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ABSTRACT

Two different approaches for constructing skill predictors for a deterministic forecast are compared.
The first method uses a single statistic of the ensemble distribution to classify the deterministic
forecast, the second method is to generate a completely probabilistic forecast from which both a
deterministic forecast and a skill predictor can be extracted. The first method is evaluated using
precipitation forecasts at five stations in Germany, the second method is evaluated using precipitation
forecasts at the same five stations, and also temperature forecasts at 26 German stations. Both
methods are found to produce useful a priori predictors of forecast skill. The second method, however,
appears to have greater resolution without sacrificing reliability.
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EXECUTIVE SUMMARY

It is now widely accepted that some a priori indication of forecast skill to accompany a forecast
is desirable. This study evaluates two general approaches to obtaining skill predictions for a given

forecast.

1. Obtain a relationship between forecast reliability and some statistic of an ensemble forecast.

2. Attempt to construct a probabilistic forecast from which a summary of forecast skill can be

extracted.

The potential of both approaches was investigated for several locations in Germany using both the
ECMWEF ensemble prediction system and DWD medium range forecasts. It was found that both

methods are feasible. The second method, however, offers several advantages:

a A more comprehensive probabilistic forecast contains more information than a single skill pre-
diction. This information can be utilized by more sophisticated users.

b Probabilistic forecasts allow for greater flexibility in designing summary skill forecasts.

c It is possible to make more confident predictions of forecast skill from probabilistic forecasts.

The study found that probability forecasts of temperature based on the ECMWF ensemble prediction
system have skill out to the full 10 day leadtime for which they are issued. This skill is reflected
in both probabilitistic forecasts with a greater information content than a climatological forecast,
and also in the ability to construct skill predictors which can identify bad forecasts a priori. It was
also found that probabilistic forecasts constructed using only 6 members of the ECMWF ensembles
typically contain almost as much information as the those generated from the complete, 51-member

ensembles when temperature at a single location is the variable under consideration.

Treating the ECMWF ensemble distribution directly as a probabilistic forecast leads to very poor
forecasts. These forecasts are actually worse than climatology. The ECMWF ensemble, however,
does contain information about the state dependent predictability which can extracted and used to
construct probabilistic forecasts using the methods described in this report.

Using both the ECMWF and DWD forecasts to construct probabilistic forecasts for precipitation
does not lead to a significant improvement over using only the ECMWF ensemble prediction system.
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Figure 1: A map showing the locations of the weather stations used in this study.

Introduction

Traditional weather forecasts have consisted of single, deterministic forecasts. More recently, the
potential value of an a prior: estimate of forecast quality has been appreciated. Ensemble prediction
systems offer an indicator of the flow dependent predictability of the atmosphere. Previous studies
have investigated the ability of ensemble forecasts to provide estimates of forecast uncertainty [Buizza
1997; Toth et al. 2001; Ziehmann 2000; Ziehmann 2001]. The first part of this report is a continuation
of the investigation by Ziehmann [Ziehmann 2000]. It investigates the use of ECMWF ensemble
mode population, and the entropy of the ensemble distribution, as predictors of forecast skill for
precipitation forecasts at five stations in Germany. The locations of all the stations used in the study
are shown in Fig. 1.

The second part of this report presents two different methods for constructing probilistic forecasts
from the information contained in the dynamical forecasts—both the high resolution forecasts issued
by ECMWF and DWD and also the ensemble forecasts produced by ECMWEF. The methods are
applied to temperature and precipitation forecasts. Finally, the probabilistic forecasts are used to
constructs skill predictors for deterministic forecasts, and the reliability of these skill predictors are
evaluated.



1 Skill predictors for precipitation

1.1 Method

In Ziehmann (2000) the population of the mode of the ensemble distribution, along the entropy of
this distribution, were identified as being good predictors of the probability that a given temperature
forecast would be correct. This method will now be extended to precipitation forecasts for five station
in Germany. For the case of temperature, climatologically equi-probable bins were used to quantize
the forecasts. This cannot be done with precipitation due to the high fraction of days on which there
is no precipitation. Three precipitation (ppt) categories were defined; [ppt = 0,0 < ppt < 3mm, ppt >
3mm]|. Success was defined when the ECMWF high resolution forecast fell in the same bin as the
observation. To provide a baseline for the success rate, success rates for 50 shuffled sequences of
the forecasts were determined. These provided a distribution for the baseline success rate. This
baseline is necessary because, due to the high frequency of zero precipitation days, a reasonably
high success rate can be achieved by issuing random forecasts drawn from climatology. For each
forecast the ensemble forecast was binned. Let f; be the fraction of ensemble members in the ith bin
(where i = 1,2,3). The mode population and the negentropy ! were calculated. The ensemble mode
population is proportional to max; f;, while the negentropy of the ensemble distribution is given by
>; filog, fi. Ensemble mode population and negentropy are both potential predictors of forecast skill.
Henceforth, the word “predictor” will be used to refer to them both. A low threshold was chosen to
be at the rth percentile of the distribution of the predictor, while a high threshold was chosen to be at
the (100 — r)th percentile. Forecasts for which the predictor fell below the low threshold were classed
as having low predictability, while those for which the predictor exceeded the high threshold were
classed as having high predictability. The success rates for the low and high predictability forecasts
were calculated separately. To estimate uncertainty in these success rates bootstrap resampling was
used. Fifty sets of forecasts were constructed by resampling, with replacement, from the original
sample. The success rate associated with each set of forecasts was calculated giving an estimate for
the mean success rate, along with an estimate for the standard deviation in this estimate [Efron and
Tibhsirani 1986].

