is used for spatia l and temporal predictions. A preliminary analysis of velocity 
data collected fro m the River Severn concludes the chapter. The results of thi s analysis rej ect 
the hypothesis that this signal is linear red noise, yet no evidence of low dimensional 
determinism is obtained. Several suggestions fo r the design of future data collection are 
proposed. 

20. 2 STOMMEL FLOW 

In thi s section we introduce non- linear predict ion with a _simple two-d imensional time
dependent flow which can exhibit chaotic advection (Sm ith , 1984; 1987; Smith and Spiegel, 
1985) . The flow was prev iously considered as a model for the motion of partic les suspended 
in a time-dependent tlow, a situation of interest in many areas of geophysics (Huppert , 1984; 
Maxey and Corrsin , 1985). By introduc ing period ic time dependence , we generalize the 
laminar tlow originally considered by Stommel ( 1949) to allow chaotic advection . In the chaotic 
regime, particles may take much longer to traverse a series of cells than the retention time 
indicated by dimensional calculations . Related flows have been in vesti gated experimentally 
by Tooby, Wick and Isaacs (1977), Gollub and Solomon (1987) and Chaiken era /. (1987). 
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20.2.1 Steady flow 

Intrigued by the obse rvation th at the yield of plankton tows taken along the direction of the 
wind were more variable than those taken perpendicular to the wind , Stommel (1949) 
cons idered the trajectories of negatively buoyant bodies immersed in steady fluid rolls . If 
the fluid motion is described by a stream function 'lr(x ,y,t) , the n, when panicle inertia is 
negligible, the particle traj ectories also allow a stream function . That is, the trajectories are 
solutions of 

v y 

where the particle stream function is 

dl{;(x ,y .r) 

dY 

dl{;(x, y, t) 

dx 

1/;(x,y,t) = 'lr(x ,y,t) + v,x 

(20.!) 

(20.2) 

(20.3) 

and vs is the Stokes velocity (the terminal velocity of a particle in free fall through a 
quiescent , viscous fluid). Stommel considered a two-dimensional , vertical cross-section and 
adopted the stream function 

'lr (x ,y) = Asinxsiny (20.4) 

Streamlines of this flow are shown in Figure 20 . 1. The particle stream function is then 

l{; (x,y) = Asinxsiny + v~x (20.5) 

where x represents the horizontal di rection andy the vertical direction. Particle stream lines 
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Figure 20 .1 Fluid streamlines of the steady flow . Here x is the horizontal axis and y is the ve rtical 
ax is; the figure shows a single cell (i. e. 0 :$ x :$ 11 , 0 :$ y :$ 2~r) 
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for v, = 0.25 are shown in Figure 20.2. Stommel (1949) concluded that the flow divided 
into two classes: one which swept through vert ically stacked cells and another, trapped withi n 
the closed contours , which formed a region of retention in each cell. Th is model may be 
interpreted in a downstream guise (where x is the cro .. -stream direction and y the downstream 
di rection) with the Langmuir cells corresponding to dead zones due to boundary conditions 
not explicitly modeled ; v5 then co rresponds to a superimposed downstream veloc ity . In the 
steady flow case , downstream mot ion is tr ivial. Dead zones really are dead as there is no 
transport across the stream lines, and the streaml ines themselves have the simple structure 
shown in the figures. We could consider more spatially complicated flows by superimposing 
additional st ructure periodic with half the wavelength of this flow . Repeating the process 
at still smaller length scales would yield a tlow simi lar to the {3 mode l (F risch, Sulem and 
Nelkin , 1978). As shown in the fo ll owing, the particle trajectories from Equation 20.5 are 
already fairly intricate when the flow is ti me dependent. 

