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The combined influences of boundary effects at large scales and nonzero nearest neighbor separations at small scales are used
to compute intrinsic limits on the minimum size of a data set required for calculation of scaling exponents. A lower bound on the
number of points required for a reliable estimation of the correlation exponent is given in terms of the dimension of the object
and the desired accuracy. A method of estimating the correlation integral computed from a finite sample of a white noise signal is

given.

Since Richardson’s early attempts to quantify the
complexity of coastlines and natural boundaries [1],
a variety of methods have been devised for com-
puting scaling exponents to describe complex distri-
butions. The method most commonly employed
today is the Grassberger—Procaccia algorithm (GPA)
[2,3], which estimates the correlation exponent, v,
from a data set. In this Letter, we determine an in-
trinsic limit to the accuracy of calculations which
consider the global scaling of a statistic on an ob-
ject #'. Specifically, the number of points required to
estimate the correlation exponent of a nonlacunar
set to within 5% of its true value increases at least as
fast as

Npmin 242M (1)

where M is the greatest integer less than the dimen-
sion of the set. It is stressed that N, is a necessary
bound on the amount of data required for a reliable
calculation of v. Many data sets in published work
do not satisfy even this requirement, and, in many
circumstances, more data is required.

Correlation exponent. First we consider the prob-
lem of determining the correlation exponent of an

#1 Throughout this Letter the term object will signify the under-
lying geometric object (e.g..strange attractor or physical
boundary) while a data set consisting of a finite collection of
points which approximate an object will be referred to as a set
or a reconstruction.

object in RM. Consider a set of points x; (i=1, 2, 3,
..., N) distributed over the object. The correlation
integral, C,(/), is defined as [2,3]

N N
C(h=lim (1/N?) ¥ § 6(=lx;1),  (2)

i=l j=i

where N is the number of points in the set, x;; is the
vector separating the ith and jth points, and & is the
Heaviside function which is equal to zero for nega-
tive argument and one otherwise. For convenience,
we shall use the supremum norm, so that the mag-
nitude of a vector is the maximum of its cartesian
components. This choice of norm is also convenient
in numerical computations. As / approaches zero, we
expect the correlation integral to have the form [4,5]

GW(O)=x(OI, (3)

where v is called the correlation exponent and is equal
to the generalized Renyi dimension 4, [4,21] and
x(/) is a possibly oscillatory O(1) function of / which
reflects the lacunarity of the set [5,18-20]. The
structure of (/) is generated by sparse or empty re-

gions (lacunae) in the object. In the correlation in-

tegral, this oscillatory structure is most clearly
expressed in strictly self-similar sets where x(/) is
strictly periodic in log(/).

Operationally, it is useful to define a function
p(!l) through
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5oy dlog Go())
Ful= dlog/ (4)

where C,(/), and thus #(/), is computed from a data
set consisting of a finite number of points. The struc-
ture of #(/) is determined by both the structure of
the object and observational limits such as the noise
level and the amount of data. When calculated from
a large but finite number of data points, (/) dis-
plays four regions of different behavior [8,9] as
shown in fig. 1. At length scales less than the mean
nearest neighbor distance, /,,, the set scales as a col-
lection of isolated points and 7 (/) tends to zero (re-
gion I). Next in increasing /, is a region dominated
by any noise in the data (region II). Here #(/) ap-
proaches (but is less than) the dimension of the
embedding space, independent of the true value of
v of the object. It is in the next region, region III
(often called the plateau), that #(/) approximates v.
In general, 7 (/) fluctuates about v due to x(/); if (/)
is constant (i.e. the set is nonlacunar), then there
may exist a plateau of slowly decreasing #(/). The

2.5

log2(1)

Fig. 1. Theoretical and observed correlation exponent functions
computed with a data set describing a line (v=1) consisting of
N=2'% points where pseudo-random noise (uniformly distrib-
uted on +2~°%) has been added to each point. In this case M =2,
r=1.5; v(l) is shown with the self-pairs included (solid curve)
and omitted (dotted ), the dashed curve represents 7(/). All log-
arithms are taken base 2.
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estimated correlation exponent, V., is computed
from #(/) in this region; for cases in which we are
inieresied in determining the largest valuc of vy
which should be expected for a given N, v, will be
taken as the maximum of #(/) in this region. Region
I11 is followed by a more rapid transition as #(/) de-
creases to zero for / greater than the diameter of the
set (region IV). The unit of length is chosen such
that the diameter of the set is equal to one. By es-
timating the width of the outermost and innermost
transition zones we compute a limit on the number
of points required for region III to be observable.

