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This contribution focuses upon extracting information from dynamic reconstructions of experimental time series 
data. In addition to the problem of distinguishing between deterministic dynamics and stochastic dynamics, applied 
questions, such as the detection of parametric drift, are addressed. Nonlinear prediction and dimension algorithms are 
applied to geophysical laboratory data, and the significance of these results is established by comparison with results 
from similar surrogate series, generated so as not to contain the property of interest. A global nonlinear predictor is 
introduced which attempts to correct systematic bias due to the inhomogeneous distribution of data common in strange 
attractors. Variations in the quality of predictions with location in phase space are examined in order to estimate the 
uncertainty in a forecast at the t ime it is made. Finally, the application of these methods to truly stochastic systems 
is discussed and the distinction between deterministic, stochastic, and low dimensional dynamics is considered. 

1. Introduction 

It is now generally recognized that complex 
dynamical behavior is not restricted to systems 
with many active degrees of freedom, and exam- 
ples of tow dimensional nonlinear systems with 
complex and apparently unpredictable behavior 
are commonly cited [1-5].  One imagines that 
Laplace would have no difficulty with chaos, for 
given the exact state of the universe, prediction 
of a modern chaotic future is no more difficult 
than Newton's laws. In Laplace's words, for an 
intellect "vast enough to submit this information 
to Analysis, . . .nothing would remain uncertain, 
and the future, as well as the past, would lay be- 
fore its eyes" [6]. Yet few would dispute that 
there exist many systems which are, in fact, not 
deterministic within any known physical frame- 
work. A recurring theme in time series analy- 
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sis is the attempt to characterize these two types 
of systems in order to distinguish determinism 
and indeterminism, chaos and stochasticity. In 
many cases of interest, this cannot be resolved 
definitely and we shall focus on a simpler ques- 
tion: given a particular set of observations (and 
current technological constraints), can we detect 
low dimensional dynamics in a time series? 

This question will be directed either at phe- 
nomena outside the lab or at experiments de- 
signed to investigate such phenomena. There is 
no question that numerical experiments have 
taught us much about the nature of chaos. A 
more interesting question now appears to be 
what chaos can teach us about Nature. The 
particular experiment discussed here investi- 
gates dynamical processes related to the motion 
of planetary atmospheres, and provides an in- 
stance of  the reoccurring attempt to distinguish 
"red" noise from nonlinear determinism. This 
distinction is central in determining the direc- 
tion of  future research; the best model for an 
atmosphere which amplifies small scale stochas- 
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tic disturbances differs from an optimal model 
of the complex deterministic interaction of a 
reasonable number of modes. Long term predic- 
tion of the first is possible only in a statistical 
sense, the present state does not define the fu- 
ture state after some (nonlinear) decorrelation 
time. Prediction in the second case is difficult, 
but possible in principle as the information 
needed is contained in the state of the system. 
In this paper, we discuss techniques for this test 
and report initial results indicating that there is 
low dimensional behavior in some systems (in- 
cluding the experiment) and not in others. The 
analysis of such systems is notoriously difficult; 
what we desire are tests for low dimensional be- 
havior which are reliable, in the sense that they 
do not yield false positives. 

There are now a large number of algorithms 
for detecting and quantifying low dimensional 
behavior and chaos. The known weaknesses of 
individual tests may be addressed through the 
analysis of surrogate data: non-deterministic 
time series constructed to be similar in appear- 
ance to the original data. Such an analysis aims 
to establish what aspect of the data set an al- 
gorithm is quantifying, by determining whether 
original data can be reliably distinguished from 
an ensemble of surrogates, when each data set is 
processed in precisely the same way. The con- 
struction of these surrogate data sets is discussed 
in section 2 (also see [7-9]).  The usefulness 
of this test will depend on the quality of the 
generator of the surrogate sets, as a poor choice 
of surrogate generator will result in sets which 
are distinguished, not because of any underlying 
determinism, but by some other factor. Indeed 
we argue in section 6 that some stochastic se- 
ries may be more predictable than surrogates 
generated with similar statistics. 

Section 3 addresses the construction and eval- 
uation of dynamic reconstructions from obser- 
vational data, where the vector field is, approx- 
imated in phase space. The desirability of this 
approach has been discussed previously (e.g. 
[10,11]). We note that by using additional in- 

formation about the macroscopic state of the 
system, more useful dynamical reconstructions 
can be obtained from the same data set(s). 
Once a dynamic reconstruction is in hand, a 
variety of other questions may be asked. The 
existence of a good reconstruction provides an 
estimate of a minimal embedding dimension for 
the system; clearly if one has a six-dimensional 
flow by which the observed dynamics are well 
described, then a six-dimensional embedding 
is a practical one. In addition, many character- 
istics of the system can be estimated from the 
reconstructed flow much more easily than from 
the raw data directly, for example the spectrum 
of unstable periodic orbits, or Lyapunov expo- 
nents. As these quantities are well defined for 
a given reconstruction, one must address the 
question of how quickly the properties of the 
flow approach those of the underlying system. 
In the case of unstable periodic orbits, this can 
be very rapid [ 12 ]. 

Dynamic reconstructions can also clarify ex- 
perimental uncertainties. In section 4, we ana- 
lyze time series from a thermally stressed rotat- 
ing fluid annulus [ 13 ]. Comparison with surro- 
gate signals demonstrates that the organization 
in the reconstructed phase space dynamics is 
greater than that arising from either autocorre- 
lation or simple advection alone. We also show 
how dynamic reconstructions offer a natural 
method for the detection of slow parametric 
drift. In addition, one may use the flow to make 
predictions providing a direct test of determin- 
ism. We stress the importance of what is pre- 
dicted and, in general, of which aspect of the 
time series is reconstructed. The quality of pre- 
dictions (the difference between the predicted 
and observed values) may vary with time due 
to differences in the volatility of different states 
of the system, variations in the quality of the 
predictor, or errors in observation. We demon- 
strate a method of estimating the expected un- 
certainty in a given prediction, and discuss how 
to distinguish between these various causes. Ad- 
ditional evidence that the time series are in fact 
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low dimensional is given in section 5, where 
we apply the Grassberger-Procaccia Algorithm 
(GPA) [14] to analyze the geometric structure 
of the experimental data sets and establish the 
significance of the results through comparison 
with those from surrogate data sets. 

Finally, in section 6, the results of applying 
these prediction techniques to stochastic series 
is considered. Laplacian determinism requires 
that, in the limit of perfect initial data, the fu- 
ture of the system is uniquely defined, so the 
systems considered in this section are not deter- 
ministic in this sense. There is, however, either 
a low dimensional or a deterministic component 
in their evolution, due to which many station- 
ary stochastic systems will appear determinis- 
tic relative to some surrogate series. We discuss 
some of the implications this holds for distin- 
guishing between low dimensional determinism 
and stochasticity from time series. 

2. The data sets: observed and manufactured 

2. I. Experiments 

The primary data sets considered in this paper 
come from the geophysically inspired experi- 
ments reported by Read et al. [ 13,15 ]. These ex- 
periments were performed within a fluid filled, 
rotating annulus with thermally conducting side 
walls and insulating boundaries top and bot- 
tom. A temperature difference was maintained 
between the inner (cooler) and outer side walls 
providing an infinite dimensional simulation 
of the mid-latitude circulation of the Earth's 
atmosphere. The temperature in the fluid was 
measured by an array of 32 thermocouples, 
uniformly distributed in azimuth at mid-height 
and mid-radius. By monitoring the flow rate 
(volume) and temperature of the coolant wa- 
ter, simultaneous measurements of the total 
heat transport through the inner boundary were 
obtained. 

Of the many reported results, two realizations 
are considered here. They correspond to the tem- 
perature series b and d of table 1 of ref. [ 13 ] and 
are shown in figs. la and lc. The heat flux dif- 
fers from the temperature series as it is averaged 
around the entire annulus and thus does not dis- 
play the roughly periodic structure seen in the lo- 
cal temperature probe; this structure is due to the 
advection of (an evolving) wave pattern around 
the annulus. Fourier spectra of these series are 
given by Read et al. [ 13 ]. Both Read et al. [ 13 ] 
and R. Smith [16] conclude that these time se- 
ries are low dimensional; series b coming from 
a strange attractor with a correlation dimension, 
d2 ~ 3, while series d with d2 ~ 2, is considered 
to reflect a two-torus [ 13,15 ]. 

