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The success o f cu rrent at tempts to distinguish between low-dimensio na l chaos and rando m be havio r in a time series of 
observa tions is considered. First we discuss stationary stochastic processes which produce finite nume rical est ima tes of the 
corre lation dimension and K, e ntropy under naive application of correlatio n integral methods. We then consider severa l 
straightforward tests to evaluate whether correla tion integral me thods re fl ect the global geometry or the loca l fractal 
structure of the trajectory. This determines whether the me thods are applicab le to a given se ries; if they are we eva luate 
the significance of a parti cular result. for exa mple , by considering the results o f the anal ysis of stochasti c signals with 
statisti ca l properti es similar to those of observed series. From the examples considered , it is clea r that the correla tio n 
integra l should not be used in iso lation , but as o ne of a co llection of tools to distinguish chaos from stochasticity. 

1. Introduction 

In the past ten years , a variety of methods to 
extract phase space dynamical information from 
experimentally observed or computer generated 
time series have been developed , see e.g. refs. 
[1-28]. These methods are generally based on a 
phase space reconstruction (typically a " time 
embedding" procedure , see refs . [22 , 29]) and 
are devoted to the calculation of the properties 
of a (supposed) underlying attractor (such as the 
correlation dimension [12 , 14, 20 , 23, 25], the K2 

entropy [13] and the Lyapunov exponents [1 , 9, 
18, 28]) , to the determination of the approximate 
number of the (empirical) modes excited in the 
system through singular value decomposition 
(SVD) [3], to the issue of predicting the future 
evolution of the system from the knowledge of 
its past , in a spirit which is the extension of 
classical autoregressive (AR) approaches [5 , 10, 

11 , 21, 30], or even toward reconstructing the 
equations of motion of the system [7 , 10]. 

The " static" methods based on the correlation 
integral [12-14 , 24 , 25] differ from prediction 
methods in that the former do not explicitly take 
into account information from the ordering of 
the points in the time series. The methods men
tioned above provide information on systems 
which are known to be dominated by low-dimen
sional deterministic dynamics and there exists a 
noticeable difference in the results from low
dimensional chaotic systems and uncorrelated 
(white) noise. Applications to well-controlled 
laboratory experiments have led to determining 
the presence of low-dimensional chaos in several 
experimental contexts , see e.g. refs. [31-33]; 
note that these systems were characterized by a 
limited degree of space complexity and by the 
ability to adjust control parameters . 

The situation turns out to be much more com-
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plicated for natural (uncontrolled) systems , see 
e .g. refs. [34-46], where claims and counter
claims for low-dimensional attractors coexist for 
the same data , as well as for systems dominated 
by the presence of " colored" noises with power
law power spectra [43, 47-49] or for non-linear 
stochastic processes [27]. In this paper we briefly 
review some of the problems encountered in the 
study of systems characterized by the presence of 
correlated stochastic processes and we discuss a 
few simple tests which can be of use in the 
attempt of distinguishing between low-dimen
sional (dissipative) determinism and stochastic 
noise . 

2. Behavior of correlated noises 

The majority of quantitative attempts to detect 
low-dimensional attractors from time series data 
have focused on the estimation of the correlation 
dimension and of the correlation entropy K2 . 

Given a scalar time series x(t;), the first step in 
the analysis is to employ an embedding proce
dure to reconstruct the system phase space. Here 
we consider the method of delays [22 , 29], where 
a vector time series is defined as 

x(t;) = {x(t;) , x(t; + T), ... , x(t; + (M- 1)T)} . 
(2.1) 

Here T = m D.t is an appropriate time delay , D.t is 
the effective S§l mpling time and M is the dimen
sion of the vector x(t;) · Recent discussions of 
embedology are given in refs. [6 , 19]. The crucial 
idea underlying the embedding procedure (2.1) 
is that the observed variable x(t) contains infor
mation on all the other phase space variables of 
the system . In the case of weakly coupled phase 
space variables , however, the above method may 
lead to misleading results [40]. Note that the 
choice of the time delay T is somewhat arbitrary 
[17 , 50] ; there may not even be a unique good 
selection criterion for this parameter [15] . 

The correlation integral CM(r) of the recon
struction is defined as [12] 

1 N' 

CM(r) = ------;2 2: e{r - llx(t;) - x(t)ll} , (2.2) 
N i:j 

where 8 is the Heaviside step function , N is the 
number of points in the time series , N' = N
m(M - 1) and the vertical bars indicate the norm 
of the vector. Efficient implementations of (2.2) 
are avai lable [14, 24] and a clear overview of the 
ana lysis is presented in ref. [25]. One is then 
interested in the scaling properties of the correla
tion integral, in particular whether CM(r) is a 
power-law at small scales, that is 

C (r) - r "M, 
M N----+ oo .r----"'0 

(2.3) 

where we have ignored any effects due to lacu
narity [2 , 51]. If (2.3) holds , the next step is to 
examine the behavior of the estimated correla
tion exponent vM with increasing M. For point 
distributions with a low-dimensional geometry, 
one may show that at sufficiently large M 
[6 , 8, 12] 

(2.4) 

where v is the correlation dimension ; for de
terministic dynamical systems, this quantity pro
vides an estimate of the number of degrees of 
freedom excited in the system. We stress that 
eqs. (2.3) and (2.4) assume a very large data set 
and that the results should be independent of T 

over an appropriate range of values. 
The K2 entropy [13] may be estimated from 

the correlation integrals CM(r). This is computed 
(in the limit as M ~ co) as the distance between 
two successive correlation integrals in log- log 
coordinates. Specifically 