20 .2.2 Time dependent flow 

When if; is independent of time , topological constra ints prevent trajectories from di sp laying 
. chaos. A time-dependent stream fun ction , however, corresponds to a non-autonomous 

Hamiltonian system; in th is instance the system has a th ree-dimensional phase space and admits 
qualitatively different trajectories (see, for example , Mackay and Meiss, 1987). To invest igate 
thi s case, consider 

A (f) = Ao r I + ESin(wt)] (20.6) 

where E quantifies the strength of the time dependent element of the fl ow. For E 7: 0, th is 
has the immediate effect of detaching the dead zone from the wall ; for small E an isolated 

CONTOUR KEY 
'\ -0.999 
2 -0.500 
3 -0 .250 
4 0 .000 
5 0 .250 

I 6 0.500 

-----1 ___./ 

3 2 ======-------~2 4---------------- 3 rr 

7 0.999 

4 

5 o' 
o0 rr 

Figure 20.2 Particle streamlines in the steady fl ow with v, .= 0.25 , A = l. Again the ~gure show: 
a single cell which may e ither be c?n~idered as one of a senes of ve_rt1cal~y stacked cells, or to have 
periodic boundary conditions ident1fymg the bottom w1th the top of the cell 
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dead zone(s) persists. but the boundaries can be very complicated : whether or not a particle 
will be retained for another period of the flow depends sensitively on it · location. We will 
consider the case A0 = 1.0 , v~ = 0 .25, u-' = 27r/4 .5 and apply periodic boundary conditions 
in y, so that part icles passing through the bottom of the cell are reintrod uced at the top. 

This compl ex ity is reflected in Figure 20.3 in the total displacement , o. of a particle from 
its initial pos ition after one period [8 = lx(27r/w) - x(O) I J. The concentric contours L 2 
and 3 within the dead zone re fl ect stable . roughly circular motion. whereas the oblong contour 
5 represents particles "''hich fall out of th e cel l. Similar contours fo r longer evolution times 
maintain the re lati vely simple structure within the dead zone. but re veal complex structures 
near its boundary as some pa rt icles fall repeatedly through cells while their near neighbours 
become entrained (temporarily) near the dead zones of other cells. Examining the variation 
in residence time of a particle near the dead zone boundary reveals the sensitive dependence 
of res idence time on initial position . 

In the next section , we shall consider the questio n of interpolation in this field , specifically: 
given the initial position of an ensemble of particles and their final pos ition after one period 
of the fluid forcing , how can we approximate the final posi tion of some other initial condition 
(if the underlying equations are unknown)? First. we consider the results of a long run shown 
in Figure 20.4. Here we have plotted the location of a single initial condition (vs = 0.25) 
once per cyc le of the background forcing and applied periodic boundary conditions identifyi ng 
the top and bottom of the cell ; this stroboscopic graph is equivalent to a Poincare section. 
The figure sketches the region access ible to migratory particles. Note that within each ce ll 
the dead zone is divided into several di sconnected regions ; this is typical of Hamiltonian systems 
of this form. If a line of particles is introduced (Smith and Spiegel, 1985) , it is quickly contorted 
into a complex shape that appears to be self-s imilar; as experimental techniques of flo\ 
visualization typically rel y on tracers (see , for example, Corrsin , 1950) , and as material lines 
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Figure 20.3 Contours of the displacement after one period as a fun ction of initial position for the case 
A0 = 1.0, v, = 0 .25 , w = 271'/4.5. The fine structure already visible near the centre and bottom of 
the cell (contours 2,3,4) becomes much more intricate as the number of periods increases 
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in a turbulent tlow are expected to develop into frac tal structures, it is interesting to note 
that such structures can occur in a periodic lan<inar flow. leading to the formation of self
similar distr ibutions. There is nothing turbu lent here; the tlow is smooth bu t chaotic. Po ll utant 
dispersal rnay be more widespread and more concentrated than expected from lami nar tlows 
without requiri ng tu rb ulent mi xing. Add itiona l di sc ussion of this and re lated fl ows is gi ven 
in Smith and Spiegel ( 1985). Pasmanter ( 1987). Smith ( 1987) , Broom head and Ry ric ( 1988) , 
Crisanti et a/. ( 1990: in press) , Y u, Grebog i an d Ott (1990) and Huppert (199 1). 

20.2 .3 Interpolation of vertical displacement in two dimens ions 

Consider the problem of interpolat ing a funct ion s(x ) which dete rmined the con tours shown 
in Figure 20. 3. We shall initially conside r a global predictor (or map). F(x): R 2 

- R 1, which 
est imates s for any x . First. choose n'- base po ints or centers in the two-di mens ional space 

(20. 7) 

We wi ll co nsider F (x ) of rhe form 

F(x) I: !y¢(iix - cJii ) (20 .8) 
;~I 

where ¢(r) are radi al basis functions (PCl\·vcll. 1985). We will cnnsidcr ¢ (r) = r1 and 
¢ (r ) = e _,::!. ,,::. where the constant is based on a multiple of the average distance between da ta 
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Figure 20.4 Stroboscopic view of a single part icle fall ing for 2 12 periods with period ic boundary 
conditions. Only the upper half of the cell is shown 
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points , dnn- The 'Ai are constants which are determ in ed by observations 

F (x1)-::::: s1• i = 1.2 , . . . ,nL (20. 9) 

where the xi are the initial conditions o f the n observations and the si a re the ir observed 
displacemen ts. We shall call the data used in determining the f...j the learning set . 