The isolation of an experiment from exter- 
nal forces is a major concern of experimental- 
ists. To obtain the long time series for the ro- 
tating annulus, experimental runs of 20 hours 
were required. One may ask whether the envi- 
ronment has been sufficiently isolated, for exam- 
ple from diurnal temperature variations, so that 
no systematic parameter drift has occurred dur- 
ing the experiment. Might not an evolving three- 
torus present a geometric structure with proper- 
ties similar to those observed? A method of de- 
tecting slow parametric drift with dynamic re- 
constructions is introduced in the next section. 
First we discuss the construction and use of sur- 
rogate data sets. 

2.2. Surrogate data sets 

A common objection to the dynamical systems 
analysis of data from poorly understood systems 
is that the significance of a given result is rarely 
established [17-21]. This objection can be ad- 
dressed directly by considering a class of non- 
deterministic surrogate signals. The significance 
of a result is then established by comparing it 
with the outcome of the same test applied to 
these surrogate data sets. 

The choice of surrogate signals will also de- 
pend on the known weaknesses of the algorithm 
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Fig. 1. A sample of  the measurements of  temperature, T, from the rotating annulus experiment and surrogate signals with 
the same autocorrelation function. (a) Time series b, (b) surrogate series for b, (c) time series k, (d) surrogate series for k. 
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employed to analyze the data. While any com- 
parison with surrogate signals can quantify dif- 
ferences, only careful choice of the surrogate gen- 

erator allows qualitatively new information. The 
goal is to generate signals with similar properties 
with respect to this weakness, but not containing 
"the physics" of the original signal. A result is sig- 
nificant with respect to the weakness tested if the 
algorithm can distinguish the true signal from 
the surrogates. In cases where a quantitative re- 
sult (or distribution) is produced for both ob- 
served and surrogate signals, one may estimate 
the probability that observed value would occur 
by chance in an ensemble of surrogate realiza- 
tions, and thereby evaluate the null hypothesis 
that the observed signal was a realization of the 
surrogate generator. Note that the second formu- 
lation is more difficult than the qualitative com- 
parison of results, in that it requires the algo- 
rithm to converge for the surrogate signals. This 
poses a problem for dimension estimates via the 
GPA ~l . 

Hypothesis testing and model evaluation with 
surrogate data has a long history in statistics 
[22,23]. There are often two conflicting moti- 
vations in choosing surrogates: ease of analysis 
and similarity to the observed data. One of the 
most common surrogate series is independent, 
uniformly distributed white noise which has the 
advantage that the expected distributions can 
often be calculated analytically. Most time se- 
ries, however, are not uniformly distributed, nei- 
ther are consecutive observations independent; 
at reasonable sampling rates the series should 
display some structure. A simple IID surrogate 
generator provides the correct distribution by 
simply shuffling the data, while series longer 

~ In their discussion of the method of surrogate data, 
Theiler et al. [7] point out that, strictly speaking, an 
algorithm need not converge for the null hypothesis to 
be rejected. While this is true, it is important to note 
the difference between distinguishing the observed series 
from the surrogates and estimating a statistic (e.g. a 
dimension) from the observed series which describes 
the dynamics. 

than the observed signal may be obtained by 
randomly sampling the observed distribution. 

Temporal correlations are reflected in the 
Fourier spectrum of the series. "White" series 
have a fiat spectrum, while those with less power 
at high frequencies are called "red". The meth- 
ods of the previous paragraph destroy temporal 
correlations in the original data. Perhaps the 
simplest method to amend this is to produce the 
time series where the next observation is cho- 
sen from a distribution determined by the cur- 
rent state. For digital data, the amount of data 
required to estimate this conditional distribu- 
tion will depend on the resolution of the analog 
to digital conversion. In this paper we will be 
concerned primarily with yet another surrogate 
generator which preserves the autocorrelation 
function of the original data. 

The point here is to show that there are a va- 
riety of methods available for constructing sur- 
rogate series and note that signals may be indis- 
tinguishable from one set, and not another. The 
insight gained from testing surrogate signals de- 
pends on the particular surrogate generator(s) 
adopted. 

When searching for low dimensional deter- 
ministic dynamics, an alternate approach for 
generating surrogates is to use a simple stochas- 
tic model of the system. While care must be 
taken not to overfit the model to the data (e.g. 
to construct epicycles), this approach may be 
particularly useful in evaluating dimension cal- 
culations from short, highly structured series. 
Used by Grassberger when considering climate 
data [18,20], this approach is discussed below 
for the sunspot data. 

Both predictability and correlation dimension 
estimates may be biased through autocorrelated 
signals. To test i fa  given result is significant with 
respect to signals with the same autocorrelation 
function the following surrogate generator (sug- 
gested by Osborne et al. [24]) may be used : 
first compute the Fourier transform of the origi- 
nal signal, then compute a set of random phases, 
and finally invert the transform using the orig- 
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inal amplitudes and a particular set of  random 
phases to generate a particular surrogate series. 
Since both the original and surrogate series will 
have the same Fourier amplitude spectrum, their 
autocorrelation functions will be identical. An 
ensemble of  surrogate signals may then be sub- 
jected to exactly the same analysis as the original 
data; surrogates for the annulus data generated 
in this way are shown in figs. l b and 1 d. Note 
that we are concerned with relatively long se- 
ries here, where many linear decorrelation times 
are available, so that calculation of  the Fourier 
transform is not a problem. Signals from this FT 
surrogate generator will be used to demonstrate 
the significance of  the dynamic reconstructions 
in section 4 and correlation integral calculations 
in section 5. 

Note that it is not necessary for a surrogate 
generator to completely destroy the phase co- 
herence in a signal, and in some cases, it is not 
desirable. Consider a signal containing some 
understood frequencies, such as a diurnal cy- 
cle in a temperature record. Complete phase 
randomization will distort the daily cycles ob- 
vious in the data and the true signal may be 
distinguished from the surrogates for this rea- 
son alone. A stronger result is obtained (in the 
sense that a more relevant null hypothesis is 
rejected) if the observed signal can be distin- 
guished from an ensemble of  surrogates which 
also contain a diurnal cycle. Such surrogate se- 
ries may be generated by retaining a subset of 
the Fourier phases unaltered and randomizing 
the remainder. (Note that the fine structure of  
a fractal attractor will be destroyed simply by 
randomizing only the phases corresponding ei- 
ther to high frequencies or to those frequencies 
with relatively low power thus retaining some 
macroscopic structure. ) 

For some data sets, reconstructions cannot  be 
distinguished from those of  the surrogate gener- 
ators discussed above; but for many interesting 
systems the construction of  good surrogates will 
require a more detailed examination of  the sys- 
tem. The underlying desire is often not to iden- 

tify either nonlinearity or chaos, but low dimen- 
sional, deterministic dynamics. This may be 
pursued by employing the best stochastic model 
available for a given process as a source of sur- 
rogate signals. One must balance overfitting the 
model to the data (allowing unduly complex 
models) against setting up "straw man" surro- 
gates. An excellent example is provided by the 
annual mean sunspot numbers. The basic asym- 
metries of the sunspot number (it is strictly 
positive, increases more rapidly than it decays, 
etc.) and the presence of  events like the Maun- 
der minimum [25] make the simple FT sur- 
rogates inappropriate for this series. It is non- 
linear by inspection. Analysis calls for either a 
modification of  the data set (e.g. Spiegel and 
Wolf [26] ) or an improved surrogate generator. 
By modifying the dynamics of  a linear ARMA 
model, Barnes et al. [27] have constructed 
nonlinear stochastic model of  sunspot number, 
which, fortuitously, produces Maunder minima. 
Treating this model as a surrogate generator, the 
significance of  correlation integral results fo~ 
the sunspot series is examined by Weiss [28], 
along with a discussion of  solar aperiodicity in 
the context of  nonlinear dynamical systems. 

In summary, different surrogates will test dif- 
ferent effects. The better the surrogate genera- 
tor, the more relevant the class of  signals that the 
data set (and by implication the system) can be 
distinguished from. Even then, the comparison 
with the best surrogate signals provides only 
necessary condition for the detection of  low di- 
mensional dynamics; it is not sufficient. As wc 
are showing what the signal is not, this approach 
cannot establish what the system is; in this sense 
proving moderate dimensional chaotic dynam- 
ics by this method is similar to proving true ran- 
domness, one only knows when one cannot do it. 
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3. Reconstruct ions  

3. I. Static reconstructions 

The methods of nonlinear dynamical systems 
theory discussed here require time series to be 
reconstructed in a geometrical framework [29]. 
Consider a single signal measured as a function 
of time, s (t). Once the signal is recorded digitally 
in discrete time we have 

Si = s(izs),  i = 1 ,2 , . . . ,ns ,  (3.1) 

where z~ is the sampling time (and si is digitized 
to one of a finite number of values). 

