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Abstract

Chaotic behavior is often described by flows, which are
vector fields in appropriate spaces. Vector fields, such as
the magnetic field in the sun, are important in astro-
physics, and they are typically chaotic. Thus, when these
fields are solenoidal, they display a mixture of regular and
chaotic portions that qualitatively rationalize the spotty
appearance of the solar magnetic field. A less tangible
example is the flow that can be imagined to sweep
galaxies forward in cosmic time. The evidence suggests
that this flow forms a fractal object whose lacunae or
voids are analogues of the stellar spots.

The textures of these objects will help the cos-
mologist in understanding some large-scale dynamics.
We describe and assess the cosmologists' schemes to
quantify the galactic distribution by determining its
dimensions. Theoretical sets and a set of galaxypositions
measured at the Observatory of Nice provide the illustra-
tions. We find that the data suggest a value close to 2,
which is rather larger than the dimension of the distribu-
tion of galaxies than has been generally accepted. The
methods described for finding such results may be help-
ful in other astrophysical studies involving complex sets.

Cosmic Chaos

Reliable identification of chaotic behavior in
astrophysical systems is usually much more
difficult than for controlled laboratory sys-
tems. In astrophysics as in any observational
science, it is hard to develop the extensive data
sets needed to detect chaos. It is also difficult
to isolate the phenomena of central interest
without contamination from other processes
in observational sciences.

Consider pulsars, for example. The flash-
es seen from pulsars are believed to emanate
from polar caps of rotating neutron stars. The

rotation rates of these stars decrease slowly
with time, but the rates of decrease normally
fluctuate slightly. To decide whether these
fluctuations are deterministic, we need a good
series of measures of the rotation rate. Those
might be obtained from the blinking light from
the stars' polar caps, which are thought to
arise like flashes from light houses. But the
neutron stars are intrinsically inconstant, like
most stars. They may well emit their light
chaotically; hence it is hard to say from the
observations whether the rotational braking,
or the emission process, or both are chaotic.

Even though it is difficult to establish the
existence of deterministic temporal chaos in
astrophysics, the basic ideas of chaos theory
are helpful in astronomical thinking. They can
rationalize apparently aperiodic behavior that
we encounter in the universe as deterministic
processes. Astromathematicians no longer
need to invoke the deus ex machina called
noise to understand aperiodicity. In chapters
17 and 18 by Buchler and Regev in this
volume, one sees examples of how astro-
physicists are incorporating the ideas of tem-
poral chaos into their work.

Beyond this, the ideas of chaos theory can
influence our vision of the mathematical ob-
jects with which we describe the contents and
structure of the universe. Chaos theory helps
us to cope with irregular temporal behavior; it
provides us with ways to think about com-
plexity in spatial structure; it provides tools for
quantifying complicated behavior. This chap-
ter is about some of the issues of such quan-
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tification. We shall describe methods for
determining the dimensions of fractal sets and
illustrate their use with theoretical sets and an
astrophysical example.

Chaotic Vector Fields

Erratic temporal behavior is but a superficial
manifestation of chaos. Astrophysicists can
avail themselves of other, far-reaching aspects
of chaos theory. For example, the property of
being chaotic can apply to mathematical
structures such as vector fields, not only to
temporal behavior itself. This is a useful no-
tion, and it is easy to grasp.

The trajectory of a particle is described by
giving its position, x, as a function of time, t.
Such information often emerges in the solu-
tion of a differential equation of the form

x = v (x, t).

Here the vector field v is a specifiedjiow that
carries the particle about. Equation 1 is called
a dynamical system by mathematicians. Fluid
dynarnicists might think of the vector field v as
the velocity field for the flow of a real fluid.
For them though, the content of Eq. 1 is
kinematic, and it describes how a fluid particle
moves. A trajectory of Eq. 1would be called a
streak line in fluid dynamics.

Suppose that we are working in a three-
dimensional (3D) space, as for ordinary physi-
cal flows. A way to visualize the nature of a
trajectory x(t) is to cut the space with a plane
into portions called left and right. Whenever
the trajectory crosses this plane, going from
left to right, for example, we mark the place. If
a particle moves for a long time, its path will
typically pierce the surface of section quite a
few times, given a certain amount of judgment
in choosing this Poincare surface. If you put
the plane where the orbits are plentiful, you
will see something like what you see on cutting
open a coaxial cable.

In learning to use the Poincare section, it
is well to practice on simple examples. For a
periodic orbit, the surface of section may con-
sist of just one point because the particle
keeps coming back to the same place. Indeed,
so long as the set of marked points is finite, it

(1)

must always be the trace of a periodic orbit.
Other simple situations may arise. For ex-
ample, suppose that the orbit is wrapped on
the surface of a torus. The points in the sur-
face of section will then lie on a closed curve.
Orbits with such simple spoors are often
called regular.

When the series of points in the surface of
section does not repeat, go off to infmity, nor
remain on a simple closed curve, we must have
a case of highly complicated motion. The
points often do not fill the surface of section
nor any piece of it, so they may be said to form
an object of fractional dimension, as we shall
explain presently. The motion in such cases
may be called chaotic. Since the motion is dic-
tated by v, we may consider that v itself is the
chaotic object. The notion that chaos is basi-
cally the property of a vector field is of impor-
tance in many disciplines. For astrophysics, a
telling example is the solar magnetic field.

In a certain sense, what we see of the solar
magnetic field is a surface of section. Where
the field is strong, it inhibits the convective
motions. Near the solar surface, such motions
are responsible for the outward flux of heat.
Hence, magnetic inhibition of this flow makes
for relatively dark regions called sunspots. So
the places where strong ordered fields pro-
trude from the solar surface are distinguished
by being darker than their surroundings.

To understand this as a surface of section,
think of any snapshot of the solar magnetic
field B(x, t) as a flow as in Eq. 1, with a fic-
titious particle moving along some trajectory.
The parameter that tells us how far along in a
trajectory of the field the particle has gone is,
of course, not the real time, for that is fixed.
Rather, we introduce a fictitious time, s, in-
creasing along the trajectory of a particle in
the flow B(x, t). Then the position of the par-
ticle, for fixed t, traces out a path governed by
the equation

dx
ds = B (x(s), t).

(2)

Such trajectories of B, for fixed t, are called
the streamlines of B.

We can make a surface of section for the
streamlines of B and get some idea of its
topology in this way. And there is no reason



we should not use a spherical surface to make
our surface of section. Then we can hope to
get something that looks like the solar surface
for a reasonable choice of B. The regular parts
of the field correspond to flux tubes that
would appear as sunspots, while the chaotic
portions resemble the general field over the
solar surface.

Another way to think theoretically in
terms of a surface of section is to use a return
map. That is, instead of following a trajectory
round and round waiting for it to cross the
Poincare surface, we can derive or invent a
rule that tells us where the system will next
cross the surface, given the location of its pre-
vious crossing. Such a rule saves us the effort
of having to solve a differential equation like
Eq. 2 to understand the structure of the field.