Determining the /...
1 

co rresponds to the solut ion of the (l inear) problem 

b =At.. (20 . 10) 

where /... is a vector of length n~ whose jth component is /...i and A and b a re g iven by 

(20.1 1) 
and 

(20. 12) 

where i = 1, . . . nL and j = 1, ... ·~'~ c · Trad itionally , the weights wi reflect the confidence 
associated with the ith observation , we shall restrict attention to the case where all wi are 
equal , assuming that the errors are independent w ith equal vari ance (but note the discuss ion 
in Section 3.2 of Smith . 1992). When there are fewer ce ntres than data points , A is not square 
and we are left with a standard least-squares problem of finding a /... which minimi zes 
x2 = II b - At.. [[ ~ . The solution wh ich also minimizes II 'A [[ 2 corresponds to 

(20. 13) 

where A+ is the Moore - Penrose pseudo-inverse of A. Efficient methods to calculate A+ 
are g iven in Press et al. (1987). Additional di scussion of the detail s of the construction of 
this type of predictor is provided by Broom head and Lowe (1988) , Casdag l i (1989) , Farmer 
and Sidorowich ( 1988) and Smith (1992). 

A function F constructed in this way will be called a radia l basi s function (RBF) pred ictor . 
We shall also consider loca l linear (and quadratic) interpo lation . In a ll instances the data in 
the learning set used to construct the predictor are kept distinct from the test data set on which 
it is evaluated. Thus the time ser ies results represent out of sample prediction. Out of sample 
statistics are crucial if we are to establish that an RBF predictor is robust in the presence 
of noise; RBF predictors ca n minimize in- sample error by overfitting the noise in the lea rning 

set. 

20. 2. 3.1 Global and local prediction 

We now contrast the results of constructing one global predictor for the entire cell with those 
from constru cting a loca l predictor for each point of interest based on that point 's near 
neighbours . This simple two-dimensional example illustrates qualitative features of global 
reconstructions less easily visualized in higher dimensional constructions. Examining contours 
of the predictor error as a function of location in the cell shows that the larges t prediction 
errors occur near the corners where the gradient is g reatest; when the data density is low , 
global predictors may maintain a smoothn ess over the cell lost in local predictors. In this 
instance , usin g a grid of 32 x 32 sample points as the learning set, the 32 neighbour local 
RBF predictor does a superior job of resolv ing the details of the flow. When the data density 
is very high , local linear predictors should be most accurate; at this data density, however, 
locaJ quadratics were fo und to give the smallest mean absolute e rror. 

The predictions of one local RBF with ¢ (r) = 1
3 . one local linear , and one global predictor 
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fraction 
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Figure 20.5 Comparison of pred iction erro r protile fo r (a) global and two 32 neighbour local predictors . 
The hori zontal ax is is the luge of the erro r bala nce. The local predictors are (b) local linear and (c) 
RBF with ¢ (r) = ,. -::. with n" = 16 

are summarized in the predictor e rror profiles of Figure 20.5 . Each curve shows the fraction 
of the out of sample poi nts which can be predicted to within a given (absolu te) accuracy ; 
for long test sets this should converge to the cumulative probability distribution of the prediction 
errors. The local RB F predictor is c learly the best ; fo r example , 50 % of its predictions have 
an error of less than 2- 8 ~ 0 .004, almost a fac tor of four less than the co rresponding level 
for the local linear pred ic to r . Evaluati ng a predicto r wi th a single measure of an 'average' 
error in the prediction may be mislead ing when a few per cent of the predictions have very 
large errors. In extreme cases thi s may result in a pred ictor whi ch is more accu rate 90 % 
of the time hav ing a greater ave rage absolu te e rror . As long as the predi ction erro r profi les 
are well separated there is no confusion , but if they cross (as in F igure 20.8), it is impo rtant 
to ascertain which properties of the predic tions are considered the mo re important when 
evaluating predicto rs; in thi s instance. d ifferent defin iti ons o f the erro r can result in different 
'optimal' predictors. 

