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Uncertainty quantification (UQ) in computer experiments

I Context: Deterministic and complex numerical simulator are used to model
real dynamic systems and they can be computationally expensive to run

I We are interested to study the effect of epistemic (lack of knowledge) and
aleatoric (inherent to system) uncertainties on the model outputs

I Sources include initial condition, boundary condition & model parameters

I Example: drug clearance in circulation as an exponential decay response
dθ
dt

= −Cθ with C as a r.v. that represents the population response

I Conventional approaches such as MC are not practical in studying these
expensive simulators

I Goal: PC construct a metamodel that mimics the complex model’s
behaviour and conduct UQ, SA, quantile estimation, optimization,
calibration, etc.



Probabilistic framework

The UQ of a computer experiment follows the following iterative steps:

1. representation of input uncertainties - random variable or process

2. uncertainty propagation - MC, GP or gPC

3. quantification of solution uncertainty - mean, variance, pdf or sensitivity

!
De Rocquigny (2006)



Stochastic input representation: stochastic process
Any second order random process κ(x , ω), with continuous and bounded
covariance kernel C(x1, x2) = E(κ(x1, ω)⊗ κ(x2, ω)), can be represented as an
infinite sum of random variables. It is real, symmetric and positive–definite.
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I Karhunen-Loève (KL) expansion represents the random process with an
orthogonal set of deterministic functions with random coefficients as

κ(x , ω) = µκ(x) +
NX

n=1

√
λnψn(x)ξn(ω).

I For a continuous kernel, the convergence of the KL expansion is uniform
as N →∞. Karhunen (1948) & Loève (1977)

I ψn(x) and λn solved from Fredholm integral equation of 2nd kind with
C(x1, x2).



Stochastic input representation: random variables

I Represent the random variable, κ(ω), with orthogonal functions of the
stochastic variable with deterministic coefficients

κ(ω) =
∞X

m=0

κmφm(ξ(ω)).

I Wiener-Chaos: representation of a Gaussian random variable using
Hermite polynomials with L2 convergence as M →∞. Wiener (1938), Ghanem &

Spanos (1991) and Cameron & Martin (1947)

I generalized Polynomial Chaos: generalized representation to non-Gaussian
random variables with polynomials from the Wiener–Askey scheme. Xiu &

Karniadakis (2002)

I if κ(ω) follows a normal distribution, it can be represented exactly as
κ(ω) = µκ + σκξ where ξ is the linear term in Hermite



Selection of orthogonal basis

I In the propagation step, we need to evaluate the inner product w.r.t. the
probability space measure, ρ(ξ)dξ as

〈φi (ξ), φj(ξ)〉 =

Z
Γ

φi (ξ)φj(ξ)ρ(ξ)dξ.

I Correspondence between the pdf of ξ, ρ(ξ), and the weighting function of
classical orthogonal polynomials, w(ξ), determines the polynomial basis

Distribution Random variable, ξ Wiener-Askey PC, φ(ξ) Support, Γ

Continuous Gaussian Hermite-chaos (−∞,∞)
gamma Laguerre-chaos [0,∞)

beta Jacobi-chaos [a, b]
uniform Legendre-chaos [a, b]

Discrete Poisson Charlier-chaos {0, 1, 2, . . . }
binomial Krawtchouk-chaos {0, 1, . . . ,N}

negative binomial Meixner-chaos {0, 1, 2, . . . }
hypergeometric Hahn-chaos {0, 1, . . . ,N}

Periodic uniform Fourier-chaos∗ [−π, π)



Multivariate basis

Multivariate basis is the tensor products of 1D polynomials

φm(ξ) = φαm,n=1 (ξ1)⊗ φαm,n=2 (ξ2)⊗ · · · ⊗ φαm,n=N (ξN), for m = 0, · · · ,M,

= φαm (ξ), for m = 0, · · · ,M.