1.2 Results

Figures 2 and 3 show the results for five German stations obtained when using mode population
and negentropy respectively as predictors of forecast skill. All the panels show results for 5-day
precipitation forecasts. The success rate for both high and low predictability cases at the 100th
percentile is the average success rate for the forecasts. It is higher than the baseline success rate for

oth percentile the success rate is approximately

all stations. In all cases if the predictor exceeds its 9
double the baseline success rate, whereas if the predictor falls below its 10th percentile the success rate
falls below the baseline success rate. Except for station 10469, where negentropy provides a slightly
better separation of success rates than mode population, there is little difference between these two

predictors of forecast skill.

INegentropy (negative of the entropy) was used solely so that, in both cases, a high value of the predictor is an

indicator of high predictability.



At the stations examined it typically does not rain on 40% of days. This is reflected in relatively
high base line success rate of the precipitation forecasts. The precipitation forecasts were separated
into days for which rain was forecast and days for which no rain was forecast. The ability of the
ensemble distribution mode population to predict forecast skill was then evaluated separately for
these two cases. For this part of the analysis a simpler binary binning, [ppt = 0, ppt > 0]. The results
are shown in Fig. 5 (5-day rain forecasts), Fig. 6 (3-day rain forecasts) and Fig. 7 (5-day no rain
forecasts). Note that in Figs. 5-7 the base line success rate is equal to the average success rate since all
forecasts are identical. Furthermore, since reordering identical forecasts does not change the success
rate there the base line has no thickness.

Figure 5 indicates that even if a forecast of rain is classed as “high predictable”, using a restrictive
definition (low percentile), the mean probability of it raining very rarely exceeds about 70%. This
means, that if this method is used to classify a priori predictability, it will not be possible to issue
a forecast of rain with a probability of more than about 70%. Figure 6 shows the same result, but
this time for the 3 day forecast. For stations #10379, #10410 and #10637 using the most restrictive
definition of high predictability enables forecasts to be made with confidences of almost 90%. However,
at the other two stations the success rate of the predictable forecasts is still 70% or less. Figure 7
shows that this relatively poor ability to be able to forecast rain with confidence is compensated for by
the ability to make highly confident forecasts of no rain. Indeed, if a forecast of no rain is accompanied

oth percentile it is almost certain not to rain. A similar result has

by a mode population in the top 1
been previously obtained for temperature forecasts, with high predictability forecasts having a success

rate of around 70% [Ziehmann 2000; Ziehmann 2001].

Figure 4 shows the results of using the ECMWF ensemble mode population as a predictor of the
skill of the kalman filtered DWD forecast.
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Figure 2: Performance of high and low predictability 5-day precipitation forecasts. High (low) pre-
dictability was defined as having an ensemble mode population above (below) the chosen percentile.
The black line is the baseline success rate. The thicknesses of all the lines are two standard deviations
obtained using bootstrap resampling.
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Figure 3: As Fig. 2 but using negentropy of the ensemble distribution as the predictor of predictability
rather than mode population.
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Figure 4: As Fig. 2 but using the kalman filtered DWD forecast instead of the high resolution ECMWF
forecast—the ECMWF EPS was still used to obtain the skill predictor.
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Figure 5: As Fig. 2 but only using days for which rain was forecast, and only using a binary binning

of rain/no rain.
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Figure 6: As Fig. 2 but for the 3 day forecast, and only using days for which rain was forecast, and

only using a binary binning of rain/no rain.
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Figure 7: As Fig. 2 but only using days for which no rain was forecast, and only using a binary

binning of rain/no rain.
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2 Probabilistic forecasting

2.1 Motivation

Probabilistic forecasts are the most complete type of forecast. Such a forecast encompasses all known
information about forecast uncertainty. This is the ideal forecast product for sophisticated users who
can quantify the weather dependence of their utility and their risk tolerance. If a forecast centre
issues only a deterministic forecast, even one accompanied by a prediction of skill, they are making an
implicit assumption about users’ utility functions and risk tolerances—an assumption that will almost
certainly be wrong [Smith et al. 2001].