20.3 TIME SERIES APPLICATION 

20.3.1 Residence times: transition to a Lagrangian frame 

In the time-dependent Sro mmel flow , the veloc ity components at a fixed position each show 
a regular periodi c oscilla tion which is st raightforward to predic t. We therefo re adopt a 
Lagrangian refe rence fram e, moving wi th a particle , to show the practical problems involved 
with the prediction o f chao tic systems, and consider the series of residence times in each 
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cell (defined as the time interval between passages through the lower per iodic boundary of 
the cell ) . At first glance, thi s problem appears fa r removed from the interpo lation prob lem 
presented earlier. On reflectio n, however , they are seen to be very s imi lar ; Casdagli ( 1989) 
and Farmer and Sidorowieh (1987 ; 1988) were the firs t to make this application to chaotic 
time series. 

Figures 20 .6 and 20.7 are deri ved from two segments of the trajectory which generated 
Figure 20.4: here the residence time in consecuti ve cells is give n . This spiky appearance , 
with regions of activity separated by qui escent periods, is common to many observed series 
in geophysics and is difficult to predict. This series is extremely var ied (more so than can 
be shown in these figures): there arc stretches of time during which the particle will fall through 
dozens of cells wi thout being re-entrained; al ternatively , there are ce ll s in which a particle 
becomes trapped for a large fraction of th e total integration time. Although there can be no 
attractors in this Hamiltonian system. the probab ili ty dens ity in these ' reef' regions where 
the particle is temporarily trapped can become fa irly large (Meiss, 1986) and may appear 
as a strange accumulator (Smith and Spiegel , 1987). 

20.3.2 Method of delays 

The firs t step in applying this method of prediction is to reconsrruct the time se ries into a 
geometrical framewo rk. [An introduction to this method is given by Broomhead and Jones 
( 1989). 1 In many instances , s(t) woul d he a physical variable measured at regular interva ls 
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Figure 20.6 Segment of the series of time a particle remains in a given cell ; the data corresponds to 
the same trajectory as the stroboscopic sec tion shown in Figure 20.4. The x axis corresponds to the 
ith cell; the residence times in a few thou sand cells are shown 
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(T,, the <;ampling time) 

si = s(irJ i = 1,2 , . . . ,n, (20. 14) 

In our case a 'sa mpling time ' is exactly what we are trying to predict. and the si arc taken 
as co nsecut ive observati ons. 

A trajectory. x (l). of th is system is reconstructed in M dimens ions from a time series of 
a single observable, s(t), by the rnethod of delays to yi e ld a series of vectors 

(20.15) 

whe rej (or f rs) is ca lled the delay time. Td · (As noted by a referee, the phrase 'delay time ' 
may be misleadi ng in thi s case, as the subscript i relates to the time spent in the ith cell.) 
For a det erministic system with phase space dimension M , and a generic observable, this 
reconstruct ion preserves many of the characteristics of the original system for sufficiently 
large M (see, fo r example, Casdagli , 1992 ; Packard era!. , 1980; Sauer , Yorke and Casdagli , 
1991; Takens, 1981) . As shown in the fol lo wing, multivariate series can also be considered, 
often with s ignificantly shorter time series in terms of the total duration of the experiment. 
This is easily unders tood as multivariate probes can distinguish well separated states in phase 
space whi ch appear . imilar to univa riate probes due to projection effects. For example, 
combining the phase o r the bac kground f1ow when the particle entered the cell with the 
residence time series could improve the predictions signzficcmtly more than doubling the length 
of the residence time ser ies. It is the information content, not the le ngth of the data set, which 

is more important. 
Cons ider the problem of predicting a fixed distance Tp = k steps into the future . Once 

we have the set of observed initial co nditions x i and later observations si + b the same 

re ~ ickn c:c ti me: 
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Figure 20.7 Initial segment of the series in the previous figure ; onl y the first 350 residence times are 
shown here . Note the change in the scale of the vertical axis 
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fraction 
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Figure 20 .8 Cumulative predictor error used to optimize bas is function parameters and show the 
significance with re~pect to surroga te data for the predicti on of panicle residence times . RBF predictors 
using ¢(r) = e - r . fr- for c = t , 4 und 16 times each local average neare st neighbour di stance. Local 
linear predic ti on is o f s imila r quali ty as the best RBF predictor 

machinery set up to solve the two-dimensional example may be used to predict the value 
of s, k steps ahead in thi s M-dimensional case . The most immediate difficulti es to ari se are 
those of data density in higher dimensional spaces and, o f course, visualization of the result. 