For finite data sets, it is essential that either the
double sum of the correlation integral is defined by
eq. (1) including the i=j terms (hereafter called self-
pairs) or /., is calculated explicitly. This is required
in order to distinguish the scaling of true noise at
small / from fluctuations due to finite N. When the
self-pair terms are omitted, log C,(/) is not bounded
as [ goes to zero; fluctuations in log C,(/) arise due
to the sparsity of points with neighbors closer than
1. Steep descents in log C,(/) result in large values
of #(/) (which may exceed M) and may be misin-
terpreted as being characteristic of the noise region.
Recently, Grassberger [22] has determined finite
sample corrections which extract information from
these length scales when computing the spectrum of
Renyi dimensions. Alternatively, when the i=j terms
are included in computing d, the nearest neighbor
statistics are reflected in the transition from region
I to region II (computed below).

Hypercubes. In the case of an ideal, noise free data
set, #(/) will differ from v due to the lacunarity of
the object and the finite diameter of the object (edge
effects). Guckenheimer [10] noted that edge effects
might bias the calculation of scaling exponents; we
isolate this effect by considering a uniformly covered
hyper-cube of dimension M. Hyper-cubes are non-
lacunar (x(/) is constant), and the correlation in-
tegral may be computed in the limit of infinite N.
From this computation we determine a function
7(/) which characterizes the behavior of # (/) at large
scales.

In the limit of infinite N, the correlation integral
is ‘equal to the probability that the distance separat-
ing two randomly chosen elements, x and y, is less
than /. For the one dimensional hyper-cube (the unit
interval) this probability is
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P(lx—y| <) =12=1). (5)

For an M-dimensional cube, each of the M elements
of the separation vector |x—y| are independent,
hence

P(lx—y|<D)=[P(|x=yl<D]™. (6)

Thus the correlation integral of an M-dimensional
cube is

G=[2-HM (7)
and
r(=M[1-1/(2=])]. (8)

Note that 7(/) decreases with increasing / and always
underestimates v.

We now relate the accuracy of an estimate of v
(which should, of course, equal M) to the number
of points in the data set by defining a quality factor,
0, and requiring

7()=Q0v, 0<Q<1. (9)

Solving eq. (8) for / then provides an outer limit /...,
such that for />/,,,, #(/) does not provide a suffi-
ciently accurate estimate of v.

Estimating v from C, (/) requires a knowledge of
C, (1) over a range of /< /,,, denote this range by R
(where R=/../lmin=>1). Three factors govern the
choice of R. The first factor is the smallest range suf-
ficient to estimate the slope of log C,(/), call this
range r. The second is the minimum acceptable width
of region III (the “plateau”);if R is equal to one this
region consists of only a point. Finally, in lacunar
sets there is no flat plateau, the value of #(/) will
fluctuate and R must be chosen sufficiently large to
identify this behavior. Bearing these constraints in
mind, we solve for /;,

2(1-90)
R(2-Q)°

Resolving an M-dimensional hyper-cube to a scale
Imin Tequires at least

(10)

lmin =

MminZ(l/lmin)M (11)

points. Thus a lower bound on the number of points
required for an estimate of v to exceed a fraction Q
of the true value is
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R(2—Q)>M
2(1-0)) -

Assuming Q=0.95 and R=4 yields eq. (1).

When a fixed number of pseudo-random points
are embedded in spaces of increasing M, the ob-
served decrease in the maximum value of ¥(/) is
faster than that predicted from eqgs. (8) and (11).
One reason for this is the nonzero separation of
nearest neighbors; considering the transition from
point-like scaling provides an estimate of 7#(/) at
small length scales, the function v(/), which we now
calculate under the assumption of a uniform density.