Consider a deterministic system with phase 
space dimension Ms. A trajectory, x (t), of this 
system is reconstructed in M dimensions from 
a time series of  a single observable, s(t) ,  by the 
method of  delays [30,31 ] to yield 

x ( t )  = (S ( t ) , S ( t - -Zd )  . . . . .  s ( t - -  (M--1)Zd)) ,  

(3.2) 

where Zo is called the delay time. The delay time 
need not equal Zs (although it must, of  course, 
be an integer multiple of  Zs). In fact the M - 1 
delays used in defining x (t) need not be equal, 
although they will be treated as such here. Meth- 
ods for choosing Zd vary (see e.g. [32-34] ); 
it is usually related to the decay of information 
in the signal with time, either from linear auto- 
correlation time (Zau~o) or more general meth- 
ods [35 ]. When constructing nonlinear predic- 
tors, the delay may be chosen to optimize the 
predictor as demonstrated in section 4. Breeden 
and Packard [36] discuss the case of  time series 
sampled nonuniformly in time. 

The arguments which follow do not depend 
on the use of this method of delays. We have 
achieved similar results with singular value 
decomposition (SVD) reconstructions (see 
[ 37,38,35 ] ). Multi-variate series also work well, 
often with significantly shorter time series in 
terms of the total duration of the "experiment". 

This is easily understood as multivariate probes 
can distinguish states in phase space which ap- 
pear similar to univariate probes due to pro- 
jection effects. When working with finite data 
sets, the use of multi-probe data can add crucial 
information on the state of the system, either by 
directly characterizing macroscopic patterns or 
through direct (and much more efficient) eval- 
uation of mode amplitudes. We return to this 
issue in section 7. Typically, each series is trans- 
formed to have zero mean and unit standard de- 
viation, however the standard deviation can be 
varied to change the weighting between differ- 
ent variables in the interpolation scheme. When 
we are concerned with predicting a fixed period 
in the future, we consider a third time scale, rp, 
the prediction time. Each point x (t) on the tra- 
jectory has a scalar image s (t + zp) and we wish 
to construct a predictor to determine this image 
for any x. In other applications the time of the 
prediction is determined through some geomet- 
ric constraint. For example, when working on a 
surface of section the time of the next crossing 
must be predicted as well as its location. Alter- 
natively, when predicting recurrence times, the 
main goal of the analysis is to determine rp. 

3.2. Dynamic  reconstructions 

Recently there has been much interest in pre- 
dicting nonlinear deterministic systems and a 
wide variety of approaches and algorithms have 
been proposed (see [39-43,33,44-48]).  While 
these systems differ in detail they all attempt the 
same task, since in the context of determinis- 
tic analysis, prediction in time becomes a ques- 
tion of interpolation in phase space. To predict 
a deterministic system given a description of  its 
current state, one is faced with the basic prob- 
lem of interpolating the future behavior based 
on a sample of the "nearby" points. Like all in- 
terpolation problems, success depends on hav- 
ing a sufficient number of nearby points to sat- 
isfy the smoothness assumptions of the chosen 
algorithm. In the presence of noise, this require- 
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ment is increased so that the variations due to 
the noise may be, in some sense, averaged out. 
We shall use a global radial basis function predic- 
tor [43] and account for noise by fitting the pre- 
dictor to the data in a least squares sense [41 ]. 
Further, we can account for the systematic bias 
introduced by extreme inhomogeneities in the 
distribution by adjusting the weighting scheme. 
This method provides a smooth flow over the 
entire region of the reconstruction (which may 
or may not be an "attractor"). As we are inter- 
ested in finding global structures (e.g. periodic 
orbits), this smoothness, lost in most local meth- 
ods, is important (see, however [48 ] ). 

When the underlying dynamics are not known 
in advance, we both construct and evaluate a 
dynamic reconstruction from the same data set. 
To do so, the data set is typically divided into 
two sections of unequal length: the learning set 
consisting of nL points from which a reconstruc- 
tion is derived and the test set on which various 
reconstructions are evaluated. It is crucial that 
this distinction should be maintained for out-of- 
sample evaluation of the predictor. That is not 
to say that statistics from the ability to fit the 
learning set are not of interest, but that these 
two types of statistics measure essentially differ- 
ent things. Statistics generated within the learn- 
ing set reflect how well the data can be forced 
into a given mold and may be useful, for exam- 
ple, for internal consistency checks and locating 
outliers. Those generated from the test set re- 
flect how well the predictor generalizes from the 
learning set to new data. Only the latter are of 
use for cross-validation. Predictor "error" in the 
two sets is a very different quantity. For exam- 
ple, with the exact radial basis function predic- 
tor described below, the in-sample predictor er- 
ror can be made zero for almost any data set. 

The predictor is based upon a set of nc centers 
in an M-dimensional space: 

c c ~ M .  x j ,  j = 1 ,2 , . . . ,nc ;  x j E  

The choice of centers will be discussed below, 

but, in the simplest case, each center might cor- 
respond to a data point in the learning set. As- 
sociated with each of the nL points, xi,  in the 
learning set is an observation, si; si may be a fu- 
ture value of the system, a simultaneous value 
of another state variable, or even a past obser- 
vation thought to contain noise [49]. In general, 
the problem is to construct a predictor (or map), 
F (x): [~M ~ ~1 which estimates s for any x. We 
will consider F (x) of the form 

nc 

F ( x )  = 
j = l  

(3.3) 

where ¢ (r) are radial basis functions and the 2j 
are constants which are determined by observa- 
tions in the learning set: 

F ( x i )  ~ si. ( 3 . 4 )  

Determining the ,~j corresponds to the solu- 
tion of the (linear) problem 

b = At, (3.5) 

where 2 is a vector of length nc whose j th  com- 
ponent is 2j and A and b are given by 

Aij = ~ i ¢ ( l l x i -  x~ll) (3.6) 

and 

bi = ogisi, (3.7) 

where i = 1 . . . . .  nL and j = 1 , . . . , n c .  Tradi- 
tionally, the weights o) i reflect the varying con- 
fidence associated with the ith observation. 

Casdagli [43] was the first to solve this prob- 
lem in the context of predicting chaotic systems 
considering the special case of exact interpola- 
tion where centers are chosen from the learn- 
ing set and only their images are considered in 
eq. (3.4). In this case the interpolation on the 
centers is exact; the matrix A is square and the 
solution for 2 depends on the ,4 being nonsin- 

c gular. This is guaranteed when the x j  are dis- 
tinct and ¢(r)  is a radial basis function [50,51 ] 
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Typical radial basis functions are ~b(r) = r, r 3, 
x/~ + c, 1 /v /~  + c, and e -r2/c where c denotes 
a constant often based on the average distance 
between neighboring centers. 

Casdagli demonstrated the effectiveness of 
this approach and showed that interpolation in 
both time and parameter space was possible. 
There are, however, several drawbacks when ap- 
plying it to noisy data; in this form, the interpo- 
lation fits the centers exactly, and no informa- 
tion from the points in the learning set not cho- 
sen as centers, is used. It is desirable to use this 
information, and important to avoid overfitting 
or fitting the noise in data exactly (especially 
since when making the choice of centers, one 
may tend to select outliers). Even with numeri- 
cal systems, computational constraints limit the 
number of centers used. 

In order to include the information available 
from the learning set, Broomhead and Lowe 
[41 ] solved this problem in a least squares sense 
and studied the behavior of the logistic map. 
For the least squares case, the entire learning set 
is included in eq. (3.5) (b is of length nL > nc), 
but a smaller number of centers are employed, 
and thus A is not square. Further there is no need 
to know the images of the centers, so they need 
not correspond to observations from the series. 
We seek a 2 which minimizes ,~2 = ii b _ A~]]2 

Choosing the solution which also minimizes 
I I,~ll 2 corresponds to 

2 = A+b, (3.8) 

where A + is the Moore-Penrose pseudo-inverse 
of A. Efficient methods of calculating A + via sin- 
gular value decomposition are discussed in [23]. 
Noting that the guaranteed solubility of the orig- 
inal system is lost in this generalization, Broom- 
head and Lowe [41 ] quantified the effect of in- 
creasing the number of centers and considered 
this modeling approach as a special case of a neu- 
ral network with a guaranteed learning rule. 