In this section two methods for constructing probabilistic forecasts from dynamical forecast prod-
ucts are presented and evaluated. The first method is best member dressing, in which each member of
an ensemble forecast is convolved with the distribution of the historical “best member” errors. The
second method is the method of analogues, in which historical analogues of the current forecast are
found. The observations corresponding to these analogues are treated as a sample of the forecast
probability distribution.

2.2 Evaluating probabilistic forecasts

The evaluation of probabilistic forecasts is a relatively underdeveloped field. In this study two scoring
rules were used to assess the quality of the probabilistic forecasts. The first was a quadratic rule,

commonly called the Brier score [Brier 1950]. For m possible outcomes the Brier score is defined as
BS = Z(pz — 5ij)2 (1)
i=1

where p; is the forecast probability of outcome ¢, the actual outcome is j and d;; = 0 if 7 # j and
0;; = 1if ¢ = j. The second scoring rule was a logarithmic rule which corresponds to the information
deficit or ignorance of someone in possession of the forecasts [Roulston and Smith 2001a]. This is
defined as

IGN = —log, p; 2)

where again, j is the actual outcome, which had a forecast probability, p;. Both the quadratic Brier
score and the logarithmic ignorance score are proper scoring rules—the forecaster achieves the best

expected score by reporting their true estimates of the probabilities.

Another method for scoring probabilistic forecasts is the cost-loss method [Katz and Murphy
1987; Katz and Murphy 1997; Richardson 2000]. This method uses the realized loss of a loss minimizing
user, with a given cost-loss (C/L) ratio, as a skill score. It can be shown that the Brier score
corresponds to this realized utility averaged over a distribution users which is uniform in C/L [Murphy
1966; Richardson 2001]. It can also be shown that the ignorance corresponds to the realized loss
averaged over a distribution of users given by [Roulston and Smith 2001a]

1

wO/L) > T E/m) /L)

(3)
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The derivation of the relationships between cost-loss and Brier score and ignorance can be found in
the Appendix. Neither Brier score nor ignorance is the “best” scoring rule in any general sense. In
some ways, they are complementary, with ignorance being more sensitive to extreme probabilities,

and Brier score being relatively more sensitive to moderate probabilities.

2.3 The best member dressing method
2.3.1 Description of the method

The best member dressing method was used to construct probabilistic temperature forecasts from
ECMWF ensembles. To make direct comparisons between the single, high resolution forecast gen-
erated by ECMWF and the ensemble prediction system, the single forecasts were converted into
ensembles. This was done using historical errors for the base period May 1997 to April 1998. Each
high resolution forecast for the test period (May 1998 to April 1999) was converted to a 102 member
ensemble by adding 102 historical forecast errors, picked randomly with replacement, from the 102
days in the base period which had an annual phase closest to the forecast under test. These ensembles
are of the type commonly referred to as statistical ensembles. Statistical ensembles can be compared
with dynamical ensembles. However, it has been shown that better results can be obtained if the dy-
namical ensembles are used to construct hybrid dynamical-statistical ensembles or hyperensembles. In
this study the hyperensembles were constructed by dressing each member of the dynamical ensembles
with the “best member” errors as previously described by Roulston and Smith [2001b, 2001c]|.

Let y be an m-component vector describing “truth”. Truth can be decomposed into a dynamical

component, x, and a statistical component, €.
y=x+e (4)

Note that the terms dynamical and statistical are being used in an operational sense. The dynamical
component contains all processes contained in the forecasting model. The statistical component
includes all contributions that are to be dealt with statistically, such as model error and residual
initial condition error. The dynamical component need not be strictly deterministic if, for example,
the model contains stochastic parameterizations. Conversely, the statistical component will include
processes that are really deterministic, but which will be dealt with in a statistical manner. Let x; be
an ensemble of N dynamical forecasts (¢ =1,..., N). The best member of the ensemble is the member
that has the “correct” dynamical component. If truth is known, and the best member is identified,
the contribution of £ can be determined. Over many forecasts, the statistical properties of the &
component can be estimated. For the following analysis, it will be assumed that € has a multivariate
normal distribution with uncorrelated components. The probability that the ith ensemble member

has the correct dynamical component is

exp (= pe (yx — zik)?/20%)
S exp (— Yhe (e — jk)?/202)

where y; is the kth component of y, and z; i, is the kth component of x;. If x; is the correct dynamical
Lth

(5)