Although we do not know how to make a
solar return map (as yet), we can anticipate
the real thing by simply looking at typical
return maps that have been constructed in the
study of Hamiltonian chaos. (We specify
Hamiltonian chaos because magnetic fields
are divergence-free, so we need to use the
so-called area-preserving maps of Hamil-
tonian dynamics.) Such maps generally pro-
duce distributions of magnetic field that look
qualitatively quite right. From such maps, we
typically get intense concentrations into spots
of very regular field surrounded by a back-
ground chaotic field. The spots in this theo-
retical image correspond to flux tubes of the
basic vector field, at least in this imagery (29).
In Fig. 1 we show a section of a simple area-
preserving return map invented by M. Henon

In studying such maps, without going into
complicated physical processes, we can see
the possible qualitative structure of solar
fields. That is, chaos theory, with no appeal to
any physical processes, predicts that spots
ought to exist for any generic magnetic field
other than the highly special cases that are
constructed for classrooms and certain care-
fully designed devices. Without this realiza-
tion, we might have been tempted to give spe-
cial credence to models that predict a field
whose surface of section is spotty. But since
this aspect of vector fields is generic, we real-
ize that any sensible theory ought to predict
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sunspots. The theory of chaotic vector fields
suggests, moreover, that such surfaces of sec-
tion ought to have spots of smaller and smaller
sizes. What we need to look for are the quan-
titative aspects of such fields as a test of our
theories, as indeed some people have been
doing (30).

Similar general conclusions may change
our picture of other cosmic arrangements
such as the spatial distribution of galaxies. It is
now believed that the luminous portions of
galaxies contain only a very small fraction of
the total mass in the universe. Therefore, a
galaxy is like the test particle whose motion is
described in Eq. 1. The flow, v, in that equa-
tion is presumably determined by the invisible
mass of the universe, but the way in which this
happens maywell surprise us ifwe can unravel
it. Naturally, to be a bit more precise, we
should write the four-dimensional version (at
least) of Eq. 1 for galaxies. Then what we
would be observing is a surface of section
made with a space-like hypersurface, which
for present purposes is a surface of (nearly)
constant time.

Observational limitations lead us to think
differently about the construction of such sur-
faces of section in cosmology than in more
tractable examples. Instead of a galaxy going
round and round on a single trajectory, we
adopt an approach like that used to visualize
flows by fluid dynamicists. We start out with a
uniform distribution of particles and let them
all run according to Eq. 1. Then we mark the
points where they cross a particular space-like
hypersurface. That is, we take a photograph at
some moment. If the cosmic flow is generic,
we naturally would not be surprised to see a
fractal distribution of the test particles or
galaxies. This is, indeed, what the observations
indicate. Again, we appreciate that a theory
has to do more than just predict this outcome
if it is to command our respect.

Cosmic Cascades

When a swarm of points is swept along by a
flow, we shall see the points rearrange them-
selves as we look at successive time-like cuts of
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Fig. 1. A chaotic trajectory from the area preserving Henon map of chaos theory [e.g., (29)]. The dark areas are the
integrable or regular regions of the field, which we liken to flux tubes.

their world lines. If the flow has chaotic parts,
we can see the emergence of a hierarchical
structure from an initially rather uniform con-
figuration. This begins with a slight redistribu-
tion of points leading to the first traces of
clustering on a particular scale. In the simplest
cases, these first clusters occur either on the
largest or the smallest scale allowed by physi-
cal or geometrical constraints of the real
world.

In a flow where the first inhomogeneities
appear on the largest scales, we first see large
clusters appear. Within these, the distribution

of points is initially rather uniform. These first
clusters of points will behave like the initial
set, and clusters will form within them. In the
simplest possible cases, a self-similar hierar-
chy of clusters will emerge from this geometri-
cal cascade. On the other hand, if the initial
clusters are formed at the smallest scale al-
lowed by the physics, we may see them coming
together to form larger structures that cluster
together in their turn. The continuation of this
latter process is called an inverse cascade. If
the initial scale is determined by some forcing
extrinsic to the process of interest, we may get



cascading in both senses at once.
This way of thinking about how a flow

moves points about is often much more con-
venient than trying to deal with the flow
directly. Mandelbrot (17) considers the way
that Cantor first made his hierarchical sets as
a form of cascade. Students of turbulence
have used such thinking for years, beginning
with the work of Novikov and Stewart (20).
Unno (31) sees cascades throughout natural
history, referring to Hoyle's (11) discussions
of the hierarchical formation of cosmic bodies
in the astronomical case. Although the mathe-
matical rationalization for this way of thought
is still in its infancy, Kida (12) has used a
model equation for the cascade of fluid tur-
bulence related to the so-called Kolmogorov-
Ford equation of statistics. The same kind of
modeling may be helpful in the cosmological
cascade as well.

Consider a great cosmic ball of matter
subject to the Rubble expansion of the uni-
verse. As cosmologists often do, let us think of
the motion of the galaxies in comoving coor-
dinates, in which the uniform Rubble expan-
sion has been subtracted out of the flow.With
the appearance of the first large-scale in-
homogeneity in the cosmic fluid, we get our
rust generation of objects (clumps, aggre-
gates, groupings, or what you will). These cos-
mic lumps are objects with characteristic scale
11,In the ball there are NI such entities.

In the following stage, the NI objects cre-
ate the next generation. Suppose that the first
generation spawns a total of N2 second
generation objects of size 12, If we let this
process run its course through a great many
generations, we shall have a basis for writing
an equation for Nn, the number of objects in
the nth generation. Let the creation of objects
of the nth generation take, on average, a time
'n. Then, we can write a so-called master
equation of this form:

where ~n is the mean number of offspring
produced by the objects in the (n-l)th
generation.

The meaning of the rust term on the right
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in this equation is that the members of the nth
generation are destroyed with a characteristic
lifetime 'n' If that were the only term, we
would find that Nn ex exp( -(ITn). But the dying
members of each generation may be used to
make the next generation. That is the meaning
of the second term on the right of Eq. 3. To
use this equation, we have to provide ap-
propriate formulae for ~n and for 'n' In the
simplest cases,

= (In-I) 3~n I .
n

(4)

The exponent 3 in this formula indicates that
the objects are embedded in a three-dimen-
sional space. Kida sought greater generality by
replacing the 3 in Eq. 4 with a parameter, s.1t
appears that he wanted the freedom to choose
s, not an integer, in modeling some features of
turbulence. As we see next, the outcome of
Sreenivasan's measurements on turbulent
flows suggest that 3 is a good choice (see the
appendix to this volume for references).

Suppose that we have statistically steady
turbulence. Then, if we apply the steady state
version ofEq. 3, we have

(5)

(3)

For the example of homogenous turbulence,
Kolmogorov (13) has provided a similarity
theory that gives us 'n ex/~/3. With this result,
we can find aparticular solution of Eq. 5 with
N ex/-7/3n n .