We continue this approach, introducing the 
weights wi, and investigate the sensitivity of the 

solution to the choice of centers and the effects of 
observational noise. Given the inhomogeneous 
(often singular) distribution of data on a chaotic 
attractor (see e.g. [52]), these weights can also 
be used to provide a more uniform prediction 
error across the attractor by reducing the impor- 
tance of the dense regions of the reconstruction. 

One common objection to the use of radial 
basis function interpolation arises from the 
large number of free parameters employed, one 
per center in the original formulation. The least 
squares formulation addresses this question of 
parsimony. When determining the coefficients 
of eq. (3.5), we perform a SVD of the matrix A. 
In doing so, a tolerance is set as to the smallest 
meaningful value an eigenvalue can take [23]. 
Values below this threshold are considered su- 
perfluous and suppressed (set equal to zero). 
This prevents "extra" degrees of freedom in the 
model from overfitting "noise fluctuations". As 
the threshold is raised, the estimated uncertainty 
in the modeling parameters (the)[i) decreases 
dramatically, with little effect on the Z 2 or the 
in-sample predictor error. This might be taken 
to mean that higher tolerances were preferred 
to avoid fitting noise in the learning set. Out-of- 
sample prediction error statistics often conflict 
with this interpretation: there are examples for 
which, although the estimated uncertainty of the 
2i is greater, low threshold models consistently 
yield better out-of-sample prediction statistics. 
This implies that the model is not fitting noise 
in the learning set. It is here that a difference 
between radial basis functions is observed: for a 
fixed tolerance and an identical choice of cen- 
ters, models with q~(r) = e -r2/c consistently 
use fewer degrees of freedom than those with 
qS(r) = r 3 or ~b(r) = r. 

Predictions more than one sampling time into 
the future can be made either by direct forecasts, 
constructing a predictor for this time scale, or 
through iterative forecasts repeatedly using a 
predictor which forecasts a smaller time step. 
Farmer and Sidorowich [49] conclude that it- 
erative forecasts are generally better than direct 



L.A. Smith / Low dimensional dynamics 59 

forecasts, but also present an experimental ex- 
ample where the reverse is observed. Stokbro 
[48] also compares the two as a function of  the 
forecast time and comments on the choice for 
the basic time step. Direct forecasts are used in 
this paper. 

As noted above, minimization of  [ ]b -  A2]I 2 
with all o9i equal results in a bias in favor of  the 
frequently visited regions of phase space. In or- 
der to achieve a good reproduction throughout 
phase space, such weighting is not desirable, as 
argued in the next section. One method to ac- 
count for this is to partition the phase space and 
allow only a specified number of  points in each 
partition. In the presence of  noise it is preferable 
to retain all the observations and adjust the 03 i 
so that the partitions are more equally weighted. 

3.2.1. The choice of reconstruction centers 
We now consider the question of  how to deter- 

mine the centers. Four approaches to this ques- 
tion are to choose the centers either 

(i) randomly (or uniformly) in the region of  
phase space explored by the data, 

(ii) with respect to the probability density 
(measure) on the reconstruction, 

(iii) spatially uniform on the reconstruction, 
(iv) with respect to the local divergence on the 

reconstruction. 
Methods (iii) and (iv) appear the most ro- 

bust in terms of  providing good reconstructions 
with a limited number of centers, but unfortu- 
nately, these results appear to be system depen- 
dent. There are several shortcomings in methods 
(i) and (ii) . Placing the centers uniformly in 
space works well when the system explores the 
entire region, as with the logistic map in one di- 
mension. In higher dimensional spaces, there are 
often large lacunae into which the system does 
not venture; placing many centers in such gaps is 
counter-productive, at least when localized ba- 
sis functions are employed g2. Numerical exper- 

~2 1 would like to thank James Theiler for pointing out 
this qualification. 

iments indicate this is particularly relevant in 
cases where the underlying dynamics is not de- 
termined by a simple analytic formulation (con- 
trast a true surface of  section of  a flow with that 
of  an analytically defined map) perhaps due to 
the smoothness of  the dynamics. 

Centers may be placed uniformly with respect 
to the probability density on the reconstruction 
either by choosing them equally spaced in time 
or randomly sampling the series. This initially 
attractive idea often yields poor results. One rea- 
son for this can be understood in the case of 
flows where the speed in phase space varies from 
point to point. An ideal illustration of  this effect 
is provided by the Duffing oscillator near homo- 
clinic bifurcation (see [53,54] ). In this case, a 
trajectory spends most of  its time near the fixed 
point, while the centers "should" be distributed 
over the relatively rare excursions. With maps, 
inhomogeneities in the measure also result in a 
poor distribution of centers. 

One method to distribute the centers uni- 
formly on the reconstruction is simply to dis- 
allow centers closer than some nearest center 
distance dnc. This succeeds in the Duffing case 
and will, in general, avoid the accumulation of 
centers in the slow moving regions of the re- 
construction which are relatively easy to pre- 
dict. But that is the real point. Once the basic 
skeleton of the reconstruction is covered, it is 
reasonable to place additional centers in regions 
where the fine structure of the flow is greatest 
and where prediction is most difficult. Note that 
this need not correspond to the fine structure 
of  the probability density or geometry, the fine 
structure here is in the vector field of  the phase 
space flow, not that of  the attractor. Also note 
that, while the location of  additional centers al- 
lows the predictor to develop fine structure, this 
will not occur unless the data are weighted to- 
ward the recovery of  that fine structure. Return- 
ing to the Duffing oscillator, we would like to 
combine (iii) and ( iv ) ,  covering the excursions 
and also the region about the unstable manifold 
near the origin so that the beginning of an ex- 
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cursion is predicted. Locations where the flow 
is contracting need not be sampled so densely. 

The importance of these effects in a given re- 
construction may be determined by dividing the 
reconstruction space into partitions and exam- 
ining the errors made in each region. When the 
centers are distributed uniformly on the recon- 
struction, a straightforward way to partition the 
reconstruction is to classify each point according 
to the center to which it is nearest. This is now 
demonstrated for rotating annulus data. 

4. Applications to laboratory data 

We now apply the ideas of the last section to 
the rotating annulus data. Consider first a dy- 
namic reconstruction of data set series b built 
from a learning set consisting of 2K points 
(1K = 2 l°) from the first 16K data points of 
this 50K point data set. The reduction from 16K 
to 2K was achieved by increasing the sampling 
time by a factor of 8, thus all time steps consid- 
ered in reconstruction will be multiples of 8 zs. 
A total of nc = 128 centers were chosen such 
that no two were closer than a nearest center 
distance, dnc; this was implemented by choosing 
an initial value of dnc large enough so that less 
than half the desired number of centers were 
found on the first pass through the learning set. 
The value of dnc was then decreased by a factor 
of 0.7 and the process repeated iteratively in 
order to avoid over-sampling any one segment 
of the learning set. In this case, the delay time 
va = 4 (8zs) and an embedding dimension, 
M = 5, were also chosen taking into account 
the results of the correlation integral calcula- 
tions of section 5. We shall refer to this model 
with ~b(r) = e -r2/C as reconstruction A. 

The initial results are presented in fig. 2. The 
three panels show (a) the observed (solid) and 
predicted (symbol) time series as a function of 
time, (b) the absolute value of the prediction er- 
ror, and (c) the distance between the point being 
predicted and the nearest center to it, dnc. The 

prediction time (rp = 18 (8%)) was chosen as 
twice Zaulo (the first zero of the linear autocor- 
relation function). Each of the predictions was 
made at this fixed distance into the future, the se- 
ries shown is taken from the beginning of the test 
set and represents completely out-of-sample test- 
ing. In panel 2a, the prediction time is just over 
½ of the separation of the tick marks. Comparing 
the first 2 panels, it is observed that large errors 
often correlate with extreme values of the mea- 
sured signal. Occasionally, there are episodes of 
poor predictions (not shown) which do not cor- 
respond to extreme values of the signal but do 
correspond to large values of dnc; this implies 
that the trajectory is located in a region of phase 
space not explored during the learning set. Pre- 
dictions in such regions are extrapolations and 
generally not reliable. 

