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Abstract

This contribution discusses dynamic reconstructions and their application to the
identification of, quantification of and discrimination between complex systems. Phase
space reconstructions which reproduce the flow of dynamical systems in time are con-
structed from (multiple probe) time series data. These dynamic reconstructions are
used to quantify the unknown system. In the case of chaotic systems, this is ac-
complished through the isolation of unstable periodic orbits. The method is applied
to data from the Ikeda map, where it is shown that the data requircments of this
approach are modest relative to those required for other types of analysis. The ap-
plication of this approach to systems where the underlying dynamics are stochastic is

also discussed.

1. Introduction

In recent years there has been a rapid increase in the application of nonlinear
dynamical systems ideas to the analysis of complex time series. These ideas have
provided a new paradigm which has proven useful in many fields of study. Originally,
reconstructions were “static” in that they attempted to reconstruct the geometry from
a time series [1]. Unfortunately, methods of analysis developed for the study of low
dimensional Jow noise systems have sometimes been applied to data sets with which
they cannot produce meaningful results. This is particularly true of dimension calcu-
lations [2] where many results may be disqualified on simple geometrical constraints
(3]. While much work has been done on determining the reliability of such algorithms
(4], a major draw back of these approaches is that they fail in subtle ways. More
recently, there have been propositions to build dynamic reconstructions for predict-
ing chaotic systems (5, 6] (additional references are given in Ref. [7]). One advantage
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of these new approaches is that they may be used to quantify the dynamics of the
system instead of attempting to analyze the geometry. A second property is that
they fail robustly; the value of which cannot be overstressed. In this paper, I develop
a reconstruction and apply it not for predicting, but rather to quantify the chaotic
system underlying the observations. The reconstructed dynamical system will then be
used to locate unstable periodic orbits and quantify their stability. This information
may then be used, for example, to determine the origin of a time series known to have
come from onc of several chaotic systems.

It will be shown that this approach yields excellent results with reasonable data
requirements. Note however that the particular predictor constructed here is not
claimed to be the best; the fundamental point of this paper is to demonstrate that
reconstructing the dynamics from a time series yields a testable and, in some cases, re-
liable model upon which analysis and system identification techniques can be usefully

applied.

2. The Ikeda Map

Before describing the reconstruction, I introduce the system which will be used to
generate most of the time series described herein, namely the Ikeda map [8]. (Initial
studies with the Henon map showed it to be unsuitable as described in Ref. [7].) The
Ikeda map 1s

2’ =1 — p(zcos(t) — ysin(t))

/ ; (1)
y = p(asin(t) + ycos(t))

where t = 1/(1 + x?-{- y?). This system displays chaotic behavior over a range of
values for the parameter p including the values chosen here.

In order to quantify the similarity of a dynamic reconstruction with the original
system, we compute the spectrum of unstable periodic orbits of each. This spectrum
provides information on the global properties of the system as well [9,10]. Two ap-
proaches for determining these orbits were employed. First, a trajectory was followed
for n iterations; if the nth iteration of the map was within a distance ¢ from the
initial point, a gradient flow/Newton-Raphson scheme was implemented to search for
a periodic orbit. Typically, § was about one tenth the diameter of the attractor; large
values of § resulted in more computational time per iteration of the map, but tended
to find different orbits in fewer iterations while small ¢ lead to the testing of only near
returns. Alternatively, initial points may be taken on a fixed grid. This approach has
the advantage of “immediately” sampling regions of the attractor which are visited
only rarely, but at the cost of searching regions far from the attractor. As it is very
difficult to ascertain whether all the periodic orbits have been found, a combination
of these approaches is recommended. In addition, searching {rom small, random dis-
placements from known periodic orbits eases the 1dentification of nearby orbits in the
case where one of them dominates the global scarch.

The results of these searches (i = 0.83) yield the following numbers of periodic
orbits of period 1 through 12 of (1, 1, 2, 3, 2, 3, 4, 6, 14, 13, 22, 40) . We have searched
for orbits up to period 23, at this tirue well over 4000 orbits have been found. This
number 1s still increasing slowly. Obviously, 1t 1s quite difficult to determine if all the
periodic orbits of given length have been located. The number of periodic points of
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any given period provides an estimate of the entropy of the map [10]. In this case
we have the cstimates near 0.5. Equations (1) also have a fixed point near (1.532,
-2.071); as this point appears far from the attractor of interest, we have omitted it

from the listing above.

3. The Reconstructed Flow

The basic question in reconstructing a flow or map is one of interpolation in a
high dimensional space with irregularly spaced data points. As noted below, the data
may be combined from several different probes. To each observation, x;, there will
correspond an image or future vector, y;. Following Casdagli [11], I shall use a radial
basis function as the basis for interpolation.

Consider a deterministic system with phase space dimension M. Given n distinct
base points (x;,7 = 1,2,...,n), consider a single component of each image vector y;.
Let this component be labeled s; (z = 1,2, ...,n). The goal is to determine a predictor
f(x;) : RMs — R such that:

f(xi) = s (2)

Following Powell [12], consider f(z) of the form
fx) = 3 Xio(llx = ;1) (3)
=1

where ¢(r) are radial basis functions and the A; are constants which are uniquely
determined by Equations (1) provided the matrix

Aij = 8(Ilxi — x511) (4)

is nonsingular. This is always the case when the x; are distinct and the ¢(r) are radial
basis functions (see Refs. [11, 12)). We will restrict attention to the particular cases
#(r) =r and ¢(r) = (r? + ¢®)~ /2. Reconstructions with the former are more robust
in the presence of noise, while those with the latter have lower data requirements (in
the low noise case).