To extract the meaning of this result, we
observe that the total mass Mn in the nth
generation is (to within a constant factor)
Pn/~ Nn, where Pn is the mass density of the
typical object in its generation. In laboratory
turbulence, the motion is effectively incom-
pressible, so Pn is a constant. If the mass in-
volved in the cascade were conserved, Mn
would be constant and independent of n. This
would require that Nn ex 1;;3.In that case, the
objects in any generation would fill a finite
volume. Instead, we have I~ Nn ex 1~3, so the
volume occupied by each generation is tend-
ing to zero with decreasing In. This means that

____________________________________________~l
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less and less mass is participating in the cas-
cade as we go down through the generations.
There must be lacunae where the cascade has
been arrested.

We could even improve on the exponent
of 7/3 in the solution. Kolmogorov's formula
for the average lifetime of an eddy is implicitly
based on the assumption that the eddies are
space-filling. Now that we have the first es-
timate of the departure from this condition,
we can correct the expression for r., and get an
improved estimate to replace the 7/3. How-
ever, that estimate is close enough for our
present purposes, so we shall not pause to do
this here.

The fact that the total volume occupied by
the smallest of the objects goes to zero has an
interesting interpretation. If, in ordinary
space, a set of points fills a piece of that space
and so has a finite volume, we would say in
ordinary language that this object is three-
dimensional. When the volume of the object
vanishes, we are tempted to quantify this by
assigning a dimension to the object that is
lower than 3. We shall be going further into
this in "Dimension," pages 206-208. For now,
let us call the exponent in the power law for Nn
the dimension of the set of objects. As we shall
see, there are many ways to define the dimen-
sion of a set of points, so this is really just one
particular dimension; perhaps we could call it
the cluster dimension. It resembles a dimen-
sion discussed by Unno (31).

In the case of turbulence, the dimension
of the set of points on which the dissipation is
appreciable in the experiments is quite close
to 7/3 as Sreenivasan has found. This en-
courages us to think that Eq. 5 may provide
some useful insights into other cascades. We
are therefore tempted to try it out on the cos-
mic cascade. But before doing that, let us
remark that there is a more general solution to
Eq. 5 in a geometrical cascade, when the ratio
of successive sizes is a constant, that is, Sn does
not depend on n. In that case, we may
reasonably suppose that

where the parameter K is characteristic for the
particular cascade. Then we may readily verify

the existence of the following solution to Eq.
5:

where

d = 3-IC, (8)

and

(6)

'11 (x) = '11 (x + log,B), (9)

where f3 = S!:,3 and L is a unit of length.

The function 'P measures the lacunarity of
fractals. It generalizes Mandelbrot's definition
of the term as a constant prefactor in the
statistical description of fractals. Instead, we
may call 'P a prefunction. So far, it remains an
arbitrary function, found only by observing
real fractals. The ripple described by 'P can
also be found in inhomogenous fractals or
multi-fractals as some call them. This ripple
has long been noticed both in mathematical
(18) and physical (23) theories involving
hierarchies and cascades. In connection with
his early model of the turbulent cascade,
Novikov (19) pointed out that the ripple
would occur in turbulence in principle, but
would not be detectable. However, it may
have been seen in turbulent flows (28). It will
take many more data than we have now, or a
new way to analyze them, to see the ripple in
statistical analysis of the distribution of
galaxies.

To formulate a cascade model for a cos-
mic process like the creation of the hierarchi-
cal structure of the galaxy distribution (32), we
need to look harder at Eq. 3. First, we have to
depart from the usual imagery of fluid tur-
bulence, in which eddies of a given size, In, are
normally considered to be effaced after a typi-
cal time, rn, when they give rise to smaller
eddies. In the usual situation of fluid tur-
bulence, we need an energy source to obtain a
statistically steady state. In the cosmic ex-
ample, we need to allow for the possibility that
the eddies persist for much longer than this
decay time. That is, they may have produced
the next generation without being destroyed
themselves. If the memory of the early genera-
tions can linger on in the cosmic structures, we
can expect to observe the coexistence of ob-



jects on all scales. We want to suggest a way of
doing this that seems suited to some versions
of cosmic clustering theory.

If only the first term on the right of Eq. 3
existed, with no feeding from previous genera-
tions, we would find that Nn decays exponen-
tially. And for turbulence, this makes good
sense. The linear parts of the turbulent pro-
cesses with constant coefficients do give an
exponential behavior like this. For any process
where such exponential behavior is expected,
Eq. 3 is likely to be helpful. A measurement of
d will give a value of K, which will give clues to
the basic mechanism causing the cascade. But
the universe is expanding, hence it is time de-
pendent. Therefore, describing the cosmic
cascade calls for a modification of this feature
ofEq.3.

Some theoretical pictures of the cosmic
cascade suggest that the decay of individual
structures in the Hubble flow may be algebraic
rather than exponential. For example, a den-
sity anomaly in a self-gravitating medium
grows as a power of t, as in Lifshitz's well-
known work (21). Then we ought to try a
master equation, which in the absence of cas-
cading, gives Nn ex r=. Such behavior comes
from an equation like

where # = (a + l)/a and in is the time con-
stant for the nth generation. This version mol-
lifies the sudden-death, exponential aspect of
Eq. 3. When we also include a cascade term,
we get this equation:

if we assume that the exponent in the decay
rate is the same for each generation.

Suppose that galaxies were formed in a
burst of activity some billions of years ago.
They are then approximately frozen into the
Hubble flow. Though clustering is still going
on, we shall be cavalier and look at the
equivalent of Eq. 5 for this modified situation.
That is, we look at the steady-state version of
Eq. 10, NI: = ~n NI:_l. In the case of a geo-
metrical cascade, we get the solution Eq. 7
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again, with the condition Eq. 9. But this time,
for the dimension derived from the size dis-
tribution, we get d = 3a/(a + 1) instead of
Eq.8.

According as f3 is greater or less than
unity, we have a cascade or an inverse cas-
cade. That is, either big objects spawn smaller
ones, or small ones gather together to make
bigger ones. Both possibilities have been con-
sidered for galaxy formation, but the ap-
pearance of f3 in the size distribution Nn (In)
may help settle this matter by observational
means. Unfortunately, the ripple in the sizes
implied by the periodic nature of'l1 is hard to
detect without abundant and accurate data,
and that is why it is so little discussed. But de
Vaucouleurs (32) has suggested that a size
ripple indeed exists in the clustering of
galaxies. His interpretation of the observed
clustering of galaxies is interesting, and it sug-
gests a value of f3 in excess of unity. If that is
correct, it implies that a direct cascade is
responsible for the cosmic clustering. This
naturally needs confirmation, but already we
see how observations together with the new
developments in mathematical thinking may
lead us to some significant astrophysical con-
clusions, if we can solve the calibration prob-
lems. In perceiving evidence of a size ripple in
the galaxy distribution, de Vaucouleurs has, in
effect, descried an indication of the existence
of the cosmic voids (14).

Even more can be learned from compar-
ing Eq. 7 to observations. If the hierarchical
arrangement of galaxies is gravitational in
origin, then we can say something about the
possible values of a. Those values are model
dependent and may be different according as
the universe is closed or open. In particular,

d
a=3_d' (11)

Hence the clustering dimension, d,will give us
rather direct information on global cosmic
properties.