Truncation depends on input dimension, N, and output nonlinearity, P

m P
Q

Notation Legendre Polynomials

0 0 P0(ξ1)P0(ξ2) 1

1 1 P1(ξ1)P0(ξ2) ξ1

2 P0(ξ1)P1(ξ2) ξ2

3 2 P2(ξ1)P0(ξ2) 3/2ξ2
1 − 1/2

4 P1(ξ1)P1(ξ2) ξ1ξ2

5 P0(ξ1)P2(ξ2) 3/2ξ2
2 − 1/2

6 3 P3(ξ1)P0(ξ2) 5/2ξ3
1 − 3/2ξ1

7 P2(ξ1)P1(ξ2) 3/2ξ2ξ
2
1 − 1/2ξ2

8 P1(ξ1)P2(ξ2) 3/2ξ1ξ
2
2 − 1/2ξ1

9 P0(ξ1)P3(ξ2) 5/2ξ3
2 − 3/2ξ2

−1
0

1

−1

0

1
0

1

2

M = 0

ξ
1

ξ
2

−1
0

1

−1

0

1
−1

0

1

ξ
1

M = 1

ξ
2 −1

0
1

−1

0

1
−1

0

1

ξ
1

M = 2

ξ
2

−1
0

1

−1

0

1
−0.5

0

0.5

1

ξ
1

M = 3

ξ
2 −1

0
1

−1

0

1
−1

0

1

ξ
1

M = 4

ξ
2 −1

0
1

−1

0

1
−0.5

0

0.5

1

ξ
1

M = 5

ξ
2

−1
0

1

−1

0

1
−1

0

1

ξ
1

M = 6

ξ
2 −1

0
1

−1

0

1
−1

0

1

ξ
1

M = 7

ξ
2 −1

0
1

−1

0

1
−1

0

1

ξ
1

M = 8

ξ
2 −1

0
1

−1

0

1
−1

0

1

ξ
1

M = 9

ξ
2



Stochastic Galerkin method: intrusive approach

PC represent the stochastic solution u(x, ξ) with the same orthogonal basis as
the input, i.e. u(x, ξ) =

P
um(x)φm(ξ)

Substitute the expansions into the system of equations, L(x, ξ; u) = f (x, ξ).
Take the Galerkin projection, i.e.

〈L
“

x, ξ;
X

um(x)φm(ξ)
”
, φm(ξ)〉 = 〈f (x, ξ) , φm(ξ)〉, for m = 0, ...,M.

I um(x) are solved from the system of (M + 1) coupled equations.

I The system is deterministic and can be solved using a standard
discretization technique.

I Extensive modification on the simulator is needed.



Stochastic Galerkin method: intrusive approach

Example

First-order linear ODE: Θ̇(t, ξ) = −C(ξ)Θ(t, ξ) with rate of decay as a normal
r.v., i.e. C(ξ) =

PM
i=0 Ciφi (ξ). The gPC expansions of C(ξ) and Θ(t, ξ) are

substituted into the ODE to give

MθX
k=0

Θ̇k(t)φk(ξ) = −
MCX
i=0

MθX
j=0

Ci Θj(t)φi (ξ)φj(ξ).

The Galerkin projection of the expanded ODE with orthogonal polynomial:

Θ̇k(t) = −
MCX
i=0

MθX
j=0

〈φiφjφk〉
〈φ2

k〉
Ci Θj(t), for k = 0, ..., Mθ.

This coupled deterministic system of equations is solved with an initial
condition Θ(t = 0) =

P
Θm(t = 0)φm(ξ). With increasing t, the modal

coefficients are propagated from the lower Θm to higher Θm, i.e. propagation of
uncertainty as increasing non–linear response in the random space.



Surface response of the linear ODE

I Θ̇(t, ξ) = −C(ξ)Θ(t, ξ)

I Θ(t, ξ) response is exponential in t with Θ(t = 0) = 1.

