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Two interwoven themes

e The reasons why Mandelbrot was led to
study “non-classical” models that had features
like extremely fat tails (infinite variance) in
fluctuation amplitude, and extremely long
range memory (1/f power spectra) in time.

 Why, if such models in fact apply, but we don’t

use them, we would tend to underestimate
“risk”-used simply to mean P(fluctuation)

e Disclaimers: Not a professional historian or
philosopher of science, nor an economist. Led
to these questions from physical science.
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And the participants in our workshop last week...
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The aggregation of random fluctuations in complex systems is a problem with aspects as abstract as the renormalisation
group and as concrete as the risk industry. Classical statistics has given us the central limit theorem, describing the flow,
under aggregation, of light-tailed fluctuations towards the Gaussian limit. In this context extreme events are rare, and are  past Symposia

Past Events

handled in the correspondingly mature framework of extreme value theory .

Registration:

However, laboratory critical phenomena, fluid turbulence, and a wide range of socio-economic systems are increasingly You can register for any of the

recognised as giving rise to heavier-tailed distributions of fluctuations, in which "extreme" events are correspondingly symposia or workshops online. To see

much more common. Much progress has been made, notably through the use of additive models with alpha-stable (“Lewy”) | hich registrations are currently

distributions, or by multiplicative cascade processes, but many important open problems remain. e G SR E TR R



One more acknowledgement

“They misunderestimated me ...”

... One of his "most memorable additions to the language, and an
Incidentally expressive one: it may be that we rather needed a word for
'to underestimate by mistake’. — Philip Hensher




5 ways to misestimate risk

First 3 ( all "misunderestimation®, as they typically under-
estimate fluctuations), would be to use:

e short tailed pdfs if they should have been longer.
e short memory.if you should instead have used Ird
e additive models if system is in fact multiplicative

Will just briefly note also the problem of :

 in multivariate models, using iid variables if instead should
have used coupled ones

And for balance, a fifth case, "misoverestimation®:

e.g. generating heavy tails (~ 4 days) from spurious
measurements [Edwards, Philips, Watkins et al, Nature,
2007] although truncated/finite variance heavy tails ( <~ 12
hours) may still be present in that data ... continuing debate
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and “Extremes”

e Now a “hot topic” across many areas of
science and policy.

 Term used both loosely (“black swans”) and
precisely (statistical Extreme Value Theory
(EVT), most mature for iid case).

 Today using it loosely, as “events which are
“bigger” than expected ...” which immediately
poses question of whether “size” here means
amplitude, duration, ...



“Extremes” in space weather

e Example: Riley,
Space Weather [2012]

Drew inference from

distribution of flare intensities,
CME speeds etc that large events
more common than was thought:
“suggest that the likelihood

of another Carrington

event occurring within the next
decade is ™~ 12%”



Heavy tails & “Grey Swans”

Plot number of
events (#) versus
maghnitude (x). In
red “normal” case,
a magnitude 25
event essentially
never happens.

In the blue heavy
talled case, it
becomes a “1iIn
2000” event.
“Extreme events
... [are ] the norm
-John Prescott
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This matters because it applies in many
natural and man-made situations

e.g. Gutenberg-Richter law,

insurer’s “80-20” rule of thumb



Burst idea

amplitude Burst with integrated

‘size” s taken over green
area

t.
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* Very general idea — inspired by energy release
measures used in “sandpile” models. My
interest grew from these and our application
of the burst idea to solar-terrestrial coupling
data (e.g. Freeman, Watkins & Riley, GRL, 2000).



Bursts in climate

e Rather than, e.g. an unexpectedly high

temperature, “extreme” might be a long
duration.

 Runs of hot days above a fixed threshold, e.g.
summer 1976 in UK, or summer 2003 in

France.

amplitude Burst with integrated

e Direct link to weather
derivatives [e.g. book metod MR LT

by Jewson]

time

‘size” s taken over green




“Fat tailed” burst pdfs seen in
solar wind data ...
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... and ionospheric currents (not shown).