Although this is the simplest possible kind
of theory, it serves our purpose well, for it
brings out nicely how parameters of the dis-
tribution of galaxies in space actually can
emerge explicitly from theoretical calcula-
tions. Next, we want to explain how one goes
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about getting such parameters, especially the
dimension. We begin that task by reviewing
some background on statistical physics.

Statistical Tools and Methods

We have spoken of sets of points that can be
observed in astronomy such as the points in
which the solar magnetic field pierces the
solar surface or the waygalaxies lie in space at
fixed time. We need ways to characterize such
sets of points, both to describe the flow fields
that lie behind their arrangements and to test
theories that we hope will bear on such ques-
tions. If we know too little about such details,
we can fall back on a less detailed kind of
discussion, as in "Cosmic Cascades," pages
200-204, and use some statistical property of
the sets such as the distribution of cluster
sizes. In simple cases, a statistical distribution
of points may be characterized by one or two
parameters, including the dimension. In fact,
there are many statistical quantities that have
been used to extract dimensions from cosmic
fractals. In this chapter, we introduce some of
the main statistical descriptors of fractal sets
that maybe distilled down into the dimensions
of the sets, along with one or two other param-
eters such as the period ofW.

To describe some of the statistical meth-
ods that may have use in cosmic applications,
we shall suppose that the basic notion of a
space of dimension D is already intuitively
plain when D is an integer. We shall consider
a set of points such as idealized galaxies, em-
bedded in such a space of integral dimension
D. When the set is generated numerically or
observed, the total number of points in the set,
J, is finite; ideally, J is very large. For con-
vience, we can label the points by an index,j =
1, 2, ... , J. The data of the problem are the
coordinates, rj. in the space to which the J
points belong. We shall assume that the em-
bedding space is Euclidean and the coor-
dinates are Cartesian.

When dealing with a set of points such as
one pictures for the atoms in a gas or liquid,
one of the first quantities that one tries to
determine is the density. This may at first

seem a simple thing to work with, but it be-
comes elusive in lacunar sets such as we are
now discussing. In these cases we have a prob-
lem underlined in cosmology by de Vau-
couleurs (32) almost twenty years ago: "What
precisely do we mean by average density?
What is the evidence to support the notion
that a mean density can be defmed?" In short,
we shall have to watch out. We shall simply use
physical intuition to avoid the pitfalls of this
topic, for we cannot here enter into the math-
ematics called measure theory that is ap-
propriate to the general discussion. [For an
intermediate approach, see (16).]

Thus forewarned, we draw a spherical
surface of radius Aaround any point in the set.
This spherical surface is called SD-l, in our
space of integral dimension D. (This space is
called RD.) Following current usage, we shall
refer to the interior of the sphere as a ball. It is
useful to make this distinction between the
spherical surface and its interior, though it is
not always done in ordinary scientific discus-
sion when the meaning is clear from the con-
text. We let V (A) be the volume of the ball of
radius Awhose surface is SD-l.

Now, to defme the number density func-
tion n(1)(r) we count the number of points in
the ball centered on the point at r. Designate
that number N (A). For a continuous medium,
we would define the density n(l)(r) as the
small-Alimit of N (A)N(A). The awkwardness
in this is like the one we face in defining the
density of a real fluid composed of atoms. In
that case, as here, we dare not take the limit of
Agoing all the way to zero, when N(A) is not
large. For the fractal sets that we are 'dealing
with in the cosmological case, the inhomo-
geneity on all scales is so great that n(1)(r) is
an even more awkward quantity to deal with.
Because of the voids in the galaxy distribution
(14), this definition is not only sensitive to A,
the radius of the ball; n(l) also depends on r,
even for a statistically homogenous system.
This is what led Pietronero (22) to suggest the
introduction of other statistical quantities into
the description of the galaxy distribution.

Just as n(1)(r) gives the density of points
at r, there is a function n(2) (r", r'), which gives
the density ofpairs of points separated by A =

--



r' - r". To get n(2) (r, r + ~), suppose that
there is already a point in the set at r. Then,
n(2)(r, r + ~) is the number of points whose
displacement vector from r lies inside a
sphere of (small) radius d, centered on r + ~,
divided by the volume within the sphere of
radius d, and multiplied by the density at r.

As in statistical physics, we define the pair
distribution function i through the relation

n(2) (r', r") = n(I)(r') n(l) (r") i (r', r"- r'). (12)

If no point in the set is special, we may assume
that the pair distribution function has this
form:

i (r', r" - r') = g (r"- r'). (13)

The density at r", given that a point is already
at r', is therefore n(I)(r")g(r" - r').

We have already said that the idea that no
points are special is risky for complicated dis-
tributions of points. A point at the edge of a
large void may be different than other points
in some ways. But now, we have pushed our
use of the ideas of homogeneity back one level
to the relations between pairs of points, and
we shall see where this gets us. It is reasonable
to adopt the convenience of choosing a par-
ticular origin, at r', for example. Then the con-
ditional density becomes n(I)(r") g (r") and
Eq.12 becomes

n(l) (r") g (r") = n(2)(O,r")
n(I)(O)

In the same spirit, let us consider the sets
in which there are, on average, no preferred
directions. We may then assume that the de-
pendencies in this expression do not involve
angles. Hence there is a function I'(r) such
that

n(l) (r) s (r) = f(r),
where r is the magnitude of r. The function r is
equal to that introduced by Pietronero (22),
albeit defined slightly differently. I' may be
used to define a dimension of a set of points,
as we shall see in "Dimension," page 206. But
other, more popular, statistical moments have
been widely used.

The correlation is a very frequently stud-
ied object in all sorts of statistical investiga-
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tions. This is a standard quantity defined, for
example, by Peebles (21) for cosmological
purposes. In the study of fractals, the related
correlation integral C(r) is used by
Grassberger and Procaccia (8), defined as the

lim J-2 . [number of pairs of points (i,j)],
] -+ 00

such that the separations between the mem-
bers of each pair, Irj-rj I, is less than r. They
call C an integral because it is the integral over
the ball of radius r of the correlation itself. We
mention this as an intuitive way to think about
the correlation, whose usual defmition may
seem less vivid. In statistical physics, this
definition is

(14)

~(r) = n(2\r', r") -1 (16)
n(I)(r') n(I)(r") ,

where r = Ir' - r' I. But this brings out the
relation to I', whose use in the study of fractals
has been urged by Pietronero.

Finally, we conclude this small selection
of statistical tools for analyzing sets of points
by mentioning the ways that cosmologists have
confronted the problem of limited data
samples in calculating statistical quantities
like ~. A good example is provided by a
scheme described in Peebles' book (21) on
cosmology; this scheme is used in many dis-
cussions of galaxy distributions. A brief dis-
cussion may help in assessing the results under
discussion.

To illustrate the use of this. amelioration
scheme, we describe it for the pair correlation
determination. The first step, of course, is to
derive the distances between the J2 pairs of
points in the set. Let N}2) be the number of

such pairs with separation in the interval
[r -fir, r + dr]. Points too close to the edge of
the set may be excluded (6). Next generate a
random set with the same boundaries and the
same number of points as in the data set. If we
combine this set with the data, we can calcu-
late the distance between a randomly selected
set of J2 pairs in the combined set. In doing
this, we always choose the first point from the
data and the second from the random set. Let
M}2) be the number of such pairs, with separa-

tion in the interval [r - dr, r + dr]. We then

(15)
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calculate

N(2)
:::(r) = (2) -1.