I Treating the coefficient of decay as a random variable, C(ξ) ∼ N (1, 1)

I We represent the univariate stochastic output Θ(t; ξ) as a linear
combination of Hermite polynomials Θ(t; ξ) =

P
Θm(t)φm(ξ).

I Uncertainty propagation visualized as solution response surface evolution
in random space, ξ
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The choice of polynomial chaos truncation

I As response in ξ becomes more non–linear with t, the higher order P in
φm(ξ) are needed in gPC expansion

I Estimation of higher order statistics also require higher P

I Premature truncation leads to large error in the response surface and the
solution statistics
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Evolution of the PC coefficients

I Increasing t propagates the initial uncertainty from lower order coefficients
to higher order coefficients
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I The task now is to determine the coefficients of expansion, Θm(t) in the
representation.

I This simple system of equation easily solved with the intrusive approach

I Complex numerical solvers can benefit from a non–intrusive approach



Probabilistic collocation method (PCM)

Projecting directly the stochastic solution, u(x, ξ) =
P

um(x)φm(ξ), onto the
orthogonal basis, φm(ξ), we obtain the following (M + 1) decoupled equations:

um(x) =
〈u(x, ξ), φm(ξ)〉
〈φ2

m(ξ)〉 , for m = 0, ...,M.

The inner–product can be evaluated using Monte Carlo or related methods.
We investigate a numerical quadrature approach to approximate the inner
product where the numerical solver is treated as a black box from which
samples are repeated taken.



One–dimensional quadrature rules

Integrals are approximated as the weighted sum of function evaluations on
deterministic quadrature points, i.e.

〈u(x, ξ), φm(ξ)〉 =

Z
Γ

u(x, ξ)φm(ξ)ρ(ξ)dξ,

≈
NqX
j=0

wju(x, zj)φm(zj).

The accuracy of the method depends on the selection of the quadrature
approach, i.e. constructions of wj and zj .

Γ P Nq Nestedness

Gauss-Legendre (-1,1) 2L − 1 L No

Clenshaw-Curtis [-1,1] L − 1 2L−1 + 1 Yes

Gauss-Laguerre [0,∞) 2L − 1 L No

Gauss-Hermite (−∞,∞) 2L − 1 L No

Hermite Kronrod-Patterson (−∞,∞) 2m + n − 1∗ 1-3-9-19-35 Yes
or 1-4-18-30

Multi–dimensional quadrature rules are constructed from 1D quadrature rules.



Full–tensor quadrature

Multi–dimensional full–tensor quadrature relies on tensor product of 1D
quadrature rules, e.g. N–dimensional quadrature points are

QN
L (f ) = (U i1 ⊗ · · · ⊗ U iN )(f ).

Example: Two–dimensional Gauss–Legendre quadrature:
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Accuracy: Theoretical polynomial exactness P = 2L− 1 in each dimension
where L is the number of quadrature points in each dimension
Cost: Number of quadrature points grows as O(LN) and error converges as
ε(Z) = O(Z−r/N). – “curse of dimensionality”



Sparse quadrature: the Smolyak approach

“Curse of dimensionality” could be ‘broken’ with the sparse grid. Its
construction is based on the following three steps: Gerstner & Griebel (1998)

1. Constructed from 1D difference grid

2. Tensor product of 1D difference grids: cost reduction

3. Linear combination of the tensor products: embeddedness → refinement
cost reduction

Accuracy: Theoretical polynomial exactness at least P ≤ 2L− 1 where L is the
quadrature level. Smolyak (1963), Novak & Ritter (1996)

Cost: Error converges as ε(Z) = O(Z−r (log(Z)(N−1)(r+1))). Novak & Ritter (1996)