In this way, a prediction for one component, s;, of the image vector y; has been
constructed. This procedure must then be repeated for each component of the image
vector. The resulting set of functions will be referred to collectively as the rbf-map.
Note that, with experimental data, the requirement that the base points be distinct
may not be satisfied when the data are digitized at low resolution. Even with 64
bit accuracy, it is found that the reconstruction is improved if a minimum distance
between the x; is maintained.

In the past the x; have often been constructed by the method of delays from a
single time series. An alternative approach is to use different measurement functions
of the system for each element of x; (potentially combined with time delays). Here
the measurement functions may be distinct probes or a projection of the signal onto a
singular value decomposition or Fourier basis. The introduction of measurements in
different physical units requires careful thought in determining the scaling of distances
in different coordinate directions of the reconstructed phase space. One approach is
to choose these scales by optimizing the prediction error profile described in Ref. (7).
Note that the question of rescaling arises in the simple example of a set of coupled
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o.d.e.’s where the measurement functions may be taken as z,z’,z"”, and so on, or as
nonlinear combinations of these values.

Once an rbf-map has been generated, characteristics of the reconstructed map
are accessible. For example, a gradient flow/Newton Raphson style technique may
be developed (using finite difference estimates of the local derivatives) to locate the
periodic orbits of the rbf map and determine their stability. Note that the stable
eigenvalues are best estimated by a reconstruction of the series under time reversal.
A comparison of the periodic orbits found in a rbf-map with those found with a
knowledge of the Ikeda map is given in the next section.

4. Discussion and Conclusions

Several rbf maps were constructed based on a 27 observations taken from 28
iteration trajectories from the Ikeda map. In a ¢(r) = (r2 + 1)‘]/‘2 reconstruction,
all known periodic orbits on the attractor with period less than 8 were present with
their locations accurate to 3 decimal digits and their unstable eigenvalue to within
2%. Estimates of the unstable eigenvalues of orbits up to period 10 were within 5%
of their true values. (In some reconstructions erroneous orbits were also found, these
however were always far from the attractor.) Note that this accuracy is more than
enough to distinguish series originating from the y = 0.83 case from those from the
u = 0.85 case.

It is desirable to compare the data requirements of this approach to that of other
methods for retrieving similar data, for example, by comparing the amount of data
required to quantify the unstable periodic orbits by direct observation. This is par-
ticularly interesting due to the independent usefulness of this data as noted above.

The most straightforward method for detecting periodic orbits is simply to scan
the data stream for near returns; if the (n + 1)** iteration of a point is sufficiently
near that point, that location is a candidate for a periodic orbit. Clearly, this ap-
proach requires a careful definition of “sufficiently near” which should depend on the
particular orbit.

Consider the dynamics within a radius £ of a period n point. In the limit £ — 0, the
system’s dynamics are governed by the linearization of the map about the periodic
point; the linear dynamics may be characterized through the stable and unstable
eigenvalues, As and Ay. As a trajectory moves away from a periodic point, each nth
iteration will be approximately a factor A\, farther away from the point. Call this
(location dependent) ratio of distances the effective value of A,. We estimate the size
of the linear region by determining the distance along the unstable manifold at which
this effective value differs by more than some threshold from the true value, say 5%.
This then defines a visitation radius for each periodic orbit: if the properties of the
orbit are to be deduced directly from near visitations, a passage within this radius
must be observed. Thus the visitation time provides an estimate of the amount of
data required to quantify a periodic orbit to desired accuracy. Note that this is only
a lower bound on the length of trajectory required. If the difficulty of finding period
n orbits is denoted by the average visitation time of the least visited period n orbit,
then the visitation times for orbits of period 1 to 8 (1 = 0.83) are approximately
(27, 28:5 912 9115 912.8 515.7 9l6 218). These results are based on an average over 20
initial conditions, each of which is iterated up to 222 times. This was not long enough
for every initial condition to visit some orbits of period 8 and greater; orbits which
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were accurately located by the 27 point rbf-map described above. This demonstrates
that the construction of dynamic flows is a vastly more efficient method to determine
the spectrum of periodic orbits.

Rbf-maps from experimental data of a nonlinear electronic oscillator [13] have
also been constructed. In this case it is not possible to compare the periods and
eigenvalues with the “true” values. Examination of the time series near the predicted
periodic orbits in addition to the comparison of results from maps constructed from
different surfaces of section show that consistent estimates are obtained. A detailed
description of these results is presented elsewhere [14].

Finally we note that this approach is applicable to systems where multiple mea-
surement functions are available simultaneously (e.g., where several sensors are in
use). Even in the stochastic case, different measurement functions will be related
through their dependence on the current state of the system in such a way as to
create forbidden regions in the reconstruction space. An application of these ideas to
multiple sensor systems has been proposed [15].

In conclusion, we have seen that a system’s dynamics, as characterized by the
unstable periodic orbits, are quantitatively reproduced in a dynamic reconstruction
using radial basis functions. The data requirements of this method are modest in
comparison with other approaches and data from systems with similar dynamics may
be distinguished using this approach. Applications to experimental data and higher
dimensional systems appear to support the belief that these methods shall provide a
powerful new tool for the analysis of nonlinear dynamical systems.
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