Mr

This quantity is the ameliorated pair correla-
tion function.

We may use similar amelioration methods
to determine a pair distribution function. A
fiducial random background set may be used
as described. We are then able to calculate

r(r) = no [1 + :::(r)].

where no is the integral of rover the ball of
radiusr.

Another way to reduce the problem
caused by finite data sets has been to use
coarse-graining. For example, some workers
use a coarse-grained I' defined by (6)

r" (r) =v-If r(r')dr', (19)
v

where V is the volume within a sphere of
radius r. But problems remain, whether we use
I'(r) or r'(r); the finite sets that arise from
observations present practical difficulties.

Perhaps, methods like these have been
used because the occurrence of significant
fluctuations in plots of various statistical mo-
ments vs. r were thought to be mainly a result
of insufficient data samples. The amelioration
methods tend to wipe out such fluctuations.
Although small samples may contain spurious
fluctuations, real fluctuations are also inherent
to the statistical moments of fractal sets. As we
saw in "Cosmic Cascades," the ripples in such
moments contain valuable information.
Hence, we should stress that in describing
these amelioration methods we are not ad-
vocating them. Indeed, we hope that soon
there may be sufficient cosmological data to
permit the dropping of amelioration. If we
sometimes will use it here, it is to facilitate
comparison with current work in cosmology.

Dimension

In the early stages of development of a subject,
one prefers to paint with a broad brush. So it is
useful to try to characterize the statistical dis-

(17)

tributions of points by a few parameters such
as their dimensions. There is more than one
kind of dimension that can be associated with
a set of points, but for the simplest sets, the
various dimensions that are conventionally
defined are normally not very different in
value. The evidence is that the cosmic fractals
are not too far from this simplest state, so we
need not go into the finer points of dimension
determination. Nevertheless, it is best to begin
with the most direct method, though it may
not be the easiest one to carry out.

To describe some of the dimensions that
may have use in cosmic applications, we con-
tinue to suppose that our set is embedded in a
space of integral dimension D. We shall re-
serve the symbol D to denote the dimension of
the set of points under study such as the points
in a surface of section.

An operational definition of the dimen-
sion of the set of J points, assuming the J is as
large as is required, is provided by the follow-
ing simple procedure. We recall that N(A) is
the number of points contained in SD-l, the
surface of the sphere in D dimensions, and
introduce the quantity (N)(A), which is the
average of N over the points in the set. If we
measure this quantity over a good range of
values of A, we can make a reasonable deter-
mination of the dependence of (N) on A. For
these results, we make a plot of log (N) vs. log
A. We shall call the slope of the line that best
fits this plot (allowing for the intrinsic ripples)
the fractal dimension of the set.

This prescription makes the notion of
fractal dimension operational, but it may not
provide a very convenient way to determine
the dimension. First of all, there are pitfalls
when we deal with the limitations of real data,
as detailed in the various books on the subject.
In particular, the plot is limited in the avail-
able scales of A, above by the size of the system
and below by the limit of resolution. Further-
more, the best fit is normally not a line, but a
line with superposed wiggles, as we can an-
ticipate from the discussion of "Cosmic Cas-
cades," pages 200-204. Inevitably, other defi-
nitions of dimension have been proposed, and
these are based on asymptotic properties of
various statistical moments of sets of points.

(18)



After all, the quantity (N) is a statistical mo-
ment on the set, and there is no reason why
dimensions based on any other moments, such
as those described in "Statistical Tools and
Methods," pages 204--206, could not be de-
fmed. Renyi actually did just that and Halsey
et al. (10) have described the usefulness of
some of these dimensions and their interrela-
tions. In recent years, much attention has been
devoted to the distinction among these gen-
eralized dimensions for inhomogeneous frac-
tal sets, or multi-fractals.

We may also base the defmition of dimen-
sion on the conditional density function, r.
This quantity has the units of number density.
So the quantity JV(r) r (r)dor is analogous to

the number of points in the ball. For small r,
we may expect it to grow like r to a power; that
power could be used to defme a dimension.
However, an advantage in using a moment like
r to define a dimension is that we avoid doing
the integral. For power laws, the integration
simply raises the exponent by D. So it is
natural to define a dimension based upon r in
this way:

Dr = 0 -lim~. (20)
r-+O logr

In evaluating Df' we have to make al-
lowances for the lack of resolution, owing to
the fmiteness of the data sample. In practical
terms, we should think of I' as having an ex-
pansion like

logr = - (0 - D) logr + . . . (21)

for small r. The dots stand for higher terms. in
the expansion. We expect the first of such
higher terms to describe the ripple associated
with hierarchical processes (27,28) or fluctua-
tions associated with the finite data sample.
For self-similar structures we can readily see
why, in the following manner.

Self-similarity of a structure implies that
statistical moments are scale invariant. If C(r)
is any such moment, we take self-similarity to
mean that there are constants A and B such
that

C(r) = AC(B r).

This functional relation has the solution
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C(r) = 1p (logr) r -Dc, (23)

where Dc = log A/log B and 'P, like its
counterpart in Eq. 7, is an arbitrary function
satisfying'P (log r) = 'P (log r + log B). In this
case, there is only one higher term in the ex-
pansion Eq. 21, and that is the ripple we have
already discussed (28). However, for real data
sets, there will be, in effect, corrections be-
cause of sampling errors, system boundaries,
or systematic inhomogenities, and these may
obscure the lacunarity of the set. In smoothing
the data, we tend to obliterate such sources of
error, but we eliminate the lacunarity ripple as
well.

We may also defme dimensions based on
the various correlations, and the pair correla-
tion is the one most commonly employed. It
may appear from Eq. 18 that a dimension
determined from the slope of a log E-Iog r plot
would not be different from Df> in the limit of
small r. However, we find that, in practice, the
power law dependence of E may differ sig-
nificantly from that of r. To make the com-
parison, we expand the correlation function
for small r in terms of log r. For the amelio-
rated version, this gives and expression like

log:::=-ylogr+"', (24)

where y is a constant that is characteristic of
the set. We then define the correlation dimen-
sion as

D::: = 0 -y. (25)

(22)

This is the quantity v defmed by Grassberger
and Procaccia (8).

We shall be comparing the values of these
two dimensions for the cosmic clustering. Of
course, it is always uncomfortable to compare
just two methods when there is a chance that
they may disagree. To help in deciding be-
tween them, we first try them on sets for which
we know the fractal dimensions on theoretical
grounds. And, in the belt and suspenders
mode, we shall also use a third functional on
fractal sets described by Badii and Politi (1).
Following them, we select a subset from the
data. From each point in this subset, we find
the distances P to K of the remaining points.
Let the minimum among these distances be
called Pmin' Badii and Politi show that the
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quantity Dp in

1 (26)
Pmin(K) = const, x K-o;

gives a good approximation to D. By varying
K, one can therefore get an estimate of D.