Poynting flux in solar wind plasma from NASA
Wind Spacecraft at Earth-Sun L1 point
Freeman, Watkins & Riley [PRE, 2000].



Our initial guess (1997-98

S P
Nt SR

Lui et al, GRL, 2001 ﬁ‘

Does Bak et al’s SOC paradigm apply to
magnetospheric energy storage/release cycle ?
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Bak et al's aim was to unify fractals in space
with “1/f" noise In time directly, via a physical

mechanism:
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FIG. 2. Typical domain structures resulted from several local
perturbations for a 100 100 array. Each cluster is triggered by
a single perturbation.

physics” ? (often traduced, was plea, not a criticism)



A different way ?

Experience with SOC and complexity in space physics
[summarised in Freeman & Watkins, Science, 2002; Chapman
& Watkins, Space Science Reviews], and the difficulty of
uniguely attributing complex natural phenomena led us to
“back up” one step.

Got interested in applying the known models for non-Gaussian
and non-iid random walks. Partly to try and see what physics
was embodied in any particular choice, partly for “calibration”
of the measurement tools. Link to risk and extremes. Such
models go beyond the CLT. They are not always general “laws”,
but they are mapping out a range of widely observed
“tendencies”. In learning about these we have become
interested in the history of Mandelbrot’s paradigmatic models
and their relatives.



Approaches to extremes

e Stochastic processes

 Dynamical systems [e.g. Franzke, submitted]
 Mixture of both

e Complex models like GCMs

| am concerned today with stochastics, but
clearly models that mix the properties are of
interest, for example Rypdal and Rypdal’s
hybrid model for SOC, and its developments.



“Textbook” stochastic models

» “White” noise X (t,), X(t,), X(t,),...
e Gaussian “short-tailed” distribution of
amplitudes

e Successive values independent

ACF <« X (tl)X (t1 +z-) > is short-tailed
e When integrated leads to an additive random

walk model
Y (tN) — ZNizl X (ti)



3 “giant leaps” made beyond these 1963-74 by Mandelbrot.
All “well known” and yet process is instructive-recap

1. BBM observes heavy tailed fluctuations in 1963 in cotton
prices---proposes a-stable model , self-similarity idea

2. BBM hears about River Nile and “Hurst effect”. Initially (see
his Selecta) believes this will be explained by heavy talils,

but when he sees that fluctuations are ~ Gaussian

applies self-similarity [Comptes Rendus1965] in the form of a
long range dependent (LRD) model, roots of fractional Brownian motion. BBM'’s
classic series of papers on fBm in mathematical & hydrological literature with
Van Ness and Wallis in 1968-1969. BBM unites them in a new self-similar model,
fractional hyperbolic motion, in 1969 paper with Wallis on robustness of R/S.
Combines 1 & 2 above (heavy tails & LRD).

3. BBM becomes dissatisfied with purely self-similar models, develops multifractal
cascade, initially in context of turbulence, JFM 1974.
Later applications of such models include finance.



BBM observes heavy tailed fluctuations in 1963 in
cotton prices---proposes alpha-stable model ,
abstracts out self-similarity idea
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Selfsimilar scaling

 His the selfsimilarity parameter. Relates a
walk time series to same series dilated by a
factor c.

AY (t-t,) =Y () - Y (t,)

AY (c(t—t,)) =c"AY (t—t,)



Droughts & Bunching

A

Mandelbrot’'s climate example: Pharoah’s dream 7 years of plenty
(green boxes) and 7 years of drought (red boxes). Now shuffle ...
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Droughts & Bunching

VR

Mandelbrot’'s climate example: Pharoah’s dream 7 years of plenty
(green boxes) and 7 years of drought (red boxes). Now shuffle ...

T

Point is that frequency distribution is same (c.f. previous slide) but
that the two series represent very different hazards. Don’t even
need to come from heavy tails, e.g. a long run of very hot days ...

24 May 2012 23




Mandelbrot heard about River Nile and
“Hurst effect”. Initially (see his Selecta)
believed this would be explained by heavy
tails.

When he saw that fluctuations are ~
Gaussian applied self-similarity [Comptes
Rendus1965] in the form of a long range
dependent (Ird) model for Y(t).