Sparse quadrature: with nested Clenshaw-Curtis quadrature rule

1D difference grid: 41
k f :=

`
Q1

k −Q1
k−1

´
f

Tensor product:
`
41

k1
⊗ · · · ⊗ 41

kN

´
f

Linear combination: QN
L [f ] :=

P`
41

k1
⊗ · · · ⊗ 41

kN

´
f

∆1
1f ∆1

2f ∆1
3f ∆1

4f

Q1
1f Q1

2f Q1
3f Q1

4f



Sparse quadrature: with nested Clenshaw-Curtis quadrature rule

1D difference grid: 41
k f :=

`
Q1

k −Q1
k−1

´
f

Tensor product:
`
41

k1
⊗ · · · ⊗ 41

kN

´
f

Linear combination: QN
L [f ] :=

P`
41

k1
⊗ · · · ⊗ 41

kN

´
f



Sparse quadrature: with nested Clenshaw-Curtis quadrature rule

1D difference grid: 41
k f :=

`
Q1

k −Q1
k−1

´
f

Tensor product:
`
41

k1
⊗ · · · ⊗ 41

kN

´
f

Linear combination: QN
L [f ] :=

P`
41

k1
⊗ · · · ⊗ 41

kN

´
f



Sparse quadrature: comparison with full–tensor quadratures

Sparse Clenshaw-Curtis Chebyshev: P=7, P=9 & P=11
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Full Gauss–Legendre Quadrature: P=7, P=9 & P=11
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Canonical, maximum and anisotropic expansions
M is determined by the accuracy of the quadrature approach. If the quadrature
has a polynomial accuracy of P or P, there are the following expansions for

fr (x) =
X

α∈NN

fαφα(x)

I Canonical: total degrees not greater than P, i.e. {φα / |α| ≤ P}
I Maximum: degree in each n not greater than P, i.e. {φα / α ≤ P}.
I Anisotropic: degree in each n not greater than Pn, i.e. {φα / α ≤ P}.

M P Legendre polynomial Canonical, P = 2 Maximum, P = 2 Anisotropic P = [3, 1]

0 0 1 P0(x1)P0(x2) P0(x1)P0(x2) P0(x1)P0(x2)

1 1 x1 P1(x1)P0(x2) P1(x1)P0(x2) P1(x1)P0(x2)

2 x2 P0(x1)P1(x2) P0(x1)P1(x2) P0(x1)P1(x2)

3 2 3/2x2
1 − 1/2 P2(x1)P0(x2) P2(x1)P0(x2) P2(x1)P0(x2)

4 x1x2 P1(x1)P1(x2) P1(x1)P1(x2) P1(x1)P1(x2)

5 3/2x2
2 − 1/2 P0(x1)P2(x2) P0(x1)P2(x2) P0(x1)P2(x2)

6 3 5/2x3
1 − 3/2x1 P3(x1)P0(x2) P3(x1)P0(x2) P3(x1)P0(x2)

7 (3/2x2
1 − 1/2)x2 P2(x1)P1(x2) P2(x1)P1(x2) P2(x1)P1(x2)

8 x1(3/2x2
2 − 1/2) P1(x1)P2(x2) P1(x1)P2(x2) P1(x1)P2(x2)

9 5/2x3
2 − 3/2x2 P0(x1)P3(x2) P0(x1)P3(x2) P0(x1)P3(x2)

10 4 35/8x4
1 − 15/4x2

1 + 3/8 P4(x1)P0(x2) P4(x1)P0(x2) P4(x1)P0(x2)

11 (5/2x3
1 − 3/2x1)x2 P3(x1)P1(x2) P3(x1)P1(x2) P3(x1)P1(x2)

12 (3/2x2
1 − 1/2)(3/2x2

2 − 1/2) P2(x1)P2(x2) P2(x1)P2(x2) P2(x1)P2(x2)

13 x1(5/2x3
2 − 3/2x2) P1(x1)P3(x2) P1(x1)P3(x2) P1(x1)P3(x2)

14 35/8x4
2 − 15/4x2

2 + 3/8 P0(x1)P4(x2) P0(x1)P4(x2) P0(x1)P4(x2)



gPC as a Uncertainty Quantification (UQ) & Sensitivity Analysis (SA) tool

Statistical moments:

µu(x) =

Z
Γ

ur (x;ω)φ0(ξ)ρ(ξ)dξ = u0(x),

σ2
u,gPC (x) =

Z
Γ

"
MX

m=0

um(x)φm(ξ)− u0(x)

#2

ρ(ξ)dξ =
MX

m=1

u2
m(x)〈φ2

m(ξ)〉.