We now turn to the determination of
these three dimensions in a few specific cases.
We find that these are more straightforward
to obtain than d of "Cosmic Cascades," Eq. 8.
But, in the cosmic context, we shall mention
some possible values for d also.

Theoretical Examples

To illustrate and compare the dimensions, we
find them for two theoretical fractal sets in this
section. In each case, the fractal dimension is
known on theoretical grounds, and this is use-
ful in assessing the methods. We shall, how-
ever, not rederive the theoretical results for
the fractal dimensions since they are ex-
plained in books (2).

(i) We start with an interval of length
unity and mark the end points and the mid-
point. Then we make two copies of this inter-
val and scale them to a new length, G < 1. We
attach these two copies onto the original inter-
val by attaching the midpoint of each to one of
the end points of the original unit interval.
Next we pivot each secondary with respect to
the primary interval to some selected value e.
Then we make four scaled copies of the
second generation, each with length 02. We
attach these by their midpoints to the four free
endpoints and set the angles at the contact
points all equal to e. We continue this to the
nth generation, where n is very large. The
2'1-1 sticks of length d'-1 will have 2n free
end points. These points are the model fractal.
[A realization in a three dimensional space is
described in (27).]

The only differences between the present
construction a la Barnsley (2) and that of
Groth et al. (9) are that the latter chose the
angles at the attachment at random and
worked in three dimensions. In Fig. 2, we show
such a set for (constant) e = 22S and G =

0.7. The density of points in the set is qualita-
tively indicated as if the points were in-

dividually bright. A bright region in the pic-
ture is very dense and a dark one is void. Two
qualitative features of this set emerge on in-
spection: the presence of voids (or lacunae)
and the filamentary distribution of the highest
density of points. In these respects, the set
resembles the observed distribution of galax-
ies in producing both voids and dense fila-
ments. Such features may be caused mecha-
nistically as in some theories, but they are a
natural feature of a hierarchical universe (32).

Coming back to this particular fractal set,
we recall that, on theoretical grounds, its frac-
tal dimension is

D = In 2Iln1:.
a'

(27)

provided that the set is totally disconnected
(2). Qualitatively, we may say that the set is
disconnected when the different parts pro-
duced by the generating algorithm do not
overlap. It is not hard to see that Eq. 27 fol-
lows on applying the ansatz Eq. 22 to N(r), on
which the definition of fractal dimension is
based. When the parts of the fractal set begin
to overlap, we expect Eq. 22 to fail, and so too
will Eq. 27. The formal definition of a con-
nected fractal, based on such an idea of over-
lap, can be found in Barnsley's book (2). A
mathematical discussion of these points is
given in (4).

Notice that although D does not explicitly
depend on e, the largest G for which Eq. 27
holds does depend on e. It is not hard to work
out that for e = 0, Gmax = 112 and for

e = i,Gmax = .Jr. We illustrate the transition

from a disconnected to a connected region in
Fig. 3, where we fix e = 0040 and vary G. Clear-
ly, as G increases, we go from unconnected to
totally connected cases.

When we are within the totally discon-
nected region of a fractal, and for some con-
nected cases as well, then different values of e
will correspond to different lacunarities, as in-
dicated by the appearance of voids in these
sets. We can see this in Fig. 4, where we draw
just a portion of the relevant (x, y) plane and
use a specific G = 0.693 with two different
values of e. We see that sets with the same
dimension give quite distinct maps for the two
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Fig. 2. The set of points generated by the map described in the text for e = 22.5". The black spots are voids where the
map generates no points unless one is introduced initially, in which case, a regular orbit arises.

different lacunarities.
We give the results of dimension calcula-

tions in this case for a = 0.636, and () = 0.40
rad, which have been used in Fig. 3(1). As can
be seen in the figure, this case is totally discon-
nected and Eq. 27 gives D = 1.532.We took
7990 points and obtained these values:

0'3 = 1.51 ± 0.01

Or = 1.56 ± 0.01

Op = 1.59 ± 0.03

(ii) Another well-studied set for which we
know the fractal dimension is an equilateral
triangular Sierpinski gasket. To construct it,
we pick a point inside the triangle. Then we
select one vertex at random and mark the
point midway between the chosen point and
the selected vertex. This midpoint becomes
the new chosen point. Again, we select a ver-
tex at random and find the point halfway be-
tween it and the second interior point. This
process is continued, and the points generated



210 / Thieberger, Spiegel & Smith

-0.5 0.5 '.5
x

3

x

2

-0.5-0.5 0.5 "5 2.5

x
4

x

Fig. 3. Transition from a disconnected to a connected fractal set for the set described in the text with 8 ,,; 0.4 rad and
for (1) a = 0.636, (2) a = 0.665, (3) a = 0.700, (4) a = 0.750.

in this way form the set shown in Fig. SA,
where we have discarded the first dozen
points. The theoretical dimension of this ob-
ject is D = In 3/ln 2, close to 1.58 (17).

The three dimensions for 7500 points are:

Os = 1.37 ± 0.02

Or = 1.62 ± 0.02

Op = 1.60 ± 0.03

We see that, in this case, D,:, is noticeably
different from Dr, which is close to the known
fractal dimension. This is consistent with our
experience in such tests: Dr is typically close
to D for self-similar sets, with Dp almost as
close, but Ds is sometimes well off D. Next, we
turn to the case of the galaxy distribution,
where these effects are more pronounced. But
in passing, let us mention that the Sierpinski
construction need not be restricted to tri-
angles.

The distribution of Fig. 5B is a generaliza-
tion of the Sierpinski gasket to the case where
it is generated by the vertices of a regular pen-
tagon. As in the triangular case, the image of a
given point is the point halfway between a ran-
domly chosen one of the five vertices. The
mapping is continued, and a fractal set is
generated (actually, it is a so-called fat frac-
tal). This object shows ripples in its statistics.
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Galaxies on the Sky

For many years, the positions of the galaxies
on the celestial sphere have been measured by
astronomers. This has never been an easy task.
Because of our own position within a spiral
galaxy, the distribution of galaxies on the
celestial sphere is given an apparent large-
scale non uniformity. But if we restrict our at-
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Fig. 4. The map for a = 0.693 with two different lacunarities: (1) 8 = 0.523, with the whole range shown; (2) 8 = 0.785
with the whole range shown; (3) 8 = 0523, with restricted range; (4) 8 = 0.785with restricted range.

tention to selected regions of the sky, informa-
tion bearing on the true current distribution of
these markers in the cosmic flow may be
derived. The story is well described in the
books by Peebles who, with various col-
laborators, has been studying the statistics of
the measured galaxy coordinates on the celes-
tial sphere. These coordinates are simply two
angles on S2, in the language we have been
using. So when Peebles and eo-workers derive
correlations of the second and higher order,
the separation variable is no longer linear dis-
tance, but an angle on the sky called tJ. To
keep this in mind, we use the cosmologist's
designation of w for the pair correlation.
(However, we do not use a special notation for
r when using angular coordinates.)

