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This contribution discusses dynamic reconstructions <1Ild their application to the 
identification of, quantification of and discrimination between complex sys tems . Phase 
space reconstructions which reproduce the flow of dynamical systems in time are con
structed from (multiple probe) time series data. These dynamic reconstructions are 
used to quantify the unknown system. In the case of chaotic systems, this is ac
complished through the isolation of unstable periodic orbits . The method is applied 
to data from the Ikeda map , where it is shown that the data requirements of this 
approach are modest relative to those required for other types of analysis . The ap
plication of this approach to systems where the underlying dynamics are stochastic is 
also discussed . 

1. Introduction 

In recent years there has been a rapid increase in the application of nonlinear 
dynamical systems ideas to the analysis of complex time series. These ideas have 
provided a new paradigm which has proven useful in many fields of study. Originally, 
reconstructions were "s tatic" in that they attempted to recons truct the geometry from 
a time seri es [1] . Unfortunately, methods of analysis developed for the study of low 
dimensional low noise systems h ave somet imes been applied to data sets with whi ch 
they cannot produce meaningful results . Thi s is parti cularly true of dimension calcu
lations [2] where many results may be d isqualified on sim ple geometri n t! constraints 
[3]. While much work has been done on determining the reliabi lity of such algorithms 
[4], a rrl<ljOf draw back of these app roaches is t.haL they fail in suut.lc way s. !\•fore 
recently, there have been propositions t.o build dyuamic reconstructions for predict 
ing chao t ic systems [5 , 6] (additi o rw l referehccs are givcu in H.cf. [7]). Oue a cl v<tnl <tgc 
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of these new appro <:tchcs is that they may be used to quantify the dynamics of the 
system instead of a ttempting to analyze the geometry. A second property is that 
they fail robustly; th e value of whi ch cannot be overs tressed . In thi s paper, I develop 
a reconst ruction a.n d a.pp ly it uot for predict ing, but rat her to qu antify the chaotic 
sys tem underlying l1 1c observations. The reconsLruclcd dynaruical system will Lhen be 
used to locate llnstable periodic orbi ts and qu antify thei r stability. Thi s informat ion 
may then be used, for exam ple, to determine the origi n of a time series ku uwn to have 
come from one of several chaotic sys tems. 

It will be shown that this approach yields excellent res ults with reasonable data 
requirements. Note howe ver that the particular predictor constructed here is not 
claimed to be the best ; the fundamental point of this pa per is to demonstrate that 
reconstructing the dynamics from a time series yields a testable and, in some cases, re
liable model upon which analysis and sys tem identification techniques can be usefully 
applied . 

2. The Ikeda Map 

Before describing the reconstruction, I introduce the system which will be used to 
generate mos t of the time series described herein, namely the Ikeda map [8] . (Initial 
studies with the Henan map showed it to be unsuitable as described in Ref. [7].) The 
Ikeda map is 

x' = 1 - p,(x cos(t)- y sin(t)) 

y' = 11- (x sin(t) + y cos(t)) 
(1) 

where t = 1/(1 + x 2 + y2). This system displays chaotic behavior over a range of 
values for the parameter f.L including the values chosen here. 

In order to quantify the similarity of a dynamic reconstruction with the original 
system, we compute the spectrum of unstable periodic orbits of each. This spectrum 
provides information on the global properties of the system as well [9, 10] . Two ap
proaches for determining these orbits were employed. Firs t, a trajectory was followed 
for n iterations; if the nth iteration of the map was within a dis tance 5 from the 
initial point, a gradient fl.ow/N ewton-Raphson scheme was implemented to search for 
a periodic orbit. Typically, 5 was about one tenth the diameter of the at tractor; large 
values of 5 resulted in more computational time p-er iteration of the map , but tended 
to find different orbits in fewer iterat ions while sm all 5 lead to the testing of only near 
returns. Alternatively, initial points may be taken on a fixed gr id. This approach has 
the advantage of "immediately" sampling regions of the a t tractor which are visited 
on ly rarely, bu t at. the cost of search ing regions far from the attractor. As it is very 
difficult to ascertain whet her a ll t he periodic orbi ts have been fouud , a combinat ion 
of these approaches is recommended. In addition, searching from small, random dis
placements from known periodic orbits eases the identificat ion of nea.rby orbits in the 
case where one of them dominates tbc global search . 