Related to the ordinary
Brownian random walk

but with long ranged memory,
a fractional Brownian

motion (fBm)

Mandelbrot’s classic series of papers
on fBm in mathematical &
hydrological literature with

Van Ness and Wallis in 1968-19609.

Fractional Brownian
walk model Y (t)

d=-1/2 AWy
i
g Aot b

Aol o
b MMW A

S(f) ~ f2(1+d)

“Joseph effect’- e.qg. fractional Brownian
(fBm) walk: steepness of log(psd) of Y(t)
with log(f) increases with memory
parameter d of increments X(t).



What if heavy tailed and LRD ?

e Mandelbrot & Wallis [1969] qu(légd at this, proposed a version
of fractional Brownian motion Y(t) which substitutes heavy
tailed “hyperbolic” innovations for the Gaussian ones. First
difference of this X(t) was their fractional hyperbolic noise.

* Insuch a model you not only get “grey swan” (heavy tail)
events, but they are “bunched” by the long range dependence

N\ 2
! UNILATERSL TYFE |, H=OUF, M= OO0, 2=1F Ko

X (t)




Financial Bunched Black Swans

. “We were seeing things that were 25-standard deviation
moves, several days in a row,” said David Viniar,
Goldman’s CFO ... [describing catastrophic losses on their
flagship Global Alpha hedge fund]. “What we have to look
at more closely is the phenomenon of the crowded trade

helmi ket
e e MAE  _FT, August 131, 2007
fundamentals”,

he said. “It makes
you reassess how
big the extreme

27
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To combine effects of heavy tails & LRD we nowadays could use, e.qg,
Linear Fractional Stable Motion Y(t) or 1St derivative LFS noise X(t).

Voo ®=Cil, [ - s)H\—( )" JdL, (5

An H-selfsimilar, a-stable, successor to Memory kernel:
Mandelbrot’s model Joseph

H=d+1/a: allows a “subdiffusive” H (i.e. < %)

while 1/a is “superdiffusive” (i.e. >1/2). astable jump:

Noah

R/S, DFA etc, measure d but not a (e.g. Franzke et al, Phil Trans
Roy Soc, 2012) , so two series can share a value of H (or d, or
a ) and be otherwise quite different c.f. Rypdal and Rypdal’s
critiqgue of Scaffetta and West.



Bursts in LFSM model

e We have begun to study how bursts, defined as integrated
area above thresholds, scale for the LFSM walk Y(t). [Watkins
et al, PRE, 2009] . Scaling depends both on alpha and d, via
H.

e Our study benefits from earlier work of Kearney and
Majumdar [J Phys A, 2005] on area defined by curve to its
first return (for Brownian motion started epsilon above a
threshold) ...

e ...and Carbone and Stanley, PRE & Physica A on bursts
defined in fBm using a running average (similar to that used in

detrended fluctuation analysis (DFA)).

e We've used the scaling properties of LFSM
walk Y(t) to predict its burst distribution.



First passage-based burst

e |llustrate method first for Brownian motion. Instead of set of
all threshold crossings can use just the time t, at which a
Brownian motion returns to the level L that it exceeded at L

(i.e. the first passage time) to define a burst :

A =Y ()t

amplitude

time

 We exploit the famous scaling behaviour of a random walk.

Y (t) . t1/2




Relation of burst area to FPT

 Get burst area scaling in terms of FPT
3/2
A, ~1

e and vice versa

2/3
L P



Then fold in standard result for
distribution of Brownian FPTs

 Note that expectation value of FPT is infinite !
P(t,) ~t.>"
f f

e Above can be combined with previous result to give a
distribution for burst sizes in Brownian walk

P(A) = A™°



Repeat for LFSM

Instead of FPT use level crossings to define bursts here
t, ~ A y
I I -

P( A) — A2/I+H) AE data

10-12 |

rood vl vl vl vl i
10" 10 10° 10 10° 10° 10’
s [nT min]

Simulations [Watkins et al, PRE, 2009] confirm this works for fBm at least.
Though agreement less close than seen by Carbone and Stanley, evidence that
DFA-style detrending indeed helps remove the nonstationary element of the walk ?