(2.5) 

and then 

(2.6) 
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The K2 entropy is zero for periodic or quasi
periodic systems, it is positive for chaotic systems 
and diverges for a white noise. Since low-dimen
sional strange attractors do produce a small and 
usually non-integer value of the correlation di
mension and a converging K2 entropy , the above 
statements have on occasion been reversed and a 
finite , small value of the correlation dimension 
and a converging K2 entropy have been taken as 
"proof" of the P.resence of a strange attractor. 
As a counterexample to this belief, Osborne and 
Provenzale [47], and Provenzale et al. [48] have 
shown that simple stochastic processes , charac
terized by a power-law power spectrum with 
random , independent , uniformly distributed 
Fourier phases , generate time series with finite 
correlation dimension and converging K2 entropy 
estimates , both of which are determined by the 
logarithmic spectral slope. 

The stochastic signals considered in refs. 
[47 , 48] are defined through their Fourier repre
sentation , i.e. , by 

N / 2 

x(t;) = 2: A(wk) cos(wkl; + qyk) , i = 1, N , 

(2.7) 

where wk = 27Tk / N 11t and the qyk are random 
uncorrelated phases. The " saturation" value of 
the correlation dimension v is determined by the 
logarithmic spectral slope a through v = 2 I 
(a - 1) for 1 < a < 3 [47]. In addition, the nu
merical estimates of the K2 entropy were found 
to be convergent when a > 1 [ 48]. The extension 
of these results to systems whose power spec
trum has a power-law behavior only on a limited 
frequency range has been considered by Theiler 
[49]. A similar problem was also considered by 
Harding et al. [37] , who studied a stochastic 
signal generated by a random walk in Fourier 
space which leads to a finite value of the correla
tion dimension. Clearly , the noises (2.7) are not 
associated with any low-dimensional system. The 
above results simply show that the standard 

time-embedding techniques and dimension and 
entropy calculations should not be used without 
a careful evaluation of the conditions for their 
applicability and an examination of the con
sistency of the results obtained. A naive applica
tion of these methods may lead to erroneous 
conclusions . 

The colored noise example discussed above is 
certainly not the only class of random noises 
which give a finite estimate of v and a convergent 
K 2 when finite-time sdries are considered 
[27 , 49]. Following Vio et al. [27], we consider 
the two time series generated by a linear and by 
a non-linear stochastic process , given respective
ly by 

dx dt = ex(t) + w(t) , (2.8) 

dy(t) = (a - 0.5){3- y(t) + [2{3y(t)] 112 w(t) , 
dt (2. 9) 

where w(t) is a standard gaussian white noise 
process. Two such time series are shown in figs . 
1a (linear case) and lb (non-linear case) for the 
parameter values e = -0.9 and a = {3 = l. The 
discrete version of the process in formula (2.8) is 
a classical AR(1) linear model; the numerical 
integration of eq . (2. 9) is pursued by the local 
linearization method of Ozaki [52] with 11t = 0.02 
for both series. Unless noted otherwise, we con
sider time series composed of N = 4000 data 
points. This corresponds to a length of about 15 
correlation times, similar to signals commonly 
encountered in the study of natural systems. 

Both the linear and the non-linear processes 
(2.8) and (2.9) generate stationary time series for 
parameters values in an appropriate range [27]. 
It is important to note that both the linear and 
the non-linear time series possess very similar 
power spectra (a power-law power spectrum 
P(w) = w - 2 over a large frequency range) and 
very similar structure functions (defined below). 
As shown in ref. [27], the two series differ in that 
the linear signal x(t) is statistically self-similar 
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'·' (a) 

(b) 

time 
Fig . l. (a) Time series obtai ned from the linea r stochastic 
process (2 .8) with fJ = - 0.9 and !lt = 0.02 . (b) Time se ries 
generated by the non-l inear stochastic process (2.9) with 
a = {3 = 1 and !lt = 0.02. 

(an homogeneous fractal signal) , while the non
linea r signal y( t) is multifractal and intermittent. 
This is re fl ected by the fact that the Fourier 
phases of the linear system (2.8) are random 
unifo rml y distributed with no correlation with 
each other, while some of the Fourier phases of 
the non-linear signal (2 .9) have a non-zero corre
lation , as revealed for example by the bispec
trum analysis. T his implies that the stochastic 
signal given by formula (2.8) has close analogies 
with those studied in refs. [ 47 , 48], while the 
signal (2. 9) is a truly new e ntity. 

Figs. 2a and 2b report the correlation integrals 
for the linear and non-linear time series respec
tively; figs. 2c and 2d show the correlation expo
nent vM and K2(M) versus the embedding dimen
sion for the two time series , as computed by 
linear least-squares fit of log CM(r) versus log r 

on the scaling range 0.002 ::s CM(r) ::s 0.02. Note 
the " knee" in the correlation integrals for large 
M, at a value CM(r) = 0.02 , consistent with the 
results by Theiler [49] on stationary random 
processes with a power-law spectrum on a finite 
frequency range. The procedure of phase space 
reconstruction and the subsequent dimension 
and e ntropy calculations give the similar value 
v = 2.5 (at embedding dime nsion M = 8) and an 
equally converging K2 entropy for both time 
series, independent on the linear or non-linear 
nature of the signals. For both signals , the time 
de lay T used in the time e mbedding procedure , 
T = 250 tlt , is near the first zero of the autocorre
lation function . In any event , the convergence of 
the correlation dime nsion and of the entropy 
does not significantly depend on the choice of 
the time delay over a large range of values of T. 