The effect of varying reconstruction parame- 
ters and choice of basis function is illustrated in 
fig. 3, which shows the cumulated predictor er- 
ror profile, P (e), for three different reconstruc- 
tions. These graphs display the fraction of the 
learning set predicted to within a given error. For 
example, the solid line denoting the reconstruc- 
tion of fig. 2 shows that half the learning set was 
predicted with log 2 (error) < - 3  corresponding 
to an accuracy of approximately 6 bits. The right 
most (short-dashed line) corresponds to a sim- 
ilar reconstruction with Zd = 8zs (a factor of 4 
shorter than reconstruction A). The correspond- 
ing predictions are about 0.5 bits worse; more so 
for small errors. Zd was chosen to optimize this 
distribution, although for Zd slightly greater than 
the chosen value the variation was small. 

The long-dashed line in fig. 3 shows the distri- 
bution for a reconstruction similar to reconstruc- 
tion A, but using ~b(r) = r3; as was often ob- 
served, the exponential provided a slightly bet- 
ter fit. Although we shall not discuss the effect 
of different basis functions further, it is interest- 
ing to note that the two predictors tend to yield 
similar predictions across phase space. Indeed, 
they are in closer agreement with each other than 
with the observations. This is shown in fig. 4b 
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Fig. 2. An extract of the results of applying reconstruction A to time series b. (a) the observed (solid) and predicted (symbol) 
temperature values, (b) the error, and (c) nearest center distance for the point from which the prediction was made. 

which is a scatter plot of the prediction of recon- 
struction A, where 6(r)  = e -r2/c, against that 
with ~b(r) = r 3. Panel 4a is a similar plot with 
reconstruction A against the observations. For 
small observed values, the two predictors remain 
in rough agreement although both are inaccu- 
rate; the inaccuracy results, in part, from the low 
weighting the least squares fit assigns to the less 
commonly observed values. By adjusting the the 
weights, Wg, we can force the distribution of er- 
rors to be more uniform over the reconstruction. 

The cumulated predictor error profiles show 
a slow decay in predictability as zp increases 
comparable to Read's Lyapunov estimate of 
1.79 x 10 -3 bits per second (or one bit per ad- 
vection period). As these values are small, it 

may be argued that they are numerically zero 
and the system is not, in fact, chaotic. One 
alternative is the parametric drift mentioned 
above. We give evidence below that this is not 
the case. Of course, the significance of the Lya- 
punov exponent can be addressed directly via 
comparison with the distribution of values ob- 
tained from surrogate sets; where the Lyapunov 
exponent estimates from the surrogate signals 
are used to define the expected range of values 
to be considered as computationally equivalent 
to zero. It should also be noted that a different 
predictor was constructed for each of these pre- 
diction times (i.e. a direct predictor for each 
value of zp). The decay of predictability with 
time in this instance may differ from the case of 
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Fig. 3. C u m u l a t e d  predic tor  error  profile for a recons t ruc t ion  with nc = 128, M = 5, zp = 18 (8Zs) and  ~ ( r )  = e -r2/'. 

z d = 4 (Szs) (solid) ,  ~b(r) = ra, zd = 4 (8Zs) (long dashed) ,  ~b(r) = e-r2/c,  Zd = 1 (8Zs) (short  dashed) .  The  hor izontal  
axis is the  base-2 logar i thm o f  the  error. 

an iterated fixed-step predictor. 
Rather than estimate the Lyapunov exponents 

of surrogate series, we investigate the signifi- 
cance of observing this level of predictability. 
In particular, whether predictions of similar ac- 
curacy would be found in other signals with the 
same autocorrelation function. To do so we con- 
struct surrogate series with a FT surrogate gen- 
erator and consider the prediction of a recon- 
struction with parameters identical to those of 
reconstruction A above. The resulting cumula- 
tive error profiles are shown in fig. 5. Eight sur- 
rogate series, each with a different set of random 
phases was analyzed, the results shown have the 
lowest (best) average absolute predictor error. 
Considering the error to which 50% of the series 
is predicted, reconstruction A is almost one bit 
lower, implying that the prediction error is al- 
most a factor of 2 less, easily distinguishing the 
observed data from the surrogate series. 

Noting that the distributions do not appear 
to be Gaussian, we can reject the hypothesis 
that these two realizations either have the same 
mean (via the t-test) or were generated from 

the same distribution (via the Kolmogorov- 
Smirnov test) at well over the 0.99 confidence 
level. We wish to stress both the significance and 
limitations of this statement. The surrogate gen- 
erator here preserved the autocorrelation func- 
tion of the data set, and the radial basis function 
predictor easily distinguished five-dimensional 
reconstructions of these two signals. What we 
have really shown is that this 5D reconstruction 
is more coherent than that of these surrogate 
data sets. This is somewhat different from es- 
tablishing that the data arise from a determin- 
istic five-dimensional system. Further evidence 
that the data do in fact reflect low dimensional 
dynamics in provided by the correlation integral 
results. 

As an additional test, we construct a "surro- 
gate predictor" to determine whether the pre- 
dictability of this signal is only due to the advec- 
tion of a slowly evolving signal. Look again at the 
observational and the surrogate version of series 
b in fig. l; the coherence between one "wave" 
and the next is stronger in the real signal than in 
the surrogate data. The surrogate predictor sim- 
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Fig. 5. Cumulated predictor error profile for reconstruction A on (a) observed (solid) and (b) surrogate (long dashed) 
series. And the period 1 surrogate predictor in (a) observed (short dashed) and (b) surrogate (dotted) series. 

ply projects forward the last observed point an 
integer number of advection periods in the past. 
The cumulative error profile for this predictor 
is shown in fig. 5 for both the observed data set 
(short-dashed line) and the surrogate (the right 
most, fine dotted line). Although it is not as ac- 
curate as reconstruction A, this one dimensional 
predictor clearly differentiates between the true 
signal and these surrogates, demonstrating one 
limitation of the FT surrogate generator in this 
case. (This originates, in part, from the loss of 
phase coherence of the periodic advection signal 
in the FT surrogates, as noted above.) To estab- 
lish that a system is chaotic through surrogate 
signals, we would have to reject all nonchaotic 
surrogates; this is clearly not feasible, and high- 
lights the importance of the selection of surro- 
gate signals. 

The inhomogeneity of the spatial distribution 
of points in the series b reconstruction is re- 
flected in fig. 6 which shows a histogram of the 
number of times each center is nearest to the 
point from which a prediction is made in the 
test set. It is convenient to use this partition of 
the phase space by nearest center to examine the 

variation of predictor error with location as well. 
This is shown in fig. 7 which will be used to pre- 
dict the error associated with each prediction ot 
the time series below. Examining the distribu- 
tion of errors in the learning set about individual 
centers provides examples where the data den- 
sity is high and the average error is below the 
global average. Simultaneously, the error distri- 
bution about some other center with fewer as- 
sociated points may be very broad. On the as- 
sumption that this is due to additional structure 
in the flow near the latter center, additional res- 
olution should be placed in this region instead of 
the denser region where the flow is already well 
described. 

4. I. Predic t ing  predic tabi l i ty  

We have seen that the predictability of a re- 
construction varies with location, due to both 
the underlying dynamics of the system and the 
weighting scheme used in the construction of the 
predictor itself. We now quantify this variability 
and, in so doing, estimate the uncertainty asso- 
ciated with each individual prediction. This will 
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Fig. 6. Histogram of number  of  predictions made as classified by the nearest center to the point from which the prediction 
was made. The data is ~ o m  the test set of  reconstruction A. 

allow us to est imate the error  associated with a 
predict ion at the t ime the predict ion is made  and 
thus forecast error  bars as well as expected val- 
ues. 

When est imating the probable errors associ- 
ated with each location in the reconstruct ion we 
again use the par t i t ion provided  by the centers. 
Let nN (X) equal the index o f  the center  nearest 
to the point  x, that is 

nN(X) ----- j ,  (4.1) 

note that, in some examples, the distributions 
are far f rom Gaussian (e.g. b imodal)  and the 
distr ibution o f  positive errors is very different  
f rom that of  negative errors. In shorter sets where 
many  centers may  have only a few (< 3) tests, 
we have found it useful to define the average 
positive predictor  error  associated with the j t h  
center as 

E + = ~kek~j,nN(xk) 
~ k  ~J,~N(xk) ' 

(4.2) 

where (llx-xffll) is the m i n i m u m  value of  (llx- 
x~ll) over  all centers k. 