Solution sensitivity: Partial differentiation wrt ξn Agarwal (2008)

Sξn (x) =
∂ur (x; ξ)

∂ξn
.

Sensitivity analysis: partial variances Sobol’ (1993)

σ2
u(x) =

NX
i1=1

Di1 (x) +
NX

i1=1

i1X
i2=1

Di1 i2 (x) +
NX

i1=1

i1X
i2=1

i2X
i3=1

Di1 i2 i3 (x) · · ·+ Di1 i2...iN (x).

Probability density function (PDF): numerical computation from the
histogram of a large MC sample of ur (x, ξ) based on the distribution of ξ



Application of gPC to some examples

Examples Tasks N R.V / Representations

Mixing layer magnitude UQ & SA 2 & 3 Uniform/Legendre
Mixing layer phase UQ & SA 1 & 2 Periodic/Fourier

Toy models QE 1 to 10 Gauss.&Uni./Herm.&Leg.
Global circulation model SA & CAL. 5 Log-uni.&Uni./Leg.



Sensitivity of spatially developing mixing layer

I Coherent vortical structures triggered by inflow forcing Brown & Roshko (1974)

I Shear layer at the inflow approximated as U in(y) = 1 + λ tanh(y/2)

I Downstream shear layer growth is very sensitive to forcing definition

I Forcing with LST fundamental mode, i.e. most unstable, and its
subharmonic modes: up(y , t) =

P
εnfn(y) exp(i(ωnt + γn))

I 3D flow structure is largely 2D → 2D DNS Delville et al. (1999)

I Goal: To generalize the approach to design discrete forcing with random
magnitude or phasing

10 1. Introduction
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Figure 1.5: Specification of the computational domain, consisting of stream-
wise (x1), normal (x2) and spanwise (x3) direction. The streamwise domain is
from xi to xo and the buffer starts at xb.

in Figure 1.5. Periodic boundary conditions are used in the spanwise direc-
tion. Beyond the trailing edge of a splitter plate a mixing layer is formed. The
inflow boundary of the computational domain is situated downstream of this
trailing edge. When the mixing layer is described, globally three typical areas
can be distinguished. The turbulence, that we are mainly interested in, arises
around the centerline. The free-streams of the mixing layer refer to both outer
sides of the normal domain which are characterized by steady flow. The areas
in between these two are called the edges of the mixing layer.

During the simulations, the mixing layer is forced at the inflow boundary
by imposing perturbations that travel downstream and grow. The laminar flow
just behind the inflow boundary is followed by a transitional region containing
typical structures such as lambda-vortices [21, 78]. These interact and develop
further downstream into a turbulent state. At the outflow a buffer domain is
introduced which is typically about 10% of the total domain and has the
purpose of decreasing the perturbations to zero [105]. In order to be able to
compare the spatial mixing layer DNS and LES with the temporal mixing
layer study done in [104] we use the same grid distance and other relevant
parameters.

The simulations suggested here can only be performed for a simple con-
figuration. This implies that not only the computational domain but also the
Reynolds number should be small enough. Another turbulent shear flow set-

De Brun (2001)



Sensitivity to forcing: magnitude εn
I Instantaneous vorticity contours with bimodal perturbation
I Vortical structure variation as the relative frequency content in inflow

forcing changes
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Stochastic mixing layer with random magnitudes, εn

Treat εn and γn as random variables to determine the most general way to
control mixing layer growth with inflow forcing.