The computed va lue of the correlation dimen
sion for both signals is slightly larger than the 
va lue indicated by the expression v = 2 I 
(a - 1) = 2 when a = 2. This is due to the fact 
that the power spectrum of the signals (2.8) and 
(2.9) tend to become fl at at low frequencies , 
consistent with the stationary nature of the pro
cesses [27]. When the length of the time series 
increases , the noises (2.8) and (2.9) tend to 
become space-filling, as required for stationary 
stochastic processes . However , this convergence 
is slow, and fo r a finite number of points an 
apparently finite estim ate of the correlation di
mension is typically obtained . Increasing the 
length of the signal produces somewhat larger 
estimates of the dimension . Clearly, an increase 
of the dimension estimates with the length of the · 
time series should warn about misleading conclu
sions; unfortunately , such a test is often not 
availab le in the study of natural systems. 

In the case of noises with a power-law spec
trum and a low-frequency cutoff w0 (below which 
the spectrum becomes flat) , Theiler [49] has 
recently derived an ana lytic expression fo r the 
correlation integral; the existence of diffe rent 
scaling regimes at different scales has been de
tected , the fractal behavior being associated with 
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Fig. 2. (a) and (b) report the corre lation integra ls C"(r) for the linea r (2.8) a nd non-linear (2 .9) s tochas tic processes shown in fig. 
I. The time delay T in the e mbedding procedure has bee n chosen to beT = 250 t:..1 , approximately corresponding to the first zero 
of the autocorrelation of the signa ls. The e mbedding dimension var ies from M = I to M = 8 . (c) and (d) re port the correlation 
exponent v" and the correlation entropy K, (M) versus the embedding dime nsion M for both the linear and non-linear signals. 
Crosses refer to the linear signal and circles to the non-linear process. The error bars on vM are the 95 % confidence limits of the 
least-squares-fi t slope of log CM(r) versus log r ; the error bars on K,(M) are the standard devia tion on the mean value of 
[log c,,(r) -log CM +i(r) ] ft:..l in the sca ling range. 

the scale range where the spectrum is power-law. 
Theiler also estimated a lower bound N0 to the 
number of points required in order to observe 
the space-filling scaling regime; N0 " may have to 
be extremely large for this regime to be 
achieved". The power spectral properties of the 
noises considered in the present paper are simi
lar to those discussed in ref. [49]; note, however, 
that the signal generated by (2. 9) has been de
fined through a non-linear stochastic differential 
equation (not by its spectrum) and that its 
Fourier phases are not independent. Tests for 

the presence of non-linearity (such as the BDM 
test [53]) should give a positive result. Neverthe
less , the present results show that finding that a 
time series is non-linear is certainly not sufficient 
to infer the presence of low-dimensional de
terministic dynamics. 

Another class of random processes which pro
vide a finite correlation dimension estimate is 
obtained by considering a white noise with ran
domly superposed jumps of random amplitude (a 
random saw-tooth). One realization of such a 
process is shown in fig. 3a. In this example, the 
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Fig. 3. (a) The " random saw-tooth " signal obtained by 
superposing random jumps of large amplitude onto a white 
noise background . (b) Correlation integrals C"'(r) for the 
signal in fig. 3a; r = 100 D.t and M = 1, . . . , 8. 

" fast" dynamics is a white noise uniformly dis
tributed between - 1 and 1; we superposed onto 
it a random number oeconsecutively positive and 
negative jumps with amplitude Ai=A 0 +YJi, 
where A 0 = 10 and YJ i is uniformly random dis
tributed in ( - 1, 1). The average time separation 
between jumps is about 100M. The correlation 
integrals obtained from this time series are 
shown in fig. 3b; again , a value of the time delay 
corresponding to the first zero of the autocorre
lation function has been chosen ( r = 100 b..t , here 
M = 1). A scaling regime in CM(r), with saturat
ing correlation exponent, is clearly visible at 

large values of r for the higher embedding di
mensions , leading to a correlation dimension 
v = 2. 7. A similar structure was observed by 
Voges et al. (46] in the analysis of the X-ray 
variability of Hercules X-1 (their fig. 5) ; this 
behavior was ascribed to a two-amplitude-range 
process, where the low-amplitude fluctuations 
are due to high-dimensional dynamics and the 
large-amplitude fluctuations determined by a 
low-dimensional chaotic dynamics . However, 
such a behavior can be simulated by a purely 
stochastic process , as in the example above. 

3. Some tests toward the goal of distinguishing 
between some chaos and some noise 

The examples given in the previous section 
suggest that the distinction between low-dimen
sional dissipative chaos and (correlated) random 
noise should not be based solely on correlation 
dimension estimates. In addition to those consid
ered here , other types of stochastic processes 
certainly exist which mimic the properties of 
low-dimensional chaos in finite data sets. Meth
ods other than dimension calculations should be 
applied to measured time series in order to 
extract as much dynamical information as pos
sible. In this regard , however , we recall that also 
predictability algorithms may have difficulty in 
distinguishing between chaos and correlated 
noise when a finite number of points is consid
ered (21]. 