At the beginning o f  the test set, initial esti- 
mates can be drawn f rom the histograms o f  the 
learning set. When  very large quanti t ies  of  data 
are available, one may  est imate the mean and 
s tandard devia t ion error  associated with each 
center  (or  even examine each dis t r ibut ion) .  We 

where ~ is the Kronecker  delta, e k is the error  
associated with the k th  predict ion (i.e. the pre- 
dicted value minus the observed)  and the sum 
is over  all k such that  ek > O. E~- is similarly 
def ined for ek < 0. These average positive and 
negative errors are then used as predicted error 
bars for future x such that nN (X) = j .  Posit ive 
and negative errors are considered separately, so 
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asymmetries in the predictability are preserved. 
Two short sequences taken from the annulus 

temperature series b are shown in fig. 8 where 
the time scale is increased from that of fig. 2 to 
make individual predictions more clear. In this 
case, the predictions were made 18 (8~s) steps 
ahead corresponding to almost two horizontal 
tick marks. Panel A shows a typical result; note 
that the expected error is often asymmetrically 
distributed about zero. This implies that the ab- 
solute value of the average prediction error could 
be reduced by adding a constant to each predic- 
tion, the value of which was dependent upon the 
nearest center, nN (X). This would improve the 
predictions but at the cost of a smooth predictor 
(local nonlinear predictors should provide even 
lower predictor error, and can function at lower 
data densities than local linear methods). Mod- 
ifying the weighting scheme used in construct- 

ing the predictor provides an alternative global 
approach which preserves smoothness. 

The more striking result is the reliability ot 
the estimated error; predictions which lie in 
portions of the time series with sharp vertical 
displacements have large estimated errors, the 
slowly changing portions expected to be more 
predictable tend to have smaller estimated er- 
rors which are reflected in the observed error. 

In addition to their practical value, these esti- 
mates can be used to identify regions of the re- 
construction with greater instability and to dis- 
tinguish outliers from variation due to this in- 
stability. The only instances of persistently mis- 
leading results noted thus far occur when the tra- 
jectory explores a portion of the phase space not 
visited in the learning set; this condition can of- 
ten be identified by an increase in the nearest 
neighbor distance as noted above. Persistently 
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Fig. 8. A section from the learning set of reconstruction A where the temperature, its forecast value and the predicted 
uncertainty are plotted. Here Zp = 18 (8rs). 

poor predictions and error estimates may also 
indicate sensor failure or a change in the dynam- 
ics of the physical system, an application devel- 
oped in refs. [55,56]. 

4.2. Parametric drift 

To conclude this section we address the ques- 
tion of slow parametric drift over the course of 
the experiment. I f  this were to occur, the dy- 
namics at different points in time would be best 
determined from learning sets located nearby in 
time. To see if this is indeed the case, the learn- 
ing set above (from the initial 4096 points) was 

tested on the remaining time series divided into 
thirds. Computing the Kolmogorov-Smirnov 
statistic, d, between the out-of-sample error dis- 
tributions from a given predictor on different 
sections of the series [23 ], we find that the null 
hypothesis that the observed distributions arise 
from the same distribution function cannot be 
rejected at the 90% level of confidence. If  this 
test is applied directly to the two halves of se- 
ries b, we have dobs ~ 0.04 and probability(d > 
dobs) ~ 0.86. When applied to the data series, 
the Kolmogorov-Smirnov test indicates that 
the range and distribution of the data did not 
change; when applied to the error distributions, 
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it indicates that the quality of the predictor did 
not change and hence is evidence against slow 
parametric drift. It does not, of course, rule out 
recurrent parametric drift on time scales short 
relative to the length of the series. There exists 
no definitive method to do so as, in practice, the 
distinction between "parameters" and "system 
variables" becomes a philosophical question 
when both vary on small time scales. 

5. Correlation dimension 

The Grassberger-Procaccia Algorithm or 
GPA [14], which estimates the correlation di- 
mension, d2, provides a direct measure of the 
geometry of a distribution and has become per- 
haps the most widely used tool in the search 
for low dimensional dynamics. It is described 
in detail in [57,58]. Briefly stated, one wishes 
to estimate the correlation integral C2 (g) of a 
distribution of points x: 

C2(g) = 

number  of pairs of points separated by less than g 

total number  of pairs of points 

= probability([IX i -- Xj][ < g ) ,  ( 5 . 1 )  

where x i and x j are two randomly chosen points 
in the set. It is implicitly assumed here that one 
is selecting from the set of all possible pairs of 
points on the attractor. This is not the case with 
reconstructions from time series when the spa- 
tial separation between a pair of points reflects 
that they are close in time. Theiler [59] demon- 
strated that for smooth dynamical systems, con- 
sideration of points close in time can lead to one- 
dimensional "knees" in correlation integral esti- 
mates. More recently, Osborne and Provenzale 
[60] have found finite correlation dimensions 
for power law noises, but these are another case 
of this same effect and need not foil dimension 
estimates in practice [61 ]. A simple test for de- 
tecting such effects is given in ref. [9]. Taking 
care that these effects are minimal, the correla- 

tion integral is approximated as 

N N 
C~(g) = lira 1 

i = l j = l  
(5.2) 

where g is the length scale and O (x) is the Heavi- 
side function which is equal to zero for negative 
argument and one otherwise. When the limit is 
not taken, the sums over i and j should be re- 
stricted so that li - j[ > W [59]. Numerically 
efficient methods for evaluating the correlation 
integral are available [62,63 ]. 

In the limit of small g, we expect C2 (6) to be 
scaling, that is 

C2(g) ~ Z ( g )  ~a2, (5.3) 

which defines d2, the correlation exponent and 
(t) accounts for lacunarity effects [64,65]. 

At finite length scales, one can inspect the lo- 
cal slope of log2 C2 (6) as a function of log 2 (g) 
for a scaling range over which to estimate d2. 
When estimating d2, the i = j terms in the 
sum should be neglected, although it is useful 
to compute C2(t) with both normalizations 
(this involves negligible computational cost) 
and compare their slopes as functions of log g. 
Both curves provide useful information in judg- 
ing the quality and evolution of reconstructions 
with changes in the embedding dimension. 

There has been a great deal of discussion in the 
literature regarding the amount of data required 
to obtain a meaningful estimate of the character- 
istics of chaotic dynamical systems. For the cor- 
relation exponent, several authors [66-69] have 
provided estimates of the minimum "number of 
data points" required. Unfortunately, it is not 
easy to determine the number of data points in 
a time series in this sense. The difficulty lies in 
assumptions which require the data to be spread 
uniformly with respect to some underlying prob- 
ability density (measure). Appeals to ergodicity 
are of no use when the sampling rate is such that 
consecutive measurements are dynamically cor- 
related, for this biases the correlation integral by 
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increasing the probability of a pair of points at 
separation g + ~, given that there is a pair with 
separation g. The dynamical correlation time is 
also very difficult to estimate a priori, it is cer- 
tainly not the linear correlation time (i.e. the 
first zero of the linear autocorrelation function, 
~'auto) o r  the first minimum of the one dimen- 
sional mutual information [68]. A second draw- 
back of these scaling arguments is that they pro- 
vide necessary but not sufficient conditions, and 
the former are of much less use than a measure 
of success. It is easily shown that through smooth 
deformation of a reconstruction, one can always 
increase the number of data points required to 
obtain a good estimate of a dimension. 

Like all analysis techniques, the GPA must 
be applied with some insight. There has been 
much discussion about the a priori knowledge of 
the system required to apply this algorithm. We 
would liken application of the GPA to that of the 
Fast Fourier Transform (FFT): one must under- 
stand the algorithm and its limitations when in- 
terpreting the results. To push the analogy, one 
rarely hears reports of strong power in a fre- 
quency beyond Nyquist limit, or public argu- 
ments over whether it is really necessary to have 
a stationary time series to apply the FFT. Such 
results would reveal a false application of the al- 
gorithm, not a flaw in it. Nor is it claimed that 
one must understand the physics of the system to 
gain useful information from a power spectrum. 
The analogy holds. 

The analogy fails when the difficulty of 
coding the algorithm is considered, and the 
general knowledge of its limitations. Particu- 
lar errors of application are well documented 
[59,66,58,57,70] although they are still com- 
mon. Even so, these are again necessary, not 
sufficient conditions. Even when precautions 
are taken, one would like to estimate the prob- 
ability that a given result, with specified recon- 
struction parameters (delay times or SVD win- 
dow lengths, etc) is not due to such factors as 
the length of the data set. This is the strength of 
employing surrogate signals. 