I Bimodal forcing and trimodal forcing examined

I Stochastic forcing magnitudes εn as uniform variables in [0, 10%U]

I Legendre-Chaos expansion of stochastic fields

I Mixing layer solutions with 2D spectral/hp DNS solver

I Re = 100, λ = 0.5

I Non–intrusive Probabilistic Collocation Method with full–tensor
Gauss–quadrature

I 81 full–tensor quadrature points for bimodal forcing (N=2, L=9, P=8) &
1000 for trimodal (N=3, L=10, P=9)

I Examine time-averaged mixing layer thickness, e.g. momentum thickness θ



Accuracy of the gPC expansion: solution prediction

With u(x, ξ) = um(x)φm(ξ), we can predict the solution at an arbitrary point
within Γ. Accuracy of the prediction increases with increasing M or P.



Response variability in trimodal perturbation case

I Initial response up to x/θin = 250 similar to the bimodal case

I Large local variance at the location associated with the onset of
deterministic subharmonic vortex merging

y/
θ in

mean

 

 

0 50 100 150 200 250 300 350 400 450 500
−40

−20

0

20

40

−0.2

−0.1

0

x/θ
in

y/
θ in

var

 

 

0 50 100 150 200 250 300 350 400 450 500
−40

−20

0

20

40

0

2

4

6
x 10

−4



Partial variance contour in trimodal vorticity
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I Dn: sensitivities of the solution to εn

I Contours of each sensitivity index
correspond closely to the deterministic
vortex-roll up of each mode



Partial variance in trimodal vorticity contour
y/

θ in

D
12

/max(var)

 

 

0 50 100 150 200 250 300 350 400 450 500
−40

−20

0

20

40

0

0.01

0.02

0.03

0.04

y/
θ in

D
13

/max(var)

 

 

0 50 100 150 200 250 300 350 400 450 500
−40

−20

0

20

40

0

5

10

x 10
−3

y/
θ in

D
23

/max(var)

 

 

0 50 100 150 200 250 300 350 400 450 500
−40

−20

0

20

40

0

0.05

0.1

x/θ
in

y/
θ in

D
123

/max(var)

 

 

0 50 100 150 200 250 300 350 400 450 500
−40

−20

0

20

40

2

4

6

8

10
x 10

−3

I Dij : sensitivities of the solution to
interaction between εi and εj

I Large D12 and D23 → interactions
between successive modes are
dominant Kelly (1967)

I D123: sensitivities of the solution to the
mutual interaction amongst all modes



θ PDF in trimodal perturbation case
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Stochastic mixing layer with random phase γn

I Bimodal forcing and trimodal forcing examined

I Stochastic phase shifts γn as uniform random variables in [0, 2π)

I Forcing magnitudes maintained at
P
εn = 10%U

I SCM with Newton-Cotes quadrature

I Fourier-Chaos expansion of stochastic fields

I Discrete Fourier transformation (DFT) speeds up coefficient computations

I 72 equidistant quadrature samples are used (nested points)

I Examine time-averaged mixing layer thickness, e.g. momentum thickness θ



Response of momentum thickness
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I Symmetry observed as γ2 ∈ [0, 2π]
includes two periods of fund. forcing

I Mixing layer growth strongly delayed
over small γ2 range near 70◦ Inoue (1995)

I Delayed growth reported for γ2 = 0 at
merging locations Stanley & Sarkar (1997)

I 45◦ difference between inflow forcing
formulations

I Phase shift at inflow does not
correspond to phase shift at merging
locations



Mixing layer growth rate statistics

I ∂θ/∂x examined for:
Normal growth: γ2 = U(−30◦, 30◦) & γ2 = U(90◦, 150◦)
Delayed growth: γ2 = U(30◦, 90◦)
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I ’Normal growth’: Fast growth near inflow followed by sharp drop in
∂θ/∂x . Drop or contraction of the mixing layer Oster & Wygnansk (1982)

I ’Delayed growth’: Slower growth with less ∂θ/∂x fluctuation. Large
variance due to solution sensitivity in γ2 ∈ [45◦, 80◦]. Range of sensitivity
is small Stanley & Sarkar (1997)