In a sense, simply examining the time series 
and its recurrence plots often indicates whether a 
meaningful correlation integral analysis can be 
performed (more precisely, such an examination 
often indicates the analysis should not be per
formed). For a system believed to contain a 
very-low-dimensional attractor (say, dimension 
less than three) , one can directly inspect phase 
space traj ectories and Poincare sections; if these 
yield either " messy" distributions with no dis
cernible structure or isolated, non-recurrent 
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patches of points, the correlation integral esti
mates should be interpreted with extreme cau
tion. Analogously, time series which show rare 
bursts in otherwise unexplored regions of phase 
space , as well as an obvious non-stationarity 
and I or the absence of close returns in phase 
space are not promising candidates for the search 
of low-dimensional dissipative chaos. 

Clearly , real time series are a mixture of de
terministic components and random noise; it is 
nevertheless of some interest to attempt to disen
tangle the two components (when possible). In 
this section we discuss simple tests which may be 
applied to an experimental time series in order 
to interpret correlation dimension estimates and 
distinguish low-dimensional dynamics from sto
chastic processes . These tests are based on the 
idea of modifying some of the properties of a 
time series (i.e., on generating appropriate " sur
rogate" data , in a language similar to that used 
in refs . [26 , 30]), in order to determine whether 
the convergence of the dimension and of the 
entropy (or some other measured quantity) does 
or not depend on the modified property. 

It is important to stress the fact that each test 
in se is not an absolute proof; at best we are able 
to evaluate the probability that a series would 
produce the observed result by chance if it were 
chosen from an ensemble of signals with some 
given set of properties. These properties are 
chosen in an attempt to fool the algorithm tested 
and the usefulness of the test depends on the 
choice of good surrogate signals. The com
parison between several of the above approaches 
increases the confidence in a distinction between 
chaos and noise. Finally , we recall that we tend 
to include in the term " randomness" the be
havior of a dynamical system which cannot be 
represented in terms of a few active degrees of 
freedom , but which must instead be character
ized by a large number of excited modes. The 
definitions of " few" and " large numbers" are 
vague and will depend on the level of technology 
and the theory available. This means that one 

will (mis)classify sufficiently "high" dimensional 
chaos as randomness. 

3.1. Space-time-separation plots 

The first test simply recasts the data in the 
correlation integral to make the bias due to 
dynamical correlations more obvious . We recall 
that Theiler [23) demonstrated that short-time 
correlations can produce " knees" in the correla
tion integral due to the one-dimensional nature 
of the trajectory. Analysis of fractal trajectories 
may result in similar knees with non-integer 
dimension. 

The correlation integral represents the prob
ability that a pair of randomly chosen points on 
the reconstruction will be less that a distance r 
apart. When making the standard calculations, 
one assumes the distance between pairs of points 
is due to the geometry of the reconstruction, not 
because the points are dynamically correlated 
and their separation in space reflects their being 
neighbors in time. These temporal correlations 
led Theiler to restrict the sums in eq. (2 .2) to i , j 
pairs where [i- j[ > W for some constant W. The 
graphs presented below may be interpreted as 
providing a method for choosing W; in the case 
of non-stationary power-law noises they indicate 
that there is no value of W for which the correla
tion integral reflects globa l scaling due to recur
rence. 

For reconstructions from a single time series , 
each pair of points on the reconstruction is sepa
rated in phase space by some distance r and in 
t ime by some D.t. Our approach is to consider the 
time separation of points explicitly, first, through 
a scatter plot of the separation between two 
points in the space against their separation in 
time . This is illustrated for a three-dimensional 
reconstruction of the x series from the Lorenz 
equation [54) with CT = 10, b = ~ and r = 24.74; in 
fig. 4 where the horizontal axis is separation in 
time and the vertical axis is the base 2 logarithm 
of the separation in space. For small D.t points 
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Fig. 4 . Scatter plot of the spa tia l separation versus time 
separation between pairs of points on a traj ectory on the 
Lorenz attractor. The horizontal axis is separation in time 
and the vertical axis is the (base 2 logarithm of) the separa
tion in space. 

are always near neighbors in space , as their time 
separation increases so , initially , does their sepa
ration in space . 

For large data sets, scatter plots are difficult to 
interpret. An alternative is to plot contour maps 
of the fraction of points closer than a distance r 
at a given time separation D.t as a function of D.t , 
equivalently P([x(t + D.t)- x(t) [ < r) for arbi 
trary t. For large N and D.t (in systems in which 
correlations decay with time) , this distribution 
converges to the correlation integral for each D.t. 
The purpose of these coptour maps is to observe 
the manner in which this convergence comes 
about. 

Fig. S shows the space- time-separation con
tour map for the Lorenz case shown in fig. 4. 
The first zero of the autocorrelation funct ion 
corresponds to 295 in the integer units of the 
graph. Fig. Sb shows the distribution over longer 
time scales . The length of time for which mem
ory effects are significant is surprisingly long . 
The correlation integral is usually computed in
cluding these time separations with the implicit 

assumption that the visible oscillations average 
out. 

Fig. 6 shows the corresponding results for a 
1 If power-law noise . It is. clear in this example 
that the only points with small spatial separation 
are dynamically near neighbors: The series is 
non-recurrent in phase space. The key point here 
is that there is no analogue of fig . Sb for the 
power-law noise signal: There exist no time 
scales on which the distribution is stable. As the 
correlation integral effectively projects this graph 
onto the vertical axis , biased estimates of the 
correlation integral will result when the contribu
tions of this projection are disturbed by structure 
at small t. In the plots for the power-law noise 
this is always the case ; whatever time threshold 
is chosen , the smallest length scales will always 
be dominated by the smallest time scales . For 
the Lorenz attractor , Theiler's approach removes 
the contribution of the region I i - j [ < W; from 
fig. Sa it is clear that for , say, W < 32 the dis
tribution contains many near neighbors due to 
dynamical correlations . For a chaotic system, the 
decay of correlations with time results in the 
convergence of slices at constant D.t to the corre
lation integral at large D.t. The memory of initial 
conditions , reflected here in the persistence of 
long time structure of this plot is greater than 
might have been expected. 