T he resu lts of these searches (f.t = 0.83) yield the followi11g numbers of periodic 
or bits of period 1 th rough 12 of (1, 1, 2, 3, 2, 3, 4, 6, 14, 13, 22 , 40). We have searched 
for orb its up to period 23, at th is time well over 4000 orbits have been found. This 
nu mber is s t ill increasing slowly. Obviously, it is quit e. dif-l1cll lt to determine if all the 
period ic or bits of given length have been located. The number of periodic points of 
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any given period provides an estimate of the entropy of the map [10]. In thi s case 
we have the estimates near 0.5. Equations (1) also have a fixed point near (1.532, 
-2.07 1) ; as this point appears far from th e attractor of interest, we have omitted it 
from the listing above . 

3. The Reconstructed Flow 

The basic question in reconstructing a flow or map is one of interpolation in a 
high dimensional space with irregularly spaced data points. As noted below, the data 
may be combined from several different probes. To each observation, Xi, there will 
correspond an image or future vector, Yi · Following Casdagli [11], I shall use a radial 
basis function as the basis for interpolation. 

Consider a deterministic system with phase space dimension Ms . Given n distinct 
base points (xi, i = 1, 2, ... , n), consider a single component of each image vector Yi · 
Let this component be labeled Si (i = 1, 2, ... , n). The goal is to determine a predictor 
f(xi) : RM$ --+ R such that: 

f(xi) = Si (2) 

Following Powell [12], consider J( x) of the form 

n 

f(x) = 2: >-i¢(11x- xi/ I) (3) 
i=l 

where </>(r) are radial basis functions and the Ai are constants which are uniquely 
determined by Equations (1) provided the matrix 

(4) 

is nonsingular. This is always the case when the Xi are distinct and the </>(r) are radial 
basis functions (see Refs. [11, 121) . We will rest_rict at_tention to the particular cases 
¢(r) =rand ¢(r) = (r2 + c2) - 112 . Reconstructwns w1th the former are more robust 
in the presence of noise, while those with the latter have lower data requirements (in 
the low noise case). 

In this way, a prediction for one component, si, of the image vector Yi has been 
constructed. This procedure must then be repe_ated for each component of the image 
vector. The resulting set of functions will be referred to collectively as the rbf-map . 
Note that, with experimental data, the requirement that the base points be distinct 
may not be satisfied when the data are digitized at low resolution. Even with 64 
bit accuracy, it is found that the reconstruction is improved if a minimum distance 
between the Xj is maintained. 

In the past the Xj have often been constructed by the rnelhod of delays from a 
single time series. An alternative approach is to use different measurement functions 
of the system for each element of Xj (po tentially combined wiLh time delays). Here 
the measurement functions may be distinct probes or a projection of the signal onto a 
singular value decomposition or Fourier basis. The introduction of measurements in 
different physicaluni'ts requires careful thought in determining the scaling of distances 
in different coordinate directions of the reconstructed phase space. One approach is 
to choose these scales by optimizing the prediction error profile described in Ref. [7] . 
Note that the question of rescaling arises in the simple example of a set of coupled 
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o.d.e. 's where the measurement functions may be taken as x, x' , x", and so on, or as 
nonlinear combinations of these values. 

Once an rbf-rnap bas been generated, characteristics of the reconstructed map 
are accessible . For example , a gradient How /Newton R.apbson style technique may 
be developed (using finit e difFerence estimates of the lo u d deriva tives) to locate the 
periodic orbits of the rbf map and determine their s tabili ty. Note that the stable 
eigenvalues are best estimated by a reconstruction of the series under time reversal. 
A comparison of the periodic orbits found in a rbf-map with those found with a 
knowledge of the Ikeda map is given in the next section. 