We will use a learning set consisting of the first 2000 points of a 6000 point series and 
evaluate the predictors by making one step (i.e. cell) ahead predictions on each of the remaining 
points . Figure 20.8 provides the prediction error profiles for this example. Three of the curves 
correspond to different choices for the constant c in the bas is function ¢ (r) = e- '~ 'c2 

illustrating how the profil e may be used to optimize free parameters. Tn this insta nce we knew 
there was an underlying de terministic system; how would we evaluate the quality of this result 
if we did not? 

20.3.3 Null hypothesis testing 

The significance of a result is determined through the consideration of surrogate data and 
surrogate predictors; other algorithms developed from non-linear dynamical systems theory 
can also be evaluated in thi s manner (Smith , 1992 : Theiler et al. , 1992). In brief, the procedure 
is to construct a stochastic data series with statistical characteristics similar to the original 
data and then to determine whether a given algorithm can distinguish the two series. An 
ensemble of surrogates ma y be analysed ancl the probability of a surrogate series producing 
the observed result may be estimated . Alternativel y, surrogate predictors quantify the errors 
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that should be expected by even the most na·ivc forecasts , the simples t forecast being either 
the persistence of the last observed va lue, or a random choice from the nb. erved distributio n. 

20.3.4 Construction of sun·ogate data 

The method of surrogate data can be used to quantify the signi ficance of a c laim for non
linearity, chaos , or even periodicity . There are a variety of methods fo r constructing surrogate 
series ; the appropria te method in a specific example will depend on the statistic evaluated 
and null hypothes is to be tested. In the fo llow ing we wi ll conside r exa mples which reproduce 
the distributions observed in , or the autocorrelation func tion of, th e da ta set. In general , any 
method of simulation (inc luding, of course, bootstra p and parametric bootstrap me thods well 
known in statistics; Tong , 1990) may be used; howeve r, the correspondence between an 
algorithm for generating surrogates and a well posed null hypothesis may be obscure . 

The basic idea is to take surrogate series from a process which docs not, for example , 
reproduce the sensit ivity to initial value found in chao tic series; discovering whether a given 
algorithm can detect thi s difference (by d istinguishing the chaotic se ries within an ensemble 
of surrogates) is the key point. In short. we want the surrogates to reproduce the stati stics 
of the series , but not the physics of the system. 

20. 3. 4. 1 Shuffling 

A typical method fur generati ng surrogates for iterated systems such as the retention times 
is to draw from the observed d ist ribution at random; the resulting surrogate series are 
independent and identicall y d istri buted (liD) random variabl es with the same distribution as 
the observations . (This is s imil ar to shuffl ing the data , but allows the construction of arbitrar ily 
long series.) The true retention time signal is easily distinguished from surrogate signals of 
this type. This should be the case whenever there is some memo ry in the system -that is , 
when the expected value of the next observation is conditioned on the current value. A simple 
method to simulate this conditional probability distribution is given in the following. 

20. 3. 4. 2 Malicious shuffling 

A method of shufning which retai ns the general association between consecutive observations 
provides more realistic su rrogates . For the reside nce time series. sho rt residence times often 
follow very short residence ti mes, whereas long res idence times tend to follow those of 
intermediate length. We may produce a surrogate series with this quality from a series of 

N observations with the following algorithm: 

(1) Sort the first (N- I ) members of the series into increasing order, recordin g the val ue 
which immediately followed each member in the unsorted series (i.e . its image). 

(2) Divide the so rted li st into K subgroups. 
(3) Pick a member from the entire series at random: this is the first data point of the surrogate 

se ries. 
(4) Determine which of the K subgroups the imoge of this value falls in , and pick an e leme nt 

from this subgroup at random as the next surrogate data point. 
(5) Repeat step 4 until a series of the desired length is achieved. 