The connection with the correlation integral is 
straightforward: C(r) is simply the sum over 
"large" D.t for a given r; the usefulness of this 
graph is that (a) it provides a quantitative esti
mate of what constitutes " large D.t" (namely 
those va lues where the contours have reached 
their asymptotic behavior) , (b) it is sensitive to 
the specific reconstruction parameters used and 
the full non-linear structure in M dimensions as 
opposed to the (linear) autocorrelation function 
or the one-dimensional mutual information , and 
(c) computationally , it is a subset of the correla
tion integral. Note that these distributions may 
also be used to estimate the inside cutoff to 
scaling range in the spatial separation of points 
with minimal dynamic correlation. 
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Fig. 5. Space-time-separat ion plots for the Lorenz attractor as in fig . 4. In this case the scatte r diagram is replaced by a contour 
map at short time scales (a) and at longer time scales (b). T he contours indicate the fraction of points closer than a distance r at a 
given time separation D.t. T he diffe rent curves correspond to different frac tions; curve l refer to a fraction of 1%, curve 2 to 10% , 
curve 3 to 50%, curve 4 to 90% and curve 5 to 99 % . 
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Fig. 6. Space- time-separation contour map for a 1 If power-law noise, as a function of !:J.t . Same details as in fig . 5. 

For very long series with low sampling rates , 
the effects discussed here become small as one 
eventually finds near returns closer to a given 
point than its dynamical next neighbor. For 
reasonable sampling rates , however , the data set 
lengths required for th is to occur can be ex
tremely long . 

The power-law noise is employed here as a 
clear example of a series which is non-recurrent 
in phase space. In this case , the non-stationarity 
of the signal should be obvious by inspection of 
the time series itself. The space-time-separation 
maps quantify the occurrence (or absence) of 
near returns in more subtle time series. 

Finally, we note a secondary bias in the corre
lation integral when high sampling rates are 
used . Even when near neighbors of a given point 
are omitted from the calculation centered at that 
point , they can still bias the probability dis
tribution centered on points far away in time. 
This appears as a change in the conditional 
probability P(L1x;1 < r+L1riL1x;1_ 1 < r) through 

the correlation of x(t1_
1

) and x(t) for arbitrarily 
large values of i - j . 

3.2. Phase randomization 

A very useful test is to consider the dis
tribution of the Fourier phases of the signal 
under study. In fact , in the case of fractal noise 
processes the convergence of the correlation di
mension is forced mainly by the shape of the 
power spectrum (consistent with the fact that 
both the power spectrum and the correlation 
integral are related to the second moment of the 
distribution), while for a low-dimensional 
dynamics phase correlations play an essential 
role. Thus, given an experimentally measured 
signal x(t) thought to be chaotic, it is useful to 
consider the stochastic surrogate signals obtained 
by inverting a power spectrum exactly equal to 
that of the signal under study and random , in
dependent and uniformly distributed Fourier 
phases . If the convergence is determined only by 
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the shape of the spectrum (equivalently, by the 
autocorrelation function) , then the results are 
not affected by phase randomization ; the in
variance of the correlation dimension and en
tropy estimates under phase randomization 
strongly implies that these estimates are not 
indicative of low-dimensional dynamics . To our 
knowledge, this test was first applied in the study 
of the motion of freely drifting buoys in the 
Pacific Ocean [43] . 

As an example of this approach , in fig. 7a we 
show the time series obtained by randomizing 
the Fourier phases of the non-linear stochastic 
process shown in fig. lb, and in fig. 7b we report 
the corresponding correlation integrals. The dif
ference between the original and the phase
randomized time series is visually apparent , since 
the phase randomization has destroyed the deli
cate phase couplings associated with the inter
mittent and multifractal nature of the process 
(2.9). The average correlation dimension esti
mates , however , do not show any significant 
differences between the original (non-liner) and 
the phase-randomized (linearized) signal, as 
shown in fig . 7c, which reports vM versus M for 
the two time series. For both signals , the correla
tion dimension saturates at approximately the 
same value . By repeating this procedure over an 
ensemble of ten different surrogate signals, cor
responding to differe.nt choices of the random 
phases , we have always obtained saturating cor
relation dimension ·estimates with mean value 
( v) = 2 .65 and standard deviation cr,, = 0.17 (at 
embedding dimension M = 8). In general , we 
have noted that the scatter in the saturation 
values of vM obtained for an analogous ensemble 
of ten surrogates of the linear signal (2.8) is 
smaller ( ( v) = 2.47 and cr" = 0.08 at M = 8); this 
difference, however , is in general not sufficient 
to infer the linear or non-linear nature of the 
original signal. 