Determinations of the plot of log w vs. log
tJ have revealed a nonintegral slope. This has
led Mandelbrot (16) to suggest that the gal-

axies, regarded as points, form a fractal set.
This observation nicely focuses our thinking
about hierarchical universes and the cascade
that lies behind the galaxy distribution. The
implied task is to derive the basic properties of
the cosmic fractal. Fortunately, Peebles has
long since begun this task, so we can follow his
lead. Here we undertake the limited goal of
describing how to get dimensions for cosmic
fractals. In doing this, we treat the coordinates
of the galaxies on the sky as given columns of
numbers and, with regret, omit the story of
how difficult they are to obtain and how much
they have improved in recent decades.

There are several sets of measurements
that are relevant. To illustrate the determina-
tion of the dimensions of the cosmic fractal,
we use a set of coordinates compiled by a
group at the Nice Observatory led by A.
Bijaoui (25), who kindly provided us with their
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data in a convenient form. Although this set
has only about 7500 galaxies from a single
Palomar plate as yet, the high quality of the
measurements and the prospect of further
data of this kind make it worthwhile to expend
some effort on them.

The most extensive statistical studies use
the pair correlation w(~). It was early known
that the log-log plots of this function showed a ,
straight line portion for small ~ and a break to
a less simple behavior. The break is known as
the "knee" in this subject. Figure 6 is a plot of
log w vs. log ~ for the Nice data showing the
knee. The slope of the straight line portion of
the plot is called y and from these data we find
y = 0.88 ± 0.03. For the fit, the values of w(~),
between ~1 = 0.0001 rad and ~f = 0.006 rad
were used. For larger ~ we obtain the usual
picture of a breakdown of the fit due to a more
rapid decrease in w(~) (9).

The problem with the knee is that its loca-
tion changes with the size of the sample. This
has been recently studied with data from a
new position catalogue (7). We show some
values of ~f' the position of the knee, for
various data samples in Table 1; the rust two
values are from the quoted work and the third
comes from Fig. 6. Not only do the break

Fig. 5. (A)The Sierepinski triangle with 6000points. (8)
A pentagonal analogue of (A).

points or knees change with the sample size,
the slopes in the linear portion also differ
noticeably. Thus the measured dimension is
D=. = 2 -y, which clearly depends on the
sample size.

It was this uncomfortable dependence of
~f on sample size that led Pietronero to sug-
gest that r, the conditional density function,
might provide a more robust statistical object
to characterize galaxy positions. While the
work performed by him and his collaborators
seems to bear this out, the close connection
between I' and the pair correlation in Eq. 17
seemed to suggest that the dimensions Dr and
D=. would not differ by much. Indeed,
Pietronero called the slope of the correlation
function and "intrinsic quantity," and as-
sumed that it is not much affected by sample
size. On the other hand, it has been suspected
(32) that galaxy "clusters occasionally over-
lap," so, given the lesson of "Theoretical Ex-
amples," pages 208-210, we may expect that
this is not so.

The dimension that is normally accepted
for galaxies on the sky is obtained from the
correlations measured by Peebles and collab-
orators (9) from data in the Shane-Wirtanen
catalogue. Following the suggestion of Man-
delbrot, from their value of y, one gets a value
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add that, for the Nice data, we also get 0.71 0.015 6 (7)
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Fig. 6. Angularcorrelation to,using the catalogue of (26).

of about 1.2. The value we get from the Nice
data is

O=. = 1.12 ± 0.03. (28)

(We might have called this Dg, but the nota-
tion would have become too cumbersome.)

In Fig. 7 we show a plot of r(~) vs. ~.
From these results, we get Dr = 1.88 ± 0.01.
The values of r(~)used for this fit were from
the domain from ~i = 0.0001 rad to ~f = 0.015
rad. The wider range of usable ~ supports
Pietronero's (22) proposal to use I' rather
than 3. However, we should mention that
changing ~f' or using r·(~)instead of r(~),
results in small differences that are larger than
the statistical error. Therefore, we prefer a
more conservative error estimate and write

Or + 1.88 ± 0.03.

Op = 1.89.
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CONDITIONAL DENSITY

Fig. 7. Conditional density, T, using the catalogue of (16).

The dimension of the set in Fig. 2 also has this
value.

We reach the evident conclusion that Dr
and D-;: are disparate. Table 1 indicates that
D=. inc~eases with increasing sample size. It is
not guaranteed that Dr will not change when
the sample size is increased, but the studies
done so far suggest that such a change will not
be substantial unless the region of the sky used
is unusual in some way. Completion of the
Nice study will provide the data needed to be
firm on this point. But the relation between cv
(or ~) and r make it unlikely that the dis-
crepancy could be due to physical causes like
the inhomogeneity of the cosmic fractal,

Wiedenmann and Atmanspacher (32),
whose recent study points to a discrepancy
such as we have found, attempt to reconcile
the two dimension values by associating them
to two different domains of ~. This view is
reminiscent of the interpretation that has been
placed on observations of the solar granula-
tion (24). In any case, in the appropriate
domain of~, they get Dr = 1.89, consistent
with our results, with data from the Zwicky
catalog.

Another recent cosmic dimension deter-
mination, for the Virgo cluster of galaxies (5),
leads to the high value of 1.98 ± 0.23. Of
course, this is a special region of the sky and
only 200 galaxies were used. However, the
clustering method employed gives a dim en-

(29)
Table 1. Values of~f, the position ofthe knee,
for selected data samples.

(30)
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sion in the spirit of d in "Cosmic Cascades,"
pages 200-204.

A question that must be probed more
deeply before we can make too much of all
this, is that of the actual dimensions of the
galaxy distribution in three-dimensional
space. We need to remember that, in most of
the statistical studies of the cosmic fractal, the
embedding dimension D is 2. To determine
what the effect of the projection onto the skyis
on the true dimension of the galactic set is a
difficult matter, since galaxies have a wide
range of intrinsic luminosities. The correction
will be positive, but we do not know its mag-
nitude. We can only surmise that the true
dimension in three-dimensional space is
greater than the value measured on the sky.
(We ignore cosmological corrections that are
likely to be quite small for existing data.)

Some hints about the three-dimensional
effects may be contained in the study of de
Vaucouleurs (32) who made reasonable as-
sumptions about the three-dimensional as-
pects of the objects under study in assessing
the data. His plot of the log of the mean den-
sity of a ball of radius r vs. log r, has the slope
-1.7. This implies a dimension 3-1.7 = 1.3.
Since de Vaucouleurs used a single particle
density, we infer a dimension compatible with
0-;::, conceivably marginally in excess of it be-
ca'"'i.seof the differences in D. On the same
page, he also gave a plot of what corresponds
to a plot of log Nn vs. log in, in the notation of
"Cosmic Cascades." The negative slope of
that curve is slightly in excess of 2-around
2.1. So there is also a result in reasonable
agreement with Of' slightly in excess of our
1.9. (There is even a third graph on the page
suggesting a lacunarity ripple.)

Obviously, without considerable further
measurement and discussion, no definite con-
clusions will be possible. But we do have
enough information to propose that the dif-
ference between Os and Or is significant and
is a result of the cosmic fractal being "con-
nected" (2) (de Vaucouleurs speaks of "inter-
locking" clusters). This effect is no doubt en-
hanced by projection effects. It would be
valuable if we could ultimately discern how

much of the observed cluster overlap is due to
projection and how much is of the nature of
the connectedness we encountered in the
study of theoretical fractals. Observations are
helping to unravel such effects (14).