P =

component then E[(yx — z1£)%] = o2. If Q2 is the variance of the component of all the ensemble

members then an approximate expression for p;, the probability assigned to the true best member, is

eXp(_m/Q) (6)
exp(—m/2) + (N — 1) exp (= 341, (Q + 0%) /20%)

b~

14



To simplify Eq. 6 assume that all the oy, are identical and all the € are also the same.

exp(—m/2) (7)
DL exp(—m/2) + (N — 1) exp(—m/2 — m2/202)
If N> 1 Eq. 6 becomes
1
P~y N exp(—m$Q?/202) ®)

An examination of Eq. 8 provides some insight into the conditions required for the correct identification

of the best member. For an unambiguous identification p; ~ 1. Therefore, it is required that
N exp(—mQ?/20%) < 1 (9)

From Eq. 9 it can be seen that if 2 > o then the best member can be easily identified. That is,
if the spread of the ensemble members is much greater than the uncertainty due to the statistical
component, then the ensemble member that comes closest to truth is highly likely to be the best
member. If, however, 2 &~ ¢ and m is small then this is not the case. This is because if the size of €
is comparable to the spread of the x;, then the x; closest to y is not necessarily the correct x. In this
situation, the chance of choosing the correct best member can be improved by increasing m. That is,
the best member is identified as the closest x; to y in a higher dimensional space. In practice, this
can be done by comparing the forecast to truth at multiple points in space and time. This means,
that even if, one is only interested in forecasting a univariate quantity, the best member must be
chosen on the basis of a multivariate forecast. From Eq. 9, it can also be seen that the probability of
correctly identifying the best member falls as the ensemble size, N, increases. This makes sense; the
more ensemble members there are, the higher the chance of misidentifying the best member. If N is
increased then m should also be increased to ensure that the best member of the enlarged ensemble
is correctly identified.

In practice, o is a statistical property of ¢, and so will not be known until ¢ has been estimated.
The problem is to decide, a priori, whether enough variables are being used to accurately identify
the best member of an ensemble. To do this the idea of a false best member is introduced. Let the

th

normalized distance between the i** ensemble member, x;, and truth, y, in the space of d variables

be written as R; g where
2 _ o @ik — )
B2y = 30 Bk SV (10)
k=1 k

Note that in Eq. 10 the kth component has been normalized by the ensemble standard deviation of
that component, 2. The best member, in this d-dimensional space, is the one which has the minimum
R?’ 4- If this best member is the true best member, then it should remain the best member when an
extra variable is added. That is, if min Ri 4= R?’ 4 then min Ri di1 = Ri a+1- 1f this condition doesn’t
hold then the best member can be classed as a false best member (FBM). The fraction of FBMs,
averaged over past forecasts, gives an indication of whether d is high enough. The variables that
are added can either be the same quantity at different spatial locations or they can be at the same
location, but for different forecast lead times. Different forecast quantities can also be used.

After identifying the best member of an ensemble, the error of this ensemble member can be
calculated. The covariance matrix of the multivariate errors can be calculated using a set of past
forecast-truth pairs. This covariance matrix can be used to generate hyperensembles. This is done
by dressing each ensemble member with a daughter ensemble, generated using the best member error
statistics.
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As described above the ensemble forecasts for temperature were generated using two methods:-

(i) The high resolution “best guess” forecast was dressed with a statistical ensemble constructed
from by selecting 102 forecast errors picked randomly, with replacement, from the 102 days in the
base period closest with an annual phase closest to the forecast day. This will be referred to as the
HIRES-based forecast.

(i) Each member of the ECMWF dynamical ensemble forecast was dressed with a daughter en-
semble constructed by from best member errors picked randomly, with replacement, from the 102
days in the base period closest with an annual phase closest to the forecast day. This will be referred
to as the EPS-based forecast.

As well as using the full ECMWF dynamical ensemble (N = 51), truncated dynamical ensembles
with N = 6 and N = 17 were also tested. The size of the daughter ensembles used in (ii) was 102/N,
thus the statistical ensembles of (i) and the hyperensembles of (ii) all had 102 members.

The application of the formulae given by Eqgs. 1 and 2 requires that the outcomes be discrete. The
ensemble forecasts (statistical and hyperensembles) were discretized by binning into 2°C bins. With
the logarithmic (ignorance) score there is an issue concerning the assignment of zero probabilities to a
particular outcome since, should this outcome occur, an infinite score will result. “Cromwell’s Rule”
2 warns against assigning a zero probability to an event unless it is truly impossible [Lindley 1985].
In this case, a fictitious 1034 ensemble member was spread evenly across all bins to approximate the

uncertainty in the forecast probabilities due to the finite size of the ensembles.

The value of each type of skill score was calculated for each forecast and observation. The mean
value of each skill score was then estimated using a bootstrap resampling method [Efron and Tibhsirani
1986]. The series of skill scores was split into blocks, each 10 days in length. The mean value for
each block was calculated. Fifty estimates of the mean value of the entire series were then made by
resampling, with replacement, from the block means. The mean and the standard deviation of these
fifty estimates were then calculated.