The above results can be understood by recal
ling that the correlation dimension is related to 
the second moment of the probability distribu
tion associated with the time series (in a given 

r 

(c) 

:::E '· ' 
> '·' 

M 

Fig. 7. (a) Signal obtained by randomizing the Fourier 
phases of the non-linear time series shown in fig. lb . (b) 
Corre lation integra ls for the phase- ra ndomized time se ries 
shown in fig. 7a; .,. = 250 !:J.t and M = 1, ... , 8. (c) Correla
tion exponent vM versus the embedding dimension M for the 
origina l (crosses) and phase randomized (circles) time series. 
Error bars a re the 95 % confidence limits on the least -squares 
fit . 

embedding space), i.e ., it is related to the auto
correlation or to the power spectrum. For a 
stochastic signal, the phase information deter
mines the behavior of higher moments , i.e. , it is 
related to the generalized fractal dimensions (as-
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sociated with the intermittency properties) and 
to higher-order spectral quantities such as the 
bispectrum . All these higher-order me~sures are 
obviously modified by phase randomization in 
the case of the non-linear signal. Along these 
lines, a useful test to detect the presence of 
non-linearity and phase correlations in a given 
stochastic signal is to verify how the spectrum of 
multifractal dimensions is changed under phase 
randomization [27] . Clearly , for the purpose of 
distinguishing between chaos and noise one 
should attempt to choose stochastic surrogates 
which resemble the original series as much as 
possible (even in the higher moments). For ex
ample, the sunspot series has a number of non
linear characteristics; in this case , rather than 
simply use phase randomization one might con
sider non-linear stochastic model simulations, as 
discussed in refs. [30 , 55] . 

On the other hand, if the convergence is due 
to an underlying deterministic dynamics , phase 
randomization destroys the convergence of the 
dimension and of the entropy estimates. As an 
example, figs. 8a and 8b report a 4000-point time 
series of the x component from the Lorenz at
tractor , with the same parameters as above , 
before and after the phase randomization . The 
time step used is D.t = 0.05 . The appearance of 
the two time series is completely different and 
the correlation dimension results differ as well , 
see figs . 8c and 8d. In fact, there is no clear 
scaling range in CM(r) for the phase-randomized 
signal , as shown in figs. 8e and 8f which report 
the local logarithmic s·lope of CM(r) for each 
case . For the phase-randomized signal, vM may 
be defined as an average slope over a specified 
range of length scales. Fig. 8g shows vM versus M 
for both signals; as one can see, the average 
correlation exponent for the phase-randomized 
signal does not saturate . By repeating the analy
sis over an ensemble of ten surrogate signals we 
have always obtained non-convergent correlation 
dimension estimates for the phase-randomized 
signals. 

We caution, however , that a change m the 

correlation integrals under phase randomization 
does not necessarily imply the existence of an 
underlying strange attractor. For example , phase 
randomization of signals with strong periodic or 
quasi-periodic components in their spectrum will 
be more difficult to interpret . In principle, quasi
periodic signals with the geometry of tori can be 
detected by their integer dimension. In reality , 
however, the uncertainty in dimension estimates 
makes identifying integers impractical. Other 
tests better designed to identify signals such as 
these exist (see e .g. ref. [56]) . The combined use 
of several methods is often a crucial step in the 
correct analysis of the source of difficulties with 
correlation integral techniques. Alternatively , 
the use of some noise-filtering algori thms 
[11, 15, 16] may help in elucidating the true na
ture of the system , although non-linear cleaning 
should be kept distinct from " bleaching" the 
data [26]. 

3.3. Signal differentiation 

Another test considers the correlation integral 
analysis of the first (numerical) derivative of the 
signal. For a system governed by a low-dimen
sion strange attractor , the value of the correla
tion dimension is the same for the original signal 
as well as for the first (or for a higher) derivative 
(note that the time delay may have to be modi
fied). In the case of a stochastic signal, The first 
derivative (or difference) of the signal has a 
correlation dimension which , when ·well defined , 
is often much larger than that of the original 
signal, consistent with the change in the logarith
mic spectral slope under signal differentiation. 
Fig. 9a reports the first difference signal D.x(t) = 

x(t + M) - x(t) of the x component of the 
Lorenz attractor; fig. 9b reports the correlation 
integrals for D.x(t) and fig. 9c shows the values of 
the correlation exponent versus the embedding 
dimension for the original time series and for the 
first difference signal D.x(t). The same value ofT 
has been used for both time series ( T = 5 D.t , 
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Fig. 8. (a) and (b) report respect ive ly a time series obtained from the three-dimensional Lorenz model [28) and its phase
randomized counterpart ; we use the standard va lues cr = 10, b = 8 / 3 and r = 24.74. A similar beh avior is obtained fo r r = 28 . The 
time step is l:.t = 0.05. (c) and (d) report the corresponding correlation integrals with r = 5 l:.t and M = 1, . .. , 8; (c) and (f) report 
the local logarithmic slopes of the correlation integrals as obta ined from a moving five-point linear regression of log CM (r) versus 
log r. (g) shows the (average) correlation exponent vM versus M for the o riginal (crosses) and phase-randomized (circles) time 
series. 
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time 

r 

(c) 

M 

Fig. 9. (a) reports the first difference signal ~x(t) = x(l + 
~1) - x(1) obta ined from the signa l in fig. 8a, ~~ = 0.05. (b) 
reports the correlation integrals for this signal , with T = 5 AI 
and M = 1, .. . , 8, and (c) reports the correlation exponents 
v M versus M for the original (crosses) and first difference 
(circles) signals . 

where tl.t = 0.05); as expected , results are very 
similar. 