At small scales, the number of points within a dis-
tance / of a given point X (far from any boundary)
is

k()=pV())+1, (13)

where p is the density of points, V' (/) is the volume
within a distance / and the addend of unity repre-
sents the point at X. At length scales smaller than /,,,,

the quantization of k(/) becomes important. Assum-
ing a uniform density, p=N, we have

k()=NQDM+1, [, ~I<]1. (14)

Nmm>( (12)

The correlation integral is the normalized sum over
all points, or

G =35 IN?QDY+N], (15)
which implies

v(l)= N2(2hM ., (16)

1+N2(20)M
v(!) is an upper bound on #(/) in the sense that it
is limited only by the nonzero /,, and is not sensitive
to edge effects. Now as v(/) assumes a zero /,, and
places an upper bound on #(/) due to the presence
of boundaries, and these functions are, respectively,
nondecreasing and nonincreasing, an upper bound
on the observable values of #(/) occurs at their in-
tersection. With the above assumption of a uniform
density, a stronger bound on the number of points
needed to observe 7 (/) greater than Qv is found by
requiring that the intersection of »(/) and v (/) oc-
cur at /=/y;,. The agreement between v(/) and
7 (l) at small / may be improved by defining v(/) as
a centered finite difference of log C,(/) over a step
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in log/ equal to log R. Simultaneous plots of
v(l), v(I) and ¥(/) for low dimensional examples
(see fig. 2), show that behavior of #(/) is well de-
scribed; calculation of the value of the intersection
of v(/) and v (/) provides a quick method of esti-
mating the maximum value of (/) observed for
embedded white noise as a function of M, N, and R.

Time series. When analyzing a data set which de-
scribes a physical distribution or a solution to a sys-
tem of ODEs, the dimension of the embedding space
is known. When applied to time series data, the GPA
computes the correlation integral of the data set re-
constructed in successively higher embedding
[3,6,7]. For each embedding dimension, M, an es-
timate of the correlation exponent, v.,, is deter-
mined from #(/). As N approaches infinity, v,
approaches M whenever v> M. For finite data sets,
this is no longer the case. For a given N, solving eq.
(12) for M provides a method for selecting the high-
est embedding dimension for which we can expect
accurate computations. If v, for this embedding is
not significantly less than QM, the deviation of v,
from M calculated in higher dimensional embed-
dings does not imply a fractal structure. Indeed such
a deviation is expected due to the increasing volume

log2 (1)

Fig. 2. Theoretical and observed correlation exponent functions
computed from a data series generated by the cat map (v=2)
with M=2, N=2"3, r=2.0. Curves of#(/) (solid), 7(/) (dashed),
and v(/) (dotted) are shown.
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of higher dimensional hypercubes (in which a fixed
number of points are embedded). A data set of 2X
randomly distributed data points covers an AM-di-
mensional square region down to a scale of /,,~
2-K/M For M=2 and K=10, /,,=0.01. The same
set embedded in a five-dimensional space yields an
l,n=0.25. As [, increases, so does the difference be-
tween v, and M (see eq. (8)). Embedding a fixed
number of points in higher dimensional reconstruc-
tions forces the apparent convergence of the corre-
lation exponent.

Note that a data set consisting of N,,;, points may
not be sufficient even in the case of a nonlacunar ob-
ject. For example, when reconstructing a data series
from the cat map [11] with M =3 the data lic on a
finite number of two-dimensional sheets; to observe
the asymptotic behavior of #(/), length scales smaller
than the separation of the nearest sheets must be
sampled. (A similar behavior occurs with multipli-
cative congruential pseudo-random number gener-
ators for arbitrary M.) Even when the embedding
dimension is known, strong inhomogeneities in the
observed density may result in biased estimates of v
[12].

It remains to relate Niin to the number of points
in a time series of length 7. The hyper-cube argu-
ment above assumed that the points in the set were
randomly distributed on the object. The points in a
data set constructed from a time series are not, in
general, uniformly distributed over the object. More
importantly, these points are provided by single tra-
jectory and thus are dynamically related *?. For cha-
otic phenomena, this effect is thought to be minor
when the series is long relative to the decay of cor-
relations. (For quasi-periodic signals, this difficulty
remains.) For both types of systems, the number of
points to be compared with N, is determined by
the dynamical time scale of the system, not a time
scale of the experimental apparatus.