5.1. Surrogate signals and the correlation 
integral 

The FT surrogate generator is now used to 
evaluate the results obtained for the rotating an- 
nulus data. Rather than attempt to automate the 
choice of a scaling region, fig. 9 presents the 
slope of the correlation integral from series b 
data along with that of a representative surrogate 
set. The solid (short-dashed) lines represent the 
slope of the log 2 C2 (g) against log2 g including 
(excluding) the i = j points in the sum. The 
regular long-dashed line is the expected slope for 
white noise with the same diameter (see [66] ). 
The difference between observed and surrogate 
graphs is striking both in the value of the plateau 
(if one can be said to exist for the surrogate set) 
and the relative location of the nearest neighbor 
distances as reflected by the value of log 2 (g) at 
which the curve including the i = j points re- 
turns to zero. It is tempting to define a scaling 
range and determine the probability of observ- 
ing the value d2 ~ 3 for the surrogate sets. Such a 
calculation is questionable as the algorithm has 
not converged in the case of this surrogate se- 
ries and there is no saturation as the embedding 
dimension is increased. This detracts little from 
the argument that the observed series has a sig- 
nificantly different correlation integral than ex- 
pected due to its autocorrelation function. 

We now examine the series d data set, consid- 
ered to be quasi-periodic (two incommensurate 
frequencies) by Read et al. [13]. The slope of 
the correlation integral with length scale for this 
set is shown in fig. 10. Note that it does appear to 
be about two-dimensional. The feature at length 
scales -2.5 < log2 (t)  < - 1, reflects the macro- 
scopic structure of the reconstruction and not an 
artifact of the analysis. Assuming that the recon- 
struction is a two-torus, this would indicate that 
it has greater extent in "one direction", the true 
dimension of the distribution is not observed un- 
til length scales smaller than ~ are reached. Even 
ifa surrogate generator preserves the geometry of 
the two-torus, this particular macroscopic struc- 
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ture need not  be maintained;  macroscopic  dis- 
tort ions will shift the scaling range, confounding 
at tempts  to compare  correlat ion dimension es- 
t imates between observed and surrogate signals 
even in a case where they both  converge in the 
limit of  small ~. The  point  here is that  two topo- 

logically equivalent  distr ibutions with different 
macroscopic structure will have different  corre- 
lation integrals at large scales. This is a funda- 
mental  l imitat ion inherent  in the geometric anal- 
ysis of  reconstructions,  and provides an example 
where the lower bounds on data requirements  for 
dimension calculations are vast u n d e r e s t i m a t e s  

of  the true amount  of  data  required for this type 
of  analysis. (In this part icular  case, the Fourier  
spectrum indicated a quasi-periodic at tractor.)  
It also provides an example of  where surrogate 
series can provide misleading results if a fixed 
scaling range is used. 

6. Nonlinear prediction of stochastic systems 

The arguments above demonstra te  that non- 
linear predictors can distinguish dynamical  sys- 
tems with a s tructured phase space flow from 
those whose mot ion  in phase space is incoherent.  
I f  we identify the former  systems as determinis-  
tic and the latter as stochastic, we have a good 
test for determinism.  Unfor tunate ly  such a clas- 
sification will consider many  classic "stochas- 
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tic" systems as deterministic as it fails to dis- 
tinguish "determinism" from stochastic systems 
which are "low dimensional" in the sense that 
they are associated with a probabilistic flow in a 
low dimensional phase space. 

In this section we shall consider two systems, 
the disturbed pendulum of Yule [71] and the 
Ornstein-Uhlenbeck process[72,73]. The dis- 
turbed pendulum provides an example of a de- 
terministic system where noise feeds back into 
the dynamics (dynamic noise) rather than being 
superimposed on the measurements (observa- 
tional noise). The Ornstein-Uhlenbeck process 
has become a paradigm of stationary stochastic 
systems. We demonstrate that nonlinear deter- 
ministic predictors provide a good approxima- 
tion to optimal prediction of this system and 
indicate the difficulties this implies for tests of  
determinism using surrogate signals. We are not 
interested here in establishing whether one type 
of nonlinear deterministic predictor is better 
than another, but in their common properties. 

Yule considered two simple models to ac- 
count for the lack of  simple periodicity in the 
15 sunspot cycles then available. Both models 
are based on observations of  a pendulum. In 
the first, the observations of perfect periodicity 
are subject to superposedfluctuations or obser- 
vational noise. In this case, for sufficiently long 
series, Fourier analysis will detect the under- 
lying periodicity. Any deterministic predictors 
which allow for observational noise should do 
so as well. In the second case, the observational 
noise is considered negligible, but disturbances 
to the pendulum's motion (caused by boys with 
pea shooters) change the energy of  the pendu- 
lum and feed back into the systems dynamics. 
When the shocks are well separated in time, 
nonlinear deterministic predictors will give ex- 
cellent predictions (between the shocks) due to 
the structure of  the underlying two-dimensional 
phase space of  the pendulum. Good predictions 
are possible as long as the expected time inter- 
val between impacts, At, is not small relative 
to the sum of the reconstruction window and 

prediction time or 

At > (m - 1 ) Z d  -t- Zp. (6.1) 

The Ornstein-Uhlenbeck process models the 
velocity of a Brownian particle. From a dynam- 
ical systems perspective, it is preferable to con- 
sider the velocity, u (t), rather than the displace- 
ment, as the velocity time series is stationary. 
The change in the velocity, du (t), is given by 

du( t )  = - f l u ( t ) d t  + try(t) v/-~, (6.2) 

where 7(t) is a random Gaussian process with 
zero mean and unit variance, dt is the time step, 
and the parameters fl and a are related to fric- 
tional drag and the driving impacts respectively. 
The optimal (statistical) predictor for this pro- 
cess is known; given the initial condition u0, the 
expected value of  u (t) is 

Ptheory(U(t) ) = E(u(t) [ u ( O )  = Uo) 

= U 0 e - f i t  . (6.3) 

Estimates for the variance are also available 
[73]. To test whether the reconstructed dy- 
namics finds this structure, a 2048 point learn- 
ing set (fl = 0.5, a = 1.0, dt = 0.05) with 
m = 1, nc = 64 and ~b(r) = r was constructed 
and tested out-of-sample on an additional 2048 
points. The point here is not whether this radial 
basis function predictor is optimal, but is merely 
to demonstrate that any good dynamic recon- 
struction should identify this structure in an 
Ornstein-Uhlenbeck series (or a series from a 
stochastic model like that of  Barnes et al. [27] ). 

We compare the predictor with Ptheory by plot- 
ting the predicted future value against the cur- 
rent observed value in fig. 11. The solid line cor- 
responds to Ptheory. A scatter plot of the observed 
future value against the current observed value 
shows a wide distribution. Both the agreemen! 
and disagreement between the deterministic pre- 
dictor and the expected value displayed in fig. 
11 is understood. The largest values of  u in the 
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Fig. 11. Prediction of an Ornstein-Uhlenbeck process. The solid line denotes the optimal prediction. The predictor appear~ 
to be double valued because predictions for both positive and negative x are superimposed. The very inaccurate prediction,~ 
at large x occur when the system explores a region of phase space not visited in the learning set. At small x, the variancc 
in the expected value is large and the ability of the predictor to find the expected value is diminished. 

test set correspond to very poor predictions (the 
markers on the right side of  the plot well be- 
low the ideal line); these points have large near- 
est center distances and correspond to values 
of u not visited in the learning set. For slightly 
smaller u0 there is good agreement between the 
two predictors; the two images of the determin- 
istic predictor are the superimposed values for 
positive and negative u0. For small u0 there is 
poor agreement between the two predictors; due 
to both the magnification of small distortions by 
the logarithmic scales and the increase in uncer- 
tainty of  future values of  initial conditions near 
u = 0 .  