2.3.2 Results for best member dressing

Figures 8-11 show the average Brier scores for the probabilistic forecasts constructed from the single
high resolution ECMWTF forecasts, and for those constructed using the ensemble prediction system.
The number of ensemble members used to constructed the EPS-based forecasts were 51, 17, 6 and
2 respectively. Figures 12-15 show the average ignorance scores for the HIRES-based probabilistic
forecasts, and those made using the EPS forecasts. The number of ensemble members used for the
EPS-based forecasts were 51, 17, 6 and 2 respectively. Both the Brier and ignorance scores have been
subtracted from the corresponding score obtained from an estimate of the climatological distribution.
Thus, zero (the dashed line) represents the skill of climatology, and any score less than zero signifies
greater skill than climatology. The thicknesses of the lines in Figs. 8-15 are two standard deviations
in the estimate of mean, obtained using the bootstrap resampling method described above. In all the
figures the black line is for the forecasts made using the ECMWF high resolution forecast and the

241 beseech you, in the bowels of Christ, think it possible you may be mistaken.” [Oliver Cromwell in a Letter to
the General Assembly of the Church of Scotland, 3 Aug 1650]
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grey line is for the EPS-based forecasts. From the Figs. 8-15 it can be seen that the 51 member EPS-
based forecasts provide significantly better probabilistic forecasts than the HIRES-based forecasts and
almost every station evaluated. This result holds whether the quadratic Brier score, or the logarithmic
ignorance score, are used for the evaluation. Furthermore, it can be seen that, even is only 17 members
of the ECMWF dynamical ensembles are used to construct the EPS-based forecasts, the EPS-based
forecast is still significantly better than the HIRES-based forecast. The EPS-based forecast still has
a statistically significant edge over the HIRES-based forecast when only 6 members are used. When
the EPS-based forecast is generated using only two dynamical ensemble members, however, there
is little difference between the quality of the EPS-based forecasts and the HIRES-based forecasts.
An inspection of Figs. 8 and 12 indicates that, while the skill of the HIRES-based forecasts falls to
climatological skill at a lead time of about 180 hours, the EPS-based forecasts still have skill beyond
climatology at 240 days. This result implies that EPS-based forecasts would still be more skillful than
climatology, even if the forecast lead time were to be extended beyond 10 days. In this context, “skill”
means that the probability distribution from the EPS-based forecast is better than a climatological
distribution. For example, consider station #10015 in Fig. 12. At 240 hours the ignorance of the
EPS-based forecast is about 0.2 bits less than that of the climatological forecast. This means that, if
fair odds were set using the climatological probabilities (or the HIRES-based forecast probabilities)
then, someone betting their wealth in proportion to the probabilities of the EPS-based forecast would,

on average, increase their wealth by a factor of 202 = 1.15 per bet placed.
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Figure 8: Average difference between quadratic (Brier) skill scores of the temperature forecasts and
the skill score of a climatological distribution. Best guess forecasts with a statistical ensemble are in
black and the hyperensembles constructed using the full 51 member ECMWF ensemble are in grey.
The dashed line represents the skill of climatology.
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Figure 9: As Fig. 8 but the hyperensembles were constructed using only 17 members of the ECMWF

dynamical ensemble.
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Figure 10: As Fig. 8 but the hyperensembles were constructed using only 6 members of the ECMWF

dynamical ensemble.
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Figure 11: As Fig. 8 but the hyperensembles were constructed using only 2 members of the ECMWF

dynamical ensemble.
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Figure 12: Average difference between logarithmic (ignorance) skill scores of forecasts and that of a
climatological distribution. The best guess forecasts with a statistical ensemble are in black and the
hyperensembles constructed using the full 51 member ECMWF ensemble are in grey. The dashed line
represents the skill of climatology.
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Figure 13: As Fig. 12 but the hyperensembles were constructed using only 17 members of the ECMWF

dynamical ensemble.
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Figure 14: As Fig. 12 but the hyperensembles were constructed using only 6 members of the ECMWF

dynamical ensemble.
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Figure 15: As Fig. 12 but the hyperensembles were constructed using only 2 members of the ECMWF

dynamical ensemble.
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2.4 Method of Analogues
2.4.1 Description of the Method

An alternative approach to dressing a dynamical ensemble is the “method of analogues”. This method
generates a climatology conditioned on the forecast. This method has previously been applied to
ECMWF ensembles to construct probabilistic forecasts of wind energy production [Roulston et al.
2001]. The forecast is projected into a forecast space. Analogues are then identified by finding historical
forecasts which are close to the current forecast under some metric. The observations associated with
these analogues can then be treated as samples of the desired forecast probability distribution. There
are many possible choices for the forecast space. The space may be defined using a deterministic
forecast, an ensemble forecast or combinations of the two. In this study the method of analogues
was applied to precipitation data at five German stations. The following methods for constructing
probabilistic forecasts were used.