4. Discussion and Conclusions 

Several rbf maps were constructed based on a 27 observations taken from 28 
iteration trajectories from the Ikeda map. In a ¢(r) = (r 2 + l ) - 112 reconstruction, 
all known periodic orbits on the attractor with period less than 8 were present with 
their locations accurate to 3 decimal digits and their unstable eigenvalue to within 
2%. Estimates of the unstable eigenvalues of orbits up to period 10 were within 5% 
of their true values. (In some reconstructions erroneous orbits were also found, these 
however were always far from the at tractor.) Note that this accuracy is more than 
enough to distinguish series originating from the 11- = 0.83 case from those from the 
11- = 0.85 case. 

It is desirable to compare the data requirements of this approach to that of other 
methods for retrieving similar data, for example, by comparing the amount of data 
required to quantify the unstable periodic orbits by direct observation. This is par
ticularly interesting due to the independent usefulness of this data as noted above . 

The most straightforward method for detecting periodic orbits is simply to scan 
the data stream for near ret urns; if the ( n + 1 )th iteration of a point is sufficiently 
near that point , that location is a candidate for a periodic orbit. Clearly, this ap
proach requires a careful definition of "sufficiently near" which should depend on the 
particular orbit. 

Consider the dynamics within a radius e of a period n point. In the limit£ -+ 0, the 
system's dynamics are governed by the linearization of the map about the periodic 
point; the linear dynamics may be characterized through the stable and unstable 
eigenvalues, As and Au. As a trajectory moves aw~y from a periodic point, each nth 

iteration will be approximately a factor /\u farther away from the point . Call this 
(location dependent) ratio of distances the effective value of A11 • We estimate the size 
ofthe linear region by determining the distance along the unstable manifold at which 
this effective value differs by more than some threshold from the true value, say 5%. 
This then defines a visitation radius for each periodic orbit : if the properties of the 
orbit are to be deduced directly from near visitations, a passage within this radius 
must be observed. Thus the visitation time provides an estimate of the amount of 
data required to quantify a periodic orbit to desired accuracy. Note that this is only 
a lower bound on th e length of trajectory required. If the difficulty of finding period 
n orbits is rlcnoted by the average vi sitation time of the least vi sited period n orbit, 
then the visitation tim es for orbits of period 1 to 8 (!'· = 0.83) are approximately 
(27 285 212 ?11 .5 2128 21 5 7 216 21 8) Tllose r"'stilts·· ·f• ')· "'(] la 20 , , , ~ , , , , . ·~· ,__ . a1 _ r ,t:;c 01 · n average over 
initial conditions, each of whi ch is iterated up to 222 tim es. Thi s was not long enough 
for every initial conditi on to visit some orbits of per iod 8 and greater; orbits which 
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were accurately located by the 27 point rbf-map described above. This demonstrates 
that the construction of dynamic flows is a vastly more efficient method to determine 
the spectrum of periodic orbits . 

Rbf-maps from experimental data of a nonlinear electronic oscillator [13] have 
also been constructed. In this case it is not possible to compare the periods and 
eigenvalues with the "true" values. Examination of the time series near the predicted 
periodic orbits in addition to the comparison of results from maps constructed from 
different surfaces of section show that consistent estimates are obtained. A detailed 
description of these results is presented elsewhere [14]. 

Finally we note that this approach is applicable to systems where multiple mea
surement functions are available simultaneously (e.g., where several sensors are in 
usc). Even in the stochastic case, different measurement functions will be related 
through their dependence on the current state of the system in such a way as to 
create forbidden regions in the reconstruction space. An application of these ideas to 
multiple sensor systems has been proposed [15] . 

In conclusion, we have seen that a system's dynamics, as characterized by the 
unstable periodic orbits, are quantitatively reproduced in a dynamic reconstruction 
using radial basis functions. The data requirements of this method are modest in 
comparison with other approaches and data from systems with similar dynamics may 
be distinguished using this approach . Applications to experimental data and higher 
dimensional systems appear to support the belief that these methods shall provide a 
powerful new tool for the analysis of nonlinear dynamical systems. 
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