These surrogates cannot only preserve the distribution of the original data set, but can al so 
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approximate the (one-step) conditi onal probability distribution [i.e . P (s; = c I s;_ 1 = h)) 
depending on the val ue chosen forK and are , in essence, Markov chains. ForK = l, the 
surrogates are li D, alternatively, fo r K ""' N segments of the origina l are reproduced. 
[Assuming rhat the observations are distinct (i.e. s; ~ .\j fo r i ~ j) thereby avoiding an 
ambiguity often introduced by quantizat ion effects. In this case, the final image used must 
be grouped with an earlier observation. hence K < N - I .] The choice of a particular value 
fo rK depends on the structure of the distribution. Although surrogate generators will provide 
the advertised results in the long run, it should always be ve rified that, for the desired length 
of surrogate series, the observed distributions of surrogate data are not sensitive to e ither 
the choice of K or that of the location of the boundaries between subgroups . 

This variant of shuffling was originally envisaged for series which displayed distinct 'modes ' 
of behaviour; modes which, in turn, were reflected by the magnitude of the observation. 
The subgroups are (individually) liD and there is a fixed probability for remaining in a given 
subgroup . As in the following example , K was raken ro be much less than N. This appears 
more natural for iterated systems than fo r those which evolve smoothly in time: the one-step 
conditional probability distribution is often blind to ·trends' in stationary series . [Exceptions 
exist in processes whose conditional probabili ty distributions change under time- reversal (i.e. 
P(s; = cls;_ 1 =b) ~ P (s;_ 1 =his;= c)), like a saw-tooth series.] It should also be noted 
that it is straightforward to extend this method of shuffling to maintain correlations over periods 
longer than one step le.g . P(s; = cls;_1 = b, s;-3 = a)]. 

Not surprisingly , the ex pec ted prediction error of surrogate series with K = 5 is lower 
than that for the liD surrogates produceJ by straight shuffling (equivalent to K = 1); none 
the less , the observed ser ies can be distinguished from surrogates of this type , as illustrated 
in Figure 20.8. 

20. 3. 4. 3 Fouri er transforms 

Surrogates which test whether 'good' predictions result from the autocorrelation function 
alone may be generated with Fourier transforms (Osborne et al., 1986; Smith, 1992 ; Theiler 
eta!., 1992). A surrogate is generated through the inverse Fourier transform of the observed 
Fourier amplitudes and random values for the phase of each frequency component. As noted 
by Theiler et a f. ( 1992) , this is equivalent to testing whether the signal is di stinguishable 
from a linear stochastic noi se. This method is used for the Severn data in the next section. 

20.4 DYNAMIC RECONSTRUCTIONS OF THE RIVER SEVERN 

We now tllrn to the analysis of velocity time series taken on the River Severn. The data consists 
of simultaneous, three-component velocity measurements taken in 1989 at the Leighton New 
Upstream Pool Site; details of the collection and previous analysis of this and related data 
sets are given elsewhere in this volume (Heslop et at. , 1994) and in Beven and Carling ( 1992) 
and Heslop and Allen (1990) . It should be noted that. due to noise contamination, the analogue 
signal was redigitized and low-pass filtered (Holland , 1991 ); it is possible this would have 
a negative impact on the current analysis. Renormalization would not affect reconstructions 
of the individual components , but would affect the analysis of the total velocity series. 
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20.4.1 'Predicting' the total velocity from observed components 

As stressed earli er, the non-linear models applied here are constructed complete!_ from the 
data; no underlying model of the system is required (although additional information can 
be used). This makes the method sensitive to variations in the densi ty of data points in the 
reconstruction space: in particul ar. when the system is in a reg ion of reconstruction space 
not explored during the learning set, these pred ictions correspond to extrapolations (rather 
than interpolations) and their uncerta inty is high even when the other assumptions of the 
technique are satis fi ed. To stress the importance of thi s effect , and the sensitivity to detai ls 
of the reconstruction , we will pose a simple problem : Given the observations ,._ <> ''-' · v~ , what 
is the total veloci ty? This test. and its intermittent fai lure . also serves to st ress that no underlying 
model of the system is assumed . 