To the extent that these systems are deter- 
ministic, the dynamic reconstructions quantify 
their behavior. Yet they are stochastic in the 
sense that the current state of the system does 
not completely define its future. Once the de- 
terministic structure is quantified, the quality 
of the predictions should not improve regard- 

less of increases in the amount of data available. 
The lack of improved precision with increasin~ 
data, embedding dimension or changing delay 
time (for infinite data sets) provides an indica- 
tion of the stochastic component of the process 
but is difficult to establish with finite data sets. 
In these particular cases, examining the predic- 
tor error series of the pendulum, and its spatial 
variation in the O-U process, could help iden- 
tify the dynamics of  the processes. The situa- 
tion is more complicated in stochastic systems 
with more complex (higher-dimensional) phase 
space structure. Here nonlinear dynamics comes 
from nonlinear structure in the governing equa- 
tions regardless of whether they are stochasti- 
cally or deterministically driven. As the structure 
of  the governing equations increases, the nature 
of the stochastic forcing may become less appar- 
ent. This holds implications for the use of surro- 
gate data, in that surrogate generators which de- 
stroy this structure will be distinguished regard- 
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less of  whether the underlying driving force is 
stochastic or deterministic. 

One approach to recover this distinction is 
to look to longer time scales. Stone [54] has 
considered a Duffing oscillator driven either si- 
nusoidally (chaos) or by random perturbations 
(stochasticity) and shown that the signals from 
these two systems are similar in terms of  power 
spectra and symbolic dynamics. The short time 
predictability of  these signals is similar as well; 
however if one considers long time phenomena 
the two cases can be distinguished. In particular, 
the series of time intervals between departures 
from the origin is distinguished by the predic- 
tor presented here. These return times are effec- 
tively independent and identically distributed in 
the stochastically forced system while the chaotic 
system is, initially, predictable and the distribu- 
tion of  predictor error for return times appears 
to relax to the same distribution as the stochastic 
case as predictions are made farther into the fu- 
ture. As the nonlinear structure of these two sys- 
tems is identical, they provide a useful example 
of  the similarities and differences of stochastic 
and deterministic behavior. 

7. Discussion 

It is customary to consider low dimensional 
determinism and stochasticity as two clearly dis- 
tinct types of  behavior. As we have seen, dis- 
tinguishing between these alternatives is some- 
times difficult. We have presented a general ap- 
proach to evaluating algorithms, which attempts 
this distinction through contrasting the results a 
given algorithm produces on the observed data 
with those produced from surrogate data. The 
importance of  choosing a good surrogate gener- 
ator has been stressed and the general effective- 
ness of this approach has been demonstrated for 
correlation exponent calculations and prediction 
algorithms on laboratory data. 

We have focused our attention primarily on 
the rotating annulus experiments and estab- 

lished that these data sets differ significantly 
from the surrogate series considered. This gives 
us confidence that dynamical systems tech- 
niques can provide a better understanding of 
this system, in particular in determining the na- 
ture of  the underlying driving mechanisms. This 
goal is difficult to obtain with the data in the 
form presented here for, while it may display 
deterministic, "low dimensional" behavior, the 
physics in delay space is not at all simple. Dy- 
namical systems texts often give the impression 
that a system which evolves on a low dimen- 
sional (say d2 < 5) attractor has simple physics. 
This is somewhat misleading. For a set of  five 
ordinary differential equations (ODE's) it is 
true, perhaps even for a set of  10 ODE's which 
collapse onto such an attractor. 
For a large physical system with many degrees of 
freedom, the dynamics in 5D is certainly more 
simple than not under such restriction, but the 
physics is a mess in 5D. The equations of  motion 
need not correspond to the macroscopic physi- 
cal properties of the system and will almost cer- 
tainly not correspond to a set of simple ODE's. 
While a great deal can be learnt from such sys- 
tems, it is misleading to imply that the physics, 
in a traditional sense, will become clear. Indeed, 
we may need to develop a new way of interpret- 
ing physics and it is tempting to draw an analogy 
with the way statistical mechanics answers dif- 
ferent questions than classical dynamics. An al- 
ternate approach which we are currently pursu- 
ing with the annulus data is to recast the data into 
a form in which the physics is more assessable. 
The spatial distribution of probes allows a spa- 
tial Fourier transform into wavenumber space. 
With the data in this form, a multivariable re- 
construction can address the general question of 
predictability directly, as well as particular ques- 
tions concerning which mode interactions drive 
the dynamics of the system. For example, sup- 
pose the data is recast into a multivariate series 
of  the amplitudes of  modes A, B, C, . . . .  Using 
the predictor discussed above, we plan to exam- 
ine the extent to which the energy in modes A 
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and B determine the future behavior of  mode 
C, thereby directly testing cascade and mode-  
mode interaction hypotheses. Through this type 
of study we hope to clarify what physical pro- 
cesses dominate the dynamics of  this system. 

We have also shown how dynamic reconstruc- 
tions can be used to address open questions con- 
cerning the experiment itself. By demonstrating 
that predictors formed from one segment of the 
time series yield statistically indistinguishable 
errors when applied to different segments of the 
time series, we have shown that the complex- 
ity observed is not due to slow parametric drift 
over the duration of the experiment. The statis- 
tically significant difference, between both the 
predictability and the correlation integrals of the 
observed signals and surrogates generated with 
identical autocorrelation functions, provides a 
strong case for low dimensional dynamics in this 
system. This case is further supported by the 
demonstration that a simple prediction by mem- 
ory scheme, while capable of distinguishing be- 
tween the FT surrogates and the observations, is 
much less accurate than the deterministic radial 
basis function predictor. 

In this paper, we have applied a global, non- 
linear predictor based on radial basis function 
interpolation which explicitly considers noise in 
the data set and the inhomogeneity of the re- 
construction in phase space. This type of predic- 
tor may be improved in several ways. For exam- 
ple, the reconstruction may be altered to include 
known physics in the problem at hand: in a prob- 
lem where diurnal cycles are known to be impor- 
tant, the time of day could be included by plac- 
ing the reconstruction on a circle. In systems like 
the annulus, the predictability may be improved 
by recasting the data set into a form in which the 
physics is more assessable as discussed above. It 
is often the case that additional information re- 
garding the macroscopic state of the system is 
available in addition to time series data. Exam- 
ples under investigation include laboratory data 
where the phase of a forcing function is known 
[74], and meteorological series, where the gen- 

eral structure of the regional weather pattern is 
included to improve the prediction of local tem- 
perature series [75 ]. For finite, noisy data sets, 
considerations such as these may be crucial to 
obtaining a significant result. 

In addition to better embeddings, improve- 
ments in the prediction scheme are also possi- 
ble but are likely to involve system specific an- 
swers. For example, the choice between iterative 
forecasting and direct forecasting may vary with 
the particular dynamical system, the data den- 
sity, the noise level and even the details of the 
predictor itself (local or global, linear or non- 
linear, . . . ) .  The system specific nature of this 
problem is likely to reoccur in other details of 
reconstructions, such as the importance of  the 
method employed for choosing centers. For the 
predictor presented here, one may improve the 
method used to account for noise; we have ap- 
plied a straightforward least squares approach. 
Implicit in this approach is the assumption that 
the "noise" is located in the quantity being pre- 
dicted (s), not the base point (x). For delay re- 
constructions this is certainly not the case, the 
same noise level is present in the base point as 
in the prediction. One approach to this problem 
would be to consider total least squares. This is 
analogous to performing an SVD fit in two di- 
mensions rather than a least squares fit when it 
is known that there is error in both coordinates. 

In the attempt to distinguish between deter- 
ministic and stochastic dynamics through pre- 
diction, one complication has been noted: the 
ability of deterministic predictors to identify 
the expected values for some stochastic systems, 
and thereby differentiate them from (some) 
surrogates. This is particularly true in effectively 
low dimensional stochastic systems, systems 
which exhibit stochastic motion within a struc- 
tured low dimensional phase space. (Although 
as stochastic systems they remain, of course, in- 
finite dimensional.) While such systems clearly 
fail to follow strict Laplacian determinism, it 
is not clear how they are best classified. Their 
detection by nonlinear prediction will depend 
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on  the  p a r t i c u l a r s  o f  w h a t  q u a n t i t i e s  a n d  l eng th  

scales  a re  a n a l y z e d ,  a n d  usefu l  c l a s s i f i c a t i o n  in  

the  p r e s e n c e  o f  t he se  ef fec ts  m a y  r e q u i r e  c o n s i d -  

e r a t i o n  o f  s e c o n d  o r d e r  p r o p e r t i e s  o f  t he  p r e d i c -  

tor .  In  the  even t ,  t hese  d i s t i n c t i o n s  m a y  r e q u i r e  

a m o r e  p r ec i s e  d e f i n i t i o n  o f  w h a t  c o n s t i t u t e s  

d e t e r m i n i s m .  
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