PC as a quantile estimation tool

Empirical quantile: estimated from Ŷα = inf{y ; F̂ (y) ≥ α} which gives

Ŷα = Y(dαZe), (1)

where {Y(i)}Zi=1 are the ordered set of the Z MC samples.
The metamodel accurately determines the statistical moments but fails in
extreme quantile estimations, i.e. α near 0 or 1.
We propose a multi–element refinement approach: global gFC metamodel is
complimented by local metamodel constructed around design points ξα.
Design point: most likely random input that corresponds to ur (x, ξ) = uα(x).
This gives a constraint nonlinear minimization problem , i.e.

min ‖ξ‖, s.t.

MX
m=0

um(x)φm(ξ)− Ŷα = 0.

The above problem is solved by the method of Lagrangian multipliers.



Multi–Element Monte Carlo simulation

Local gPC metamodels are created around the design points. The multielement
solution is used as the metamodel, i.e.

DME =

(
Dglobal = D \ Dlocal, domain of global gPC,

Dlocal = ∪Dβi , domains of refinement about ξ̂αi
, for i = 1, ...,Nβ .
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The final multi–element gPC (MEgPC) metamodel is

fME(x) =

(PM
m=0 fmφm(x), if x ∈ Dglobal,PM∗i
m=0 f ∗m,iψm,i (T−1

i (x)), if x ∈ Dβi .

where Ti a transformation operator that maps a point in the uniform bounded
support x∗ ∈ [−1, 1]N to the local domain x ∈ Dβi .



Example: Gaussian–like response

We examine the quantile of the output of a Gaussian-like function:

f (x) =

NαX
i=1

NY
n=1

exp

 
−(xn − µn,i )

2

2σ2
n,i

!
, (2)

where ‖µ‖ = 2, σ = 1, x are i.i.d. random variables and xn ∈ N (0, 1).

Multi–element Metamodel



α–quantile estimator convergence for MC, IS and global gPC

I Monte Carlo Ŷα converges as 1/
√

Z

I Importance sampling Ŷα computed at selected Z : Z/2 MC samples for
first estimate of Ŷα, at most Z/4 for GPM and the rest for IS

I Global full and sparse gPC estimations of Ŷα,r (from L = 3 to 7) are poor
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Effects of different local refinements

I Local full (canonical & maximum) and sparse gPC metamodel refinements

I Maximum expansion improves the accuracy of Ŷα,ME given the same Z

I Seek best ξ̂α,r estimation by maximizing Z in global gPC metamodel
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Target cost study

I An arbitrary target cost that increases linearly with N: Ztotal = 100N

I Monte Carlo and importance sampling Ŷα with entire sampling budget

I Global full and sparse + local full maximum (+) and sparse (◦)
supplemental metamodels

I Maximize global metamodel cost while not exceeding the entire budget
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Example: Hypertangent response

We examine the quantile of the output of a hypertangent function:

Y (x) = 1 + tanh

 
NX

n=1

σn(xn − µn)

!
.

where the N–dimensional input are i.i.d. random variables x ∈ N (0, 1).

Double Peak Response
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Anisotropic grid

I The dominance of some random variables can be revealed by examining
the partial variance of the global gPC metamodel

I One–dimensional metamodels about ξ̂α,r can identify dominant directions
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I Anisotropic grids, P in ξ̂
′
α,r and linear in transverse directions, reduce cost
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Target cost study

I An arbitrary target cost that increases linearly with N: Ztotal = 100N

I Monte Carlo and importance sampling Ŷα with entire sampling budget

I Global full and sparse + local full canonical (�) and anisotropic (4)
supplemental metamodels

I Maximize global metamodel cost while not exceeding the entire budget
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Quantile of multivariate output

We assume that all components of the random output Y are extreme and
define the multivariate α–quantile as the point yα where the multivariate and
marginal cdf’s satisfy the following conditions