The first difference signal tl.y(t) = y(t + M)
y(t) obtained from the non-linear stochastic pro
cess (2.9) and the resulting analysis are shown in 
fig. 10; again, the same time delay T = 250 tl.t has 

<;; (a) = .. 
0.0 .• ·c;; 
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M 

Fig. 10. (a) reports the first difference signal obtained from 
the non-linear stochastic process (2.9) , a = f3 = 1 and ~~ = 
0.02 . (b) reports the corresponding correlation integrals for 
-r = 250 ~I and M = 1, . . . , 8. (c) shows the correlation expo
nent versus the embedd ing dimension for the origina l (cross
es) and differenced (circles) signals. From panel (a) the 
intermittent nature of the process (2.9) is particu larly 
evident. 

been used for both signals. As one can see, no 
saturation is observed in the correlation expo
nent of the difference signal. This is due to the 
fact that the increments tl.y(t) have essentially a 
white noise spectrum in this case, and have 
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consequently a much shorter correlation time. 
Thus, when a clear estimate of the derivative of 
a signal is available, the existence of a strong 
difference in the correlation dimension between 
the measured signal and its first derivative is a 
good indication that the dynamics has a signifi
cant stochastic component. Conversely, if the 
results of the correlation analysis do not change 
under signal differentiation, one has strong indi
cation that the dynamics is not simply a fractal 
noise. Clearly, there may be severe difficulties in 
estimating the derivatives of measured signals. 

Another possibility (similar in spirit to signal 
differentiation) is to consider a generic dif
feomorphism z = F { x} of the observed variable. 
For a sufficiently long series from a deterministic 
system, no difference should be observed be
tween the correlation dimension of the signal 
x(t) and that of z(t), apart from the effects due 
to the amplification of measurement noise. In 
contrast, the dimension of a stochastic fractal 
signal should drastically change under this oper
ation, since the characteristics of the process will 
be modified (34]. Changes in the correlation 
integrals may depend crucially upon F { x}; a 
careful examination of different classes of trans
formations must be pursued. We also note that 
transformation of the distribution (effectively , a 
change in the measurement function) has been 
applied by Theiler et al. (26]. 

3.4. Independent realizations 

A useful test is based on considering several 
independent realizations of the dynamics , with 
different initial conditions. In the case of a low
dimensional dissipative dynamics, the correlation 
dimension of the set of points obtained by con
sidering all realizations at once is equal to that of 
a single realization, provided that the different 
realizations start in the same basin of attraction. 
On the other hand, for a stochastic system the 
different realizations tend to fill the entire space, 
and one should observe an increase of the corre
lation dimension estimate with the number of 

realizations considered. In fact , the convergence 
of the dimension estimates for the noises consid
ered here are due to the existence of long time 
correlations , the effect of which is diminished by 
considering independent realizations. 

To illustrate this behavior , fig . lla contrasts 
the correlation exponent versus the embedding 
dimension for a set obtained by combining five 
independent time series of the x component of 
the Lorenz attractor ag?inst the results for a 
single time series of the same total length. Fig. 
llb reports the correlation exponent versus the 
embedding dimension for a set of points ob
tained by composing five independent realiza
tions of the non-linear stochastic process (2 .9) , 
together with the correlation exponent obtained 
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Fig. 11. Correlation exponent versus the embedding dimen
sion for the Lorenz attractor (a) and for multiple realizations 
of the non- linear stochastic process (2.9) (b). Crosses are for 
a single realization , circles refer to the results obtained by 
superposing five independent realizations . 
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from the analysis of a single realization. The 
growth of the correlation dimension estimate 
with the number of realizations is clearly visible 
in this case . Another approach in this vein is to 
consider simultaneous measurement of several 
quantities. When the quantities measured reflect 
different aspects of the process , then the infor
mation content in two simultaneous signals of 
length T can be much greater than gaining 
" twice as many points" in either one of the 
signals by doubling the sampling rate (due in part 
to projection effects). 

3.5. Structure function 

A classic quantity in the study of measured 
time series is the structure function (SF) , which 
is given by 

N- n 

S(n) = L [x(t + n ilt) - x(t)] 2
, (3 .1) 

i = l 

,,. 
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where x(t) is a scalar signal. For a fractal signal , 
the structure function has a scaling behavior 

S(n) ex n2
,.., (3.2) 

at small values of n , where His called the scaling 
exponent (see e .g. refs. [47 , 57 , 58]) . A fractal 
signal whose SF is given by formula (3 .2) has a 
power-law power spectrum P( w) = w - a, where 
a= 2H + 1 [47]. By composing independent 
realizations xk(t) of a fractal signal on the differ
ent axes of an N-dimensional space , one obtains 
a fractal trajectory which is parametrically repre
sented by the set of xk(t). The correlation di
mension v of the trajectory is related to the 
scaling exponent by the expression v = 1 I H , if 
v :s: M [47,57 , 58]. The different signals xk(t) 
may be independent realizations or time-delayed 
versions of the same signal . 