At least three time scales are relevant when
embedding a time series. The sampling time, 7., de-
termined by the experimental sampling rate, the de-

#2 This ordering may in fact provide additional information use-
ful in determining the statistics of the set [ 1~3,14]. In this pa-
per, only the geometry of the point set is considered; if
additional information encoded in the ordering of the points
can be used to extend the series, the limits determined here
would apply to the extended record.
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lay time, 7;, determined by the rate at which new
information appears in the system [15], and the re-
construction time, 7,, which reflects the separation of
the consecutive base points used in the reconstruc-
tion. The reconstruction time is often chosen to be
equal to the sampling time; this may bias 7(/) due
to the one-dimensional nature of the trajectory. While
the effect of dynamically close points (points con-
tributed from the same stretch of time series) may
be removed [16], the effect is still present from data
points in regions where the trajectory passes near it-
self. One method to limit this effect globally is to
choose 7, based on a statistic of the nearest neighbor
separation of dynamically distant points (points
constructed from portions of the time series many T;
apart). A second method is to allow 7, to vary and
record points separated by a given arc-length along
the trajectory. In either case, calculating the typical
(dynamically distant) nearest neighbor separation
provides a direct estimate of /;, of the data set; the
choice of a 7, which results in a decrease in the av-
erage nearest neighbor separation below this value
does not significantly improve the covering of the
object.

The assumption of randomly placed points im-
plies that the number of points in a reconstruction
for the GPA is Ny=T /7, In practice, additional
points may be used as long as dynamically nearby
points do not dominate the scaling. Specifically, when
the series is reconstructed with 7,=1;, dynamically
closest points are separated, on average, by the mean
distance between two randomly chosen points (in M
dimensions) o&(M), while .~ (1/Ny)'/M. The
number of points may be increased (i.e. 7, de-
creased) by a factor of up to o(M)/[,, without in-
troducing dynamically consecutive points as nearest
neighbors. The number of points in the reconstruc-
tion is then

Ny =0(M)(T /7)) M+ D™, (17)
where

4MAN
G(M):l—m. (18)

Note that 6(1) =14 and o(M) approaches one as M
increases.

Basically, this procedure samples the trajectory
down to the nearest neighbor scale determined by
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No. For small M (and most test cases), short re-
currence times allow frequent sampling of the series,
while as M increases, N, approaches N,.

Conclusions. The arguments above demonstrate
that a large quantity of data is required to accurately
estimate the correlation exponent. Specifically, to
observe a value of #(/) within 5% of the embedding
dimension, M, with M=6, R=4 (i.e. (/) >5.7) re-
quires the analysis of a minimum of 5489031774
(uncorrelated ) data points. Embedding “long” data
records from a truly random sequence in higher di-
mensional spaces will yield estimates of the corre-
lation exponent which are less than A this is not
evidence for low dimensional behavior. For exam-
ple, if a white noise signal of this length were embed-
ded with M=20, R=1, the value of #(/,,) would be
significantly less than 16.

The rapid increase in computer time required for
the GPA with increases in the number of data points
currently limits the accessible exponents to about 5
or 6. In cases where this amount of data is available,
long period oscillations in (/) may remain unde-
tected, in which case 7 (/) will still provide a poor
estimate of v. A computationally tractable alterna-
tive is to compute the local scaling (and estimate the
point-wise dimension) about singular points in the
distribution (e.g. unstable periodic orbits in a cha-
otic mapping where a local lacunarity oscillation is
often visible [8]). Such calculations also require large
data sets and provide only local scaling information;
but the computational cost increases linearly in the
number of points and, when a periodic oscillation is
present, they provide a meaningful estimate of the
remaining uncertainty in the point-wise dimension.

If a short time series from a high dimensional sys-
tem is embedded into increasingly higher dimen-
sional embedding spaces, V., Will appear to converge
due to the effects discussed above. The correlation
integral of low dimensional signals can be measured
with “small” data sets [17] (the data set is still large
compared to N, ), but the analysis of a sample from
a high dimensional signal with the same number of
points will also yield v.,, << M. It is necessary to have
sufficient data to distinguish these two behaviors.
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Mestel, C. Sparrow, E.A. Spiegel and A. Wolf, and
from the hospitality of the King’s College Research
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