The structure of inhomogeneous fractal
sets can be probed by studying differences
among the generalized (or Renyi) dimensions
(10). It may be possible in some cases to re-
move significant differences among dimen-
sions by retreating to higher embedding di-
mensions, D. Thus, one might conjecture that
inhomogeneous sets may be understood as
homogeneous sets projected from some high-
er dimensional space. The extent to which this
is possible seems at present unknown, but we
may suspect that similar possibilities for inter-
preting the difference between Or and Os
exist for the cosmic fractal. That is, the dif-
ference is in a sense physical and could result
in large measure from projection effects. In
that case, comparing 0'3 and Or may be of
some use in ongoing attempts to deduce statis-
tical information on three-dimensional dis-
tribution of galaxies. For now, however, we do
suggest that the fractal dimension associated
to the clustering of galaxies on the sky is rather
closer to 1.8 than to 1.2 and that it is the
former value that ought to be used in evaluat-
ing theoretical predictions such as those of
"Cosmic Cascades."

Conclusion

In its modern incarnation, chaos theory began
with the study of erratic, which is to say,
aperiodic and unpredictable behavior. We
now know a lot about how this sort of thing
can come out of equations of various kinds. In
many fields, including astrophysics, prac-
titioners are trying to decide how to use the
new understanding of these equations to un-
ravel some of their own problems. The aim is
to take observations of complex temporal
variability and to try to understand them in
terms of equations that are known to produce
aperiodicity. That part of the subject is
covered by other contributors to this volume



and inmany standard works on chaos. In brief,
the idea is to describe the variability of a sys-
tem by letting it move along a trajectory in a
space whose coordinates characterize the
state of the system. In certain cases, where the
data cover a number of cycles of the system
adequately, it has been possible to extract
such trajectories by ingenious methods. Then,
one can hope to get some idea of the kind of
mathematical model that might generate a
trajectory that resembles the one recon-
structed from the observations. At the very
least, one may hope to discover how many
state variables are required to permit the pre-
diction of the future of the system in principle.

When the number of variables, call it F,
needed for complete predictability turns out
to be finite, we have a deterministic system. In
fact, for a given F, the prediction is possible
for only a limited time in practice, and that
time decreases with increasing F, tending to
be effectively zero at some upper, critical
value of F. The critical value, Fc, will depend
on existing computational means. When it is
quite large, predictability becomes a hopeless
prospect, as people have realized for cen-
turies.

Once F comes near to that critical value,
and sometimes even sooner, we give up trying
to predict in detail, use statistical methods in-
stead, and call the system stochastic. In this
uncomfortable situation we study systemswith
conveniently small F, replacing the missing
variables by something called noise. This
process has worked well in a number of
problems, such as continuum physics. The
transition between the two situations is dis-
cussed in a number of standard works and by
others in this symposium.

When the effective F is quite small, we
can make detailed studies and develop a deep
understanding of the trajectories of the sys-
tem, even to the point of grasping the topology
of the orbits. In these circumstances, the issue
of predictability in practice can now be
probed. In the ideal situation, we can come to
something as clear as the flow of Eq. 1. But
sometimes, without making us pass through
this rite of unraveling an erratic time signal,
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nature presents us with flows or trajectories
that are revealing and fundamental. In the two
cases we have discussed most here, we are led
directly to some kinds of Poincare maps or
surfaces of section. Of course there may be
other examples that are so simple that we
hardly think in these terms. But when there is
a wealth of structure, our interest perks up.
Even then, we might not think in terms of Eq.
1 in a case like the galaxy distribution were it
not for the sensitive awareness engendered by
the excitement over chaos theory.

We have written much more about the
galaxy distribution than about the other more
evident example, the sunspot topology, be-
cause we know much less about the galaxy
distribution. Naturally, in that case, it is easier
to be expansive. de Vaucouleurs (32) has cau-
tioned us with this quote from Otto Struve:
"...the observer knows too many facts to be
satisfied with any theory." Cosmic data are,
however, beginning to accumulate, and our
outlook will surely be changing rapidly.

As we have seen, it is not at all obvious
what to do with the time slice of the cosmic
flow that we do have at our disposal. We have
attempted to describe some of the available
tools and the issues involved in their use. We
have concluded, with some surprise, that even
the currently accepted value of the fractal
dimension of the distribution of galaxies has to
be reexamined; indeed, we think it has to be
seriously revised. But the truth is, that this was
not the reason for our delving into the statis-
tics of galaxy distributions.

We set out in this study to look for the
lacunarity ripple in the statistics that we have
repeatedly mentioned. It is not surprising that
we have not detected it with the low-order
statistics of quantities like r or ~. It is quite
clear that to find the scaling factor f3 we need
to go to higher moments of the galaxydistribu-
tion (27). To do that we need more data.
There can be no doubt that they are forthcom-
ing, and we can then hope to proceed along
the lines hinted at in "Cosmic Cascades."

In these circumstances, it is not ap-
propriate for us to start discussing the theo-
retical consequences of lower order statistics,
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until some more is known of the higher terms
in the developments. In "Cosmic Cascades,"
we merely gave a sample of the most primitive
of possible theories, with no mechanistic as-
pects, just to give an idea of how the lore of the
fractal may begin to help us understand the
flow that propels our part of the universe. We
have not, and could not, give any indication of
the diversity of opinion on the theoretical side.
We did, however, emphasize that many of the
results that theories may claim to produce are
generic properties of any sensible models and
not to be fussed over unduly. We hope that no
one will overlook this message or take it amiss.

But what of the sun, which is reaching a
maximum of activity as we finish this report?
We have introduced the notion (29) that when
you cut open any vector field and see what
looks like the innards of a coaxial cable, you
are looking at the surface of section of the
equivalent flow.This vision leads to the under-
standing that spots and a fractal structure are
normal for most magnetic fields. In this case,
the observations are abundant, and the sort of
issue that hampers the galaxian discussion
ought not to pose a real problem. The real
issue is how to think about such problems
theoretically. Normally, one tries to attack this
by leading the magnetic field through the full
dance of the equations of magnetofluid-
dynamics. But there may be simpler steps to
take as hinted in "Cosmic Cascades."

In oceanography and planetary sciences,
the subject of vortex merger (15) has intrigued
all who encountered it. It is not understood in
detail (and it has been detailed only in two
dimensions), but it does seem to be an inverse
cascade process par excellence. Can we make a
Kolmogorov-Ford-Kida type of model for this
process? Can we do something similar for the
spots on the sun that are mathematical ana-
logues of vortices? These are the issues that
we think are of interest in understanding the
sunspot morphology. They loom large now
that our minds have been opened to these
prospects by thinking about the implications
of chaos for astrophysics. Indeed, the main
impact of that subject is the tremendous in-
crease in our mental arsenal for formulating

questions that previously seemed too complex
to express. That perhaps is the main message
of this volume.
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