F (yα) = α and F1(yα,1) = F2(yα,2) = · · · = FK (yα,K ) (3)

where K is the number of outputs. Results with N=2 and α = 99% case for
multiple Gaussian peaks:
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Calibration and sensitivity analysis GCM

I Examine the AGCM ECHAM6 with uncertain parameters in cloud
modeling

I 1977 climatological distributions of sea ice and surface temperature used
as initial condition

I Five R.V. in the expert range transformed to the Gaussian space

I Ensemble of model output created for a single year run

I Full–tensor quadrature with squadratic accuracy, i.e. 243 points



Selection of the input random variables

Table: Expert parameter range and their default values

Parameter Range Default value
entrainment rate for shallow convection (entrscv) 0.0003-0.001 0.0003

entrainment rate for penetrative convection (entrpen) 0.00003-0.0005 0.0001
inhomogeneities of ice clouds (zinhomi) 0.65-1.0 0.7

inhomogeneities of liquid clouds (zinhoml) 0.65-1.0 0.7
conversion rate of cloud water to rain (cprcon) 0.0001-0.005 0.0004

I zinhomi & zinhoml are treated as uniform r.v.
I entrscv, entrpen & cprcon are treated as uniform r.v or log uniform r.v.
I A dependent parameter, cmfctop = entrscv × 1000

3
, is included

I A uniform distribution under–weights the entire lower range
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Validation: Comparison of computed global contours and gPC predictions
I Comparison at an arbitrary point within the support
I Exact solution vs gPC prediction for global radiation and precipitation
I For December 1970, large–scale patterns resolved in time-averaged results
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Validation: Comparison of computed global means and gPC predictions

I Global mean should be consider to avoid small eccentric scales
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Sensitivity analysis

I Partial variances reveal strong effects from ‘entrpen’.

I Couple terms in the partial variance is much smaller

I Temperature PDF generated from the gPC metamodels with 105 Monte
Carlo samples.
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Code calibration

For optimization problem with K objective functions, we seek all the ξ that
satisfy the following minimization problem, e.g.

ξ∗ = argmin
ξ

KX
k=1

ωk

 
MX

m=0

um,k(t)φm(ξ)− uobs,k(t)

!2

for t = 1,...,364

The choice of weight vector ω is arbitrary. Many optimization algorithms exist.
So far K=1

I Lagrange multiplier algorithm used to solve the constraint nonlinear
minimization problem for global averaged temperature

I uobs are the daily global averaged temperature in 1970 from ECMWF

I the following figures show the daily ‘optimal’ value for each parameter

I with additional objective functions, there is likely to be non-dominant sets,
i.e. one cannot make one objective better without worsening the other
objectives Neelin (2001)



Calibration results

Parameter Range Default value
entrainment rate for shallow convection (entrscv) 0.0003-0.001 0.0003

entrainment rate for penetrative convection (entrpen) 0.00003-0.0005 0.0001
inhomogeneities of ice clouds (zinhomi) 0.65-1.0 0.7

inhomogeneities of liquid clouds (zinhoml) 0.65-1.0 0.7
conversion rate of cloud water to rain (cprcon) 0.0001-0.005 0.0004
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Some concluding remarks

I PC and gPC constructs metamodels that accurately mimics the behaviours
of complete simulators about the mean of the stochastic inputs

I Initial used as a UQ ans SA tool in engineering problems

I It has potential as a multi–objective optimization tool

I There is no free lunch – it suffers from the “curse of dimensionality”

I Adaptive techniques (multi–element, anisotropic quadrature) can reduce
cost

I To investigate anisotropic spare quadrature & sparse gPC representation

I Reduce input dimension via non–dimensional analysis or identification of
dominant inputs

I Orphan points (difference between sample budget and quadrature cost) -
can we use them in a sequential design – with Hugo?

I Including data assimilation and Bayesian analysis in gPC/PC framework

I Practical issues: need better random input measurement
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