Figure 20.9 shows the resul ts of a local linear ·pred iction ' of the current total ve loci ty 
given its three component parts (i .e . Tp = 0). Of course. this computation can be performed 
exactly as we know the underlying relationshi p; this information is not available to the non-
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Figure 20.9 Observed (solid) and 'pred icted' (symbol) values of the total velocity from a local linear 
predictor using 32 nearest neighbours (upper) . Simultaneous time series of the prediction error (lower) 
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linear model; regions of poor fit (e.g . near t = 525) correspond to areas of relative ly low 
data density . 

Local non-l inear predictors cope better with this difficulty , in part because they do not 
assume that the local behaviour is linear and hence can more acc urately inte rpolate low data 
regions where it is indeed not linear. Non- linear predictors , in turn , can over fit the noise 
in the data and are sensitive to the add itional parameters in the ir defi nit ion (for example, 
the constant c in rh (r) = e_,.

2'c\ What is needed is a robust method to determine how much 
of the local structure should be reproduced by the predictor ; some progress in th is area has 
been achieved in collaboration with A. Mees (manuscript in preparation) . The results for 
the total velocity 'pred iction' are summarized in Figure 20.10 , where the optimum RBF 
predictor reduces the error with which 50 % of the predictions a re made by more than a factor 
of 32 over the local li near case illustrated in Figure 20.9. 

20.4.2 Predicting short-term fluctuations in velocity 

Finally , we consider the 'standard problem' of time series prediction . Given a single , univariate 
time series of the total velocity , v(t), how well can we predict a future value v(t + Tp )? For 
the Severn data with 1 P = 2 and 1 P = 7 , predictor error profiles indicate that the best 
predictors have a delay time Tu = l and ei ther M = 2 o r M = 3 . This has implications for 
future data collection . The short delay time indicates that a shorter sampling rate would be 
useful, whereas the low embedding dimension also points to data density prob lems. In addition 
to requesting a longer , more densely sampled data stream, comparison with Fourier transform 
surTogate series indicates that, for short times , the observed series (1P = 2Ts) may be slightly 
more predictable than the surrogates, but for longe r time scales (1p = h s) the observed 
series can be distingu ished as significantly less predictable than the linear stochastic surrogates . 
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This result indicates that the series contains significant non-lineari ties which cannot be captured 
by linear models. In addition , it implies that the data densi ty is too low to fill out the 
reconstruction space - that is, the data record is too short to allow sufficient recurrence 
in most regions of the reconstruction space even though th e stat i tics of the distribution of 
data values may appear stationary. Examination of the series shows that many distinct types 
of behaviour are indeed observed . 

Predictions from a three-dimensional reconstruction based on the three simultaneous velocity 
components resulted in an improvement in the case Tp = 7T, . The average absolute errors 
and predictor profile of thi s predi ctor are al so better than those of a persis tence predictor. 
This interesting result indicates that the orientation of the veloci ty vector is an important 
diagnostic of short time nuctuat ions. 

20.5 DISCUSSION 

We should also address the question of whether these techniques are worth applying. The 
most robust answer is yes. From the poinr of view of simplicity , low dimensional chaotic 
systems are intermediate between periodic (or sta tic) systems and rich turbulent systems: 
without performing rests such as these, the_ cannot be dismissed . From a more pragmatic 
point of view, these techniques can be useful in the event that the dynamics are simple but 
nor deterministic . For example, reasonable predictions are obtained when these methods are 
applied to data originating from non-linear stochastic models (and also for linear ARMA type 
models). If the system is equivalent to a linear ARMA model, the parameters of which arc 
well estimated , then the techniques discussed here can add little more. If, on the other hand, 
the observations are non-linea r and not easi ly transformed to linearity (Theiler et al . . 1992) , 
then determi nistic predictors which are robust in the presence of noise should yield good 
predictions (in the sense of expected val ues). The data requirements needed to apply these 
techniques are currently under investigat ion; ultimately, it will most likely be their relative 
speed of convergence (as the amount of data in the learning set increases) which will determine 
their usefulness. 

We have illustrated a non- linear prediction techn ique and presented the initial results of 
an analysis of data from the River Severn . The analysis shows (l) that the velocity series 
contains important non-lineari ti es which cannot be described within a linear model and (2 ) 
that the three-d imensional orientation of the ve locity vector is relevant to the short-term 
evolution. The most serious limitations encountered appear to arise from a lack of recurrence 
(low data densities) , implyi ng the need for longer data series. There is little doubt that series 
such as this , and those of geophysical systems in general , will provide a tough proving ground 
for these techniques. 
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