The structure function of the stochastic pro
cesses (2.8) and (2.9) displays a scaling behavior 
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Fig. 12. (a) Structure function (SF) for the x component of the Lorenz attractor shown in fig. 8a . (b) SF for the non-linear 
stochastic process shown in fig. 1 b. (c) SF for the first difference deterministic signal shown in fig . 9a. (d) SF for the first difference 
stochastic signal shown in fig . lOa. 
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of the kind (3.2) (at least on the time scales 
corresponding to the power-law regime in the 
spectrum). Alternatively, for motion on a 
strange attractor , which is differentiable in the 
direction of motion (and whose fractal structure 
is due to "close returns" in phase space) , the SF 
has a scaling exponent H = 1 at small va lues of n. 
The SF tends to oscillate and then to become 
constant at increasing n, due to the limited re
gion of the phase space vis ited by the system. As 
an example of th~ above statements , in fig . 12 we 
report the SF versus n for the x component of 
the Lorenz attractor (a) and for the non-linear 
noise (2.9) (b). The difference between the two 
structure functions is striking ; the SF for the 
non-linear noise shows an extended scaling re
gime while the SF for the Lorenz attractor dis
plays the typical behavior discussed above. 

By combining the test of the signal differentia
tion and the SF calculation one obtains an even 
more clear difference between chaos and fractal 
noise. Fig. 12c shows the SF versus n for the first 
difference signal obtained from the x component 
of the Lorenz attractor and fig. 12d reports the 
SF for the first numerical derivative of the non
linear process (2.9). The SF of the differentiated 
signal from the Lorenz attractor is practically 
equal to that of the original time series , while the 
SF of the noise is now flat , indicating H = 0 and 
a non-convergent dimension estimate for the first 
differenced signal. 

4. Discussion and conclusions 

The (re)discovery of low-dimensional deter
ministic chaos and the development of data anal
ysis methods which can be easily implemented 
have stimulated many works devoted to the 
study of experimental signals from the "chaotic" 
viewpoint. This work has often focused on decid
ing whether apparently unpredictable behavior 
should be ascribed to the presence of a low
dimensionai strange attractor rather than " ran
dom" behavior. In many cases , however , the 

desire for finding a chaotic attractor has led to a 
naive application of the analysis methods; as a 
result , the number of claims on the presence of 
strange attractors in vastly different physical , 
chemical, biological and astronomical systems 
has grown (exponentially?). Difficulties in inter
preting correlation integral results led for exam
ple Grass berger et a!. [15] to state that " ... most 
(if not all) of these claims have to be taken with 
very much caution" . Analogously , in a more 
specific context , Lorenz (40], based on the ana ly
sis of a dynamical system with several weakly 
coupled degrees of freedom, has recently con
cluded that there is " no reason to believe that an 
extensive weather or climate system possesses a 
low-dimensional attractor" . 

The most convincing evidence for low-dimen
sional chaos most commonly arises when the 
spatia l complexity of the system is limited. Ex
amples include carefully controlled laboratory 
experiments, transitional regimes (for example 
from laminar to turbulent flows) and some natur
al systems where physical reasons clearly imply 
the presence of only a few active collective 
modes [39]. Extended systems (e .g. fluids) may 
require long (global) space correlations for a 
low-dimensional dynamics to exist. Systems with 
short space-correlations , as well as systems with 
weakly coupled phase space variables , need not 
be (globally) described by low-dimensional 
dynamics. For the latter systems, the standard 
correlation integral approach may (again in 
Lorenz 's words) " attempt to measure the dimen
sion of a subsystem" [ 40]. 

In this paper we have extended the results 
given in refs. [47, 48] and we have considered 
several different types of random noises which 
can result in convergent estimates of the dimen
sion and of the entropy . In particular, we have 
considered two types of stationary stochastic pro
cesses , generated by linear and by non-linear 
stochastic processes. It has been shown that both 
noises provide a very similar output of the di
mension and entropy (numerical!) estimates. 
These results are of some interest since they 
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remove the objection that only non-statio nary 
noises are associated with convergent dimension 
and entropy estimates . In the case of stochastic 
signals , the convergence of dimension estimates 
are a result of the fractal nature of the trajec
tories. As it is crucial to distinguish which aspect 
of the signal the estimate is reflecting, we have 
examined this question directly through space
time-separation plots and structure functions. 

Given the interest of distinguishing between 
low-dimensional chaos and random behavior in 
observed signals, we have considered a series of 
tests which can assist (or circumvent) the inter
pretation of the correlation integral. These tests 
employ appropriate surrogate data which must 
then be analysed by the same methods employed 
with the original time series to determine 
whether the estimates of the dimension , entropy 
or any other statistic depend on the characteris
tics of the time series which have been modified. 
In particular, we have considered the procedures 
based on randomizing the Fourier phases of the 
signal , numerically differentiating the original 
time series , and the analysis of several indepen
dent realizations of the same dynamics. We have 
also discussed how the structure function can be 
used for contrasting low-dimensional chaos and 
fractal noises. In general , we have shown that 
low-dimensional dynamics may be distinguished 
from fracta l noises by using these tests. The case 
of randomly modulated periodic (or quasi
periodic) oscill ations cou ld be much more com
plicated , and a clear distinction between chaos 
and rando~ modulations might best employ 
other techniques (see e.g. ref. [56]). 

In conclusion , we stress that there is no simple 
test which automatically and unequivocally indi
cates the presence or the absence of chaotic 
dynamics ; it is only through the comparison of 
several different methods that the dynamical 
processes underlying a given system may be as
sessed . As always , a minimal physical insight 
into the dynamics of the system under study is a 
great asset. In this regard , we think it would be 
extremely useful to produce a co llection of sig-

nals (both deterministic and random) and pro
vide a detailed description of the output of the 
various analysis techniques when applied to each 
of them. In this way , safer conclusions on the 
presence of chaos , low-dimensional dynamics 
and / or noise from the analysis of measured time 
series could be obtained. 
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