However, we predicts an exponent of about -(2/1.4) i.e. roughly -4/3 for AE index.
Observations sufficiently different (more like -6/5) to motivate further work.



Mandelbrot’'s eyes

“It's very strange that in high school | never knew, | never felt that |
had this very particular gift, but in that year in that special cramming
school it became more and more pronounced, and in fact in many
ways saved me. In the fourth week again | understood nothing, but
after five or six weeks of this game it became established that |
could spontaneously just listen to the problem and do one
geometric solution, then a second and a third. Whilst the professor
was checking whether they were the same, | would provide other
problems having the same structure. It went on. | didn't learn much
algebra. | just learned how better to think in pictures because |
knew how to do it. | would see them in my mind's eye, intersecting,
moving around, or not intersecting, having this and that property,
and could describe what | saw in my eye. Having described it, |
could write two or three lines of algebra, which is much easier if you
know the results than if you don't”

---Mandelbrot, at www.webofstories.com



Dirac

e “Her fundamental laws do not govern the
world as it appears in our mental picture in

any very direct way, but instead they control a
substratum of which we cannot form a mental

picture without introducing irrelevancies."

--- Preface to The Principles of Quantum
Mechanics [1930]




Having introduced 3 models in 6 years, why did BBM
remain dissatisfied ? Partly because his eyes told him ...
Effect that multifractals capture is “volatility clustering”

ACF of diff. AE

AE data: acf of returns

First differences of AE index January-June 1979
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Natural examples include ice cores (e.g. Davidsen and Griffin, PRE , 2009),
and returns of ionospheric AE index (above), see also Consolini et al, PRL,
1996. Man-made example, from which name volatility is taken is finance c.f.
GARCH models.

Effect not seen in fractional Levy models c.f. Rypdal & Rypdal, JGR 2010



Multiplicative models:

BBM becomes dissatisfied with purely self-similar models, develops
multifractal cascade, initially in context of turbulence, JFM 1974,

Later applications include finance in late 1990s by BBM, Ghashgaie et al.

Meneveau
& Srinivasan

P-model




Open: what do we expect bursts
to do in multifractals ?

S, (7) =< X ((t+7)— X (£)? >~ 7@

In monofractal limit g((:]) — CI2H

Instead we see a downward curvature of the zeta function at higher orders

in a multifractal, but high variability over ensembles at these high orders c.f.
Dudok de Wit, NPG. A naive line drawn through zeta plot would thus look like a
smaller H value ?

Intuitively should act to reduce size of a burst of a given duration ? Or make
P(A) plot steeper i.e. more negative exponent ? Now looking at this with
Martin Rypdal and Ola Lovsletten.

Some early indicative results exist from multifractal models and turbulence in
Bartolozzi et al; in Uritsky et al, 2010, and in Watkins et al, PRE, 2009.



Recap Themes

Why do space and climate physicists care about extremes ? Several
approaches to extremes including stochastic.

What might we lose either by failing to spot scaling and correlations when
present, or alternatively by inferring them when actually absent ? [“Five
ways to misestimate risk”, NERC-KTN PURE white paper in prep, 2012]

Idea of selfsimilar extreme “bursts” from SOC. Can we predict statistics of
bursts from scaling? [Watkins et al, PRE; 2009; AGU Hyderabad Chapman
Conference book, in press 2012 ]

But how often is reality actually selfsimilar ? Why did Mandelbrot come to
embrace richer, multifractal models? [c.f. Rypdal & Rypdal, 2011].
Indications of how multifractality affects a time series’ properties
including bursts [Watkins et al, PRL, 2009; Rypdal, Watkins and
Lovsletten, in prep. ].

Open issues, next steps, collaboration ?

And how does the kind of animal that we are enter the process of finding
new models ? Cognitive diversity [SKIPPED, HAVE INCLUDED DIRAC AND
MANDELBROT SLIDES AS MOST RELEVANT HERE].
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