(i) Climatology: The precipitation for all the days in the relevant month for the reference period
were used as a probability forecast.

(ii) Raw ECMWF ensemble: The distribution of 51 members of the ECMWF ensemble was treated
as a probability forecast.

(iii) ECMWF HIRES analogue: The k historical forecasts for which the ECMWF high resolution
precipitation forecasts were closest to the current ECMWF HIRES precipitation forecasts were chosen
as analogues and used to construct a probability forecast.

(iv) ECMWF EPS analogue: The ECMWF ensemble forecasts were projected into a three dimen-
sional forecast space, defined by the 10th, 50th and 9oth percentiles of the ensemble of precipitation
forecasts. The k historical forecasts closest to the current EPS forecast in this space were chosen as
analogues to construct a probability forecast.

(v) DWD analogue: As for the ECMWF HIRES analogue but the DWD medium range forecast
was used instead.

(vi) ECMWF HIRES/DWD analgogue: As for the ECMWF EPS analogue except that the fore-
casts were projected into a two dimensional forecast space, defined by the ECMWF high resolution
forecast and the corresponding DWD forecast.

(vil) ECMWF HIRES-EPS/DWD analogue: As for the ECMWF EPS analogue except that the
forecasts were projected into a five dimensional forecast space, defined by the 10th, 50th and 9oth
percentiles of the ECMWF ensemble forecast, the ECMWF high resolution forecast and the DWD

medium range forecast.
In cases (iii)-(vii) then number of analogues was k = 30. For cases (iv), (vi) and (vii), in which the
forecast space is multi-dimensional, all the coordinates defining the forecast space were normalized

to have zero mean and unit variance—thus giving all coordinates equal weight in determining which

historical forecasts were “close” to the current forecast.

2.4.2 Results for the Method of Analogues

To evaluate the probabilistic forecast generated using tghe methods outlined above a simple two
bin quantization was used—rain, or no rain. The mean ignorance (logarithmic) skill scores for the
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probabilistic forecasts are shown in Figs. 16-20. The climatological forecasts have an average ignorance
of about 0.97 bits. If it rained on 50% of days the climatological ignorance would be exactly 1
bit—reflecting the equiprobable outcomes of rain and no rain. In all cases the ignorance score is
the difference between the ignorance score of the particular forecast and the ignorance score of the
climatological forecast. A value less than zero indicates that the forecast contains more information
than climatology. To obtain an estimate of the uncertainty in the estimate of the mean ignorance due
to finite sampling, fifty sets of ignorance scores were generated by resampling, with replacement, from
the original sample. This provided an estimate of the mean ignorance and a standard deviation in the
estimate. The lines in Figs. 16-20 have thicknesses equal to two standard deviations in the estimate
of the mean.

The most obvious result that can be seen from Figs. 16-20 is that using the raw ECMWF ensemble
to directly construct a forecast for the probability of rain leads to very bad probability forecasts. In
all cases, the raw ECMWF distribution is substantially worse than the climatological distribution.
Using the high resolution ECMWF forecasts to find analogues provides skillful probability forecasts.
Typically at a lead time of 96 hours these forecasts are between 0.2 and 0.3 bits “less ignorant”
than climatology. Using the 10th, 50th and 9oth percentiles of the ECMWF ensembles to identify
analogues provides slightly better probability forecasts. The difference is most noticeable at a lead
time of 168 hours where the EPS analogue has an ignorance of about 0.05 bits less than the HIRES
analogue. Identifying analogues based only on the DWD medium range forecast provides probability
forecasts considerably more skillful than climatology, but not quite as skillful as when the ECMWF
forecasts are used. Without information on changes made in the ECMWF and DWD models during
the evaluation period it is not possible to say whether the difference in their performances is due to
differences in the models or due to differences in the quality of the forecast error information. 2 Using
a combination of ECMWF and DWD forecasts to identify analogues does not lead to a significant
improvement over using only the ECMWF EPS analogues.

In general it can be said that using the raw ECMWF ensemble to construct a probability forecast
leads to forecasts with less skill than using climatology, whereas, using any reasonably chosen analogues
to construct probability forecasts gives a substantial improvement over climatology.

The method of analogues was also applied to windspeed data from the same five stations. The
k = 30 closest forecasts in the space defined by the 10th, 50th and goth percentiles of the ECMWF
ensemble were used as analogues. These analogues were then used to construct a forecast of the
probability that the observed windspeed at the station would exceed the mean windspeed for that
station. The results are shown in Fig. 21.

3 All methods that use historical forecasts to estimate information about forecast errors assume that the forecast error
statistics are stationary over the relevant period. The skill of forecasts generated using the method of analogues depends
on the quality of error statistics, as well as on the intrinsic quality of the model. If the model is frequently changed, the
nonstationarity this introduces into the historical error statistics can degrade the quality of the final forecasts—even if
the model itself has been improved.
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Figure 16: A comparison of ignorance scores of probabilistic precipitation forecasts constructed using

different methods for station 10379. All the ignorance scores are measured relative the climatological

probabilistic forecast. A score less than zero indicates greater skill than climatology. The thickness

of the lines are two standard deviations in the estimate of the mean obtained using a bootstrap

resampling method.
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Figure 17: As Fig. 16 but for station 10410.
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Figure 18: As Fig. 16 but for station 10469.
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Figure 19: As Fig. 16 but for station 10637.
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Figure 20: As Fig. 16 but for station 10738.
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Figure 21: The average ignorance (with respect to climatology) of probabilistic windspeed forecasts
constructed using the method of analogues, where analogues were found in the space of the 10th, 50th
and 90th percentiles of the ECMWEF EPS forecast. The probabilistic forecast was the probability of

the windspeed exceeding the mean windspeed at that station.
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FORECAST | FRACTION OF HYPERENSEMBLE MEMBERS
QUALITY WITHIN 3°C OF MEAN
GOOD greater than 80%
MEDIUM between 50% and 80%
BAD less than 50%

Table 1: Temperature forecast quality classes.

2.5 Forecast Classes from Probabilistic Forecasts

2.5.1 Forecast Quality Classification

The ideal forecast is an estimate of the probability distribution of future outcomes. Sophisticated
users, who can quantify the weather dependence of their utility to a reasonable degree, can use fully
probabilistic forecasts to make choices that maximize their expected utility. Less sophisticated users
may still obtain value from a crude estimate of the quality of a traditional, deterministic forecasts.
Estimates of forecast quality can be made using the hyperensembles generated using the method of
best members. To demonstrate how this can be done the mean of a hyperensemble generated around
the ECMWEF EPS dynamical ensemble was treated as a deterministic forecast. The quality of the
forecast was then estimated a priori by counting the fraction of hyperensemble members that came
within 3°C of the hyperensemble mean. The forecast quality classes were defined according to Table
1.

Figure 22 shows the success rate for forecasts according to their forecast quality class. It can be
seen that, while the forecast quality class does provide an indicator of the success rate, the system
is not strictly reliable. If the classification were reliable all the high skill forecasts would lie at, or
above, 80% and all the low skill forecasts would lie at, or below, 50%, with the medium skill forecasts
lying between 50% and 80%. This is approximately true for many stations but seriously violated
for for station #10015. Note also that the quality of a forecast with a particular skill class is not
dependent on forecast lead time. The reduction in predictability at longer lead times is reflected by
the smaller number of good forecasts, and the greater number of bad forecasts. The quality of good
and bad forecasts remains approximately constant at all lead times. The result in Fig. 22 can be
contrasted with the results of temperature forecast skill prediction obtained using ensemble mode
population [Ziehmann 2000; Ziehmann 2001]. Using that method even forecasts classed as having
high predictability only have a success rate of 70%. *

4This result used 10 climatologically equiprobable bins and success was defined when the observation fell into the
same bin as the forecast. The typical bin size was generally less than the 3°C tolerance used in the present work.
This difference could account for the less confident forecasts obtained using ensemble mode population as a predictor
of forecast skill.
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Figure 22: The percentage of correct temperature forecasts (within 3°C of the forecast value) for

different lead times and different a priori skill classes (green=good, blue=medium, red=bad). Only

forecast classes for which there were 10 or more cases are shown.
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FORECAST FRACTION OF ANALOGUES
CLASS WITH PRECIPITATION > 0
HIGH PROBABILITY greater than 80%
MEDIUM PROBABILITY between 30% and 80%
LOW PROBABILITY less than 30%

Table 2: Precipitation forecast probability classes.

2.5.2 Forecast Probability Classification

Temperature is a continuous quantity, so a value of the expected temperature and an estimate of

“will it rain?”, a

the quality of this forecast is required. For a simpler forecast question, such as
classification system can be designed which is based directly on the probability of the event occuring
(rather than on the probability of a forecast being right). To illustrate this, the probability forecasts
of precipitation, constructed by finding analogues in the forecast space of the 10th, 50th and 9oth

percentiles of the ECMWF ensemble, were converted into forecast classes according to Table 2.

Figure 23 shows the results of the precipitation forecast classification for five stations. It can be
seen that the classification system is reasonably reliable. The high probability forecasts always have a
precipitation frequency greater than 80%. The low probability forecasts typically have precipitation
frequencies less than 30% although occasionally they reach 40%. The medium probability forecasts
have frequencies which, except in a few cases, lie between 30% and 80%. As with the temperature
forecasts, the decrease in predictability at longer lead times is reflected by a change in the relative
numbers of different forecast classes. Few high probability forecasts are issued at lead times exceeding
80 hours. However, when such forecasts are issued at longer lead times they are almost as dependable
as the ones issued at very short lead times.

The results in Fig. 23 should be contrasted with those in Fig. 5. Using the method of analogues
it is possible to issue probability forecasts of rain exceeding 80% which are reliable, whereas, using
ensemble mode population as a predictor of forecast skill it is not really possible to issue a forecast of

rain with more than about 70% confidence. °

5Since the same binary rain/no rain binning was used to define success in Figs. 23 and 23, the qualification concerning
the definition of success that applies to the temperature result does not apply to the precipitation result.
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Figure 23: The percentage of times with nonzero precipitation for different precipitation forecast
probability classes (green=high, blue=medium, red=low). Only forecast classes for which there were

10 or more cases are shown.
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3 Conclusions

In this study two general approaches for constructing predictors of forecast skill have been presented.
The first approach was to use a single statistic of the ensemble distribution (mode population or
entropy) as a predictor of the forecast skill. The second approach was to attempt to generate a
probabilistic forecast using information contained in the ensemble forecast and/or a deterministic
forecast. A predictor of forecast skill could then be defined based on the probabilistic forecast. For
the locations in Germany that were studied, both approaches were found to produce useful predictors
of forecast skill. Constructing skill predictors from probabilistic forecasts, however, allowed more
confident forecasts to made. The probabilistic forecasts also offer more flexibility in the design of
forecast skill predictors.

The probabilistic forecasts for temperature, constructed using the ECMWF ensemble prediction
system, and the method of “best member dressing”, were found to have skill out to a lead time of
10 days. “Skill”, in this sense, meaning that, on average, they contained more information than
climatological probabilities, and outperformed climatological probabilities when either a quadratic
(Brier) or logarithmic (ignorance) scoring rule was used to evaluate them. It was also found that using
as few as 6 EPS ensemble members did not lead to a major degradation in the information content of
the probabilistic forecast when temperature at a single location was the target forecast variable. This
may not be the case when a multivariate forecast is required. Probabilistic precipitation forecasts,
constructed from the ECMWF ensemble prediction system, using the “method of analogues”, were
found to have skill out to a lead time of 7 days.

Both the probabilistic temperature and precipitation forecasts were used to construct predictors
of forecast skill. In both case the probabilistic forecasts enabled forecasts to be classed according to
confidence. The skill predictors for the precipitation forecasts were found to be the most reliable—this

4

may be due to the superiority of the “method of analogues” rather than due to intrinsic differences

between forecasting temperature and precipitation.
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Appendix: Skill scores and cost-loss

The cost-loss score is the realized utility of a user attempting to maximize their expected utility. If

the user’s cost-loss matrix for a binary event is:-

EVENT HAPPENS | EVENT DOESN’T HAPPEN
USER ACTS C C
USER DOESN’T ACT L 0

where C is the cost of acting, and L is the loss incurred if action is not taken and the event occurs.
If the forecast probability of the event is f, then to minimize their expected loss the user should act
if p > C/L. If the actual probability of the event is p, then the expected loss of the user, U, will be

(11)

U— C when f>C/L
| pL when f<C/L

If u(a)da is the number of users with a cost-loss ratio of & = C/L, then the expected loss, averaged

over users and normalized in units of L, is

f 1
(U) :/0 au(a)da +p/f u(a)da (12)
Differentiation w.r.t. ives
tiat t. fg w ;
?—U(f)(f—p) (13)

The expected quadratic (Brier) score is given by

(BS) = pl1—f2+1-1+0-p)f*+(1-1-1)%
= 2p—4pf+2f2 (14)

Differentiation of Eq. 14 w.r.t. f gives

d(BS)
—4(f — 15
=D (15)
A comparison of Egs. 13 and 15 shows that the expected Brier score is linear with the average expected
utility if u(c) is uniform. The expected logarithmic (ignorance) score is given by

(IGN) = —plog f — (1 —p)log(1 — f) (16)

Differentiation gives
d(IGN)  f—p
R (=) ()

Comparing Egs. 13 and 17 indicates that the expected ignorance is linear with the average expected

utility if u(a) o< [@(1 — @)] L. The singularities in the distribution at & = 0 and « = 1 arise because
a user with a = 0 would always act, and a user with & = 1 would never act, thus there is no decision

making scenario for these values.
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