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I. Introduction 
 
Our workshop took place as planned, involving ultimately a group of 13 scientists, 
ranging from modelers to the “consumers” of models.  Our special focus was on the 
modeling of terrestrial climate, from the relatively short-term (viz., weather to 
seasonal forecasting) to the long-term (e.g., decadal and climate forecasting); and 
our particular emphasis was on reaching a better understanding of what current 
models of terrestrial climate are capable of doing, how their present capabilities 
match with the needs of the “climate model consumers”, and what will need to be 
done to accomplish a more satisfactory match between what can be done – even in 
principle – and what is desirable from the public policy perspectives. 
 
The participants of our workshop are listed in the table immediately below. 
 
Name Affiliation 
Berger, Jim Duke University 
Bogdan, Tom N/A 
Du, Hailiang Univ. of Chicago (Computation Institute) 
Mason, Simon The Earth Institute of Columbia University 
Nissan, Hannah Columbia University 
Oberkampf, William WLO Consulting 
Petersen, Arthur University College London (UCL) 

Rosner, Robert University of Chicago (Dept. of Physics and Energy 
Policy Institute at Chicago) 

Smith, Leonard London School of Economics (and Pembroke 
College Oxford) 

Stainforth, Dave London School of Economics and Political Science 
Tribbia, Joe National Center for Atmospheric Research 

von Hardenberg, Jost Institute of Atmospheric Sciences and Climate – 
National Research Council 

Wehner, Michael DOE Lawrence Berkeley Laboratory-Scientific 
Computing Group 

 
The discussions focused on two distinct areas of climate modeling: first, gaining a 
better understanding of model weaknesses; second, identifying specific areas that 
can lead to enhanced predictive capabilities of climate models.  We provide a short 
glossary of key terms in an appendix. 
  

http://www.stat.duke.edu/~berger/
https://www.researchgate.net/profile/Hailiang_Du
http://iri.columbia.edu/contact/staff-directory/simon-mason/
http://www.ucl.ac.uk/steapp/people/petersen
https://www.ci.uchicago.edu/profile/301
http://www.lse.ac.uk/collections/cats/Lennypage.htm
http://www.lse.ac.uk/CATS/Home.aspx
http://www.isac.cnr.it/en/users/jost-von-hardenberg


II. Diagnostics of model weaknesses  
 
1. Assessing model failure 
 
The question of how to assess model failure entails a number of separate issues that 
are best discussed individually. 
 

• Current practice is to run models to provide predictions for the end of the 
Century.  This is not scientifically sensible: It would make scientific sense to 
run the forecasts out as far as the models can produce some meaningful 
information.  Thus, model forecasts may have drifted off on highly unrealistic 
trajectories as a result of structural model errors after a relatively short 
period (only a few months or years); it makes no sense to apply simplistic 
bias corrections to these forecasts. 
 

• Quantifying the timescales on which different climatic variables are captured 
by an ensemble is a key desirable.  The above begs the question of how one is 
to discover how far out forecasts can be run before they stop being sensible.   
One possible solution is to look at model ensembles, which can provide a 
collection of trajectories of the future.  The key is to identify the drivers, and 
to get them correct – this task is thus about assessing the timescale (Tau) on 
which the range of the ensemble fails to capture behavior in reality, and in 
particular the behavior of the drivers (example: El Nino). This could be as a 
function of some independent variable, for example, location x, e.g., Tau(x).   
Note that this does require us to distinguish between driving phenomena and 
target phenomena.  For example, not being able to forecast a target 
phenomenon at time t* need not imply we cannot forecast it at 2t*, but rather 
reveals our inability to forecast the drivers of the target phenomena.  Multi-
model (MM) ensembles can help us understand these connections, and the 
model properties that enable them, e.g., fidelity of the driver(s). 

 
o Example, in long-term simulations: When does bias correction (or 

projection of results from model space to reality) start to fail? Even if 
we bias-correct the models locally so that their climatology locally 
looks right, this will fail after some time.  We could measure this, and 
define a local Tau(x). 

o Example in seasonal prediction: We typically initialize an ensemble of 
initial conditions with the observed state – and then we can ask, when 
does some model solution(s)/ensemble diverge clearly from reality 
(unable to shadow)?  This would define Tau(x). 

 
• An important issue is the ability to identify where/when model failures occur 

today, e.g., using today’s models.  One way to proceed is to identify geographic 
locations (viz., x = S. Africa/strong El Ninos; El Nino 2014) where Tau(x) is 
relatively short, e.g., where seasonal forecasts are known to fail. 



   
Identifying regional failures, i.e. times and locations where a climate 
prediction ensemble fails in the sense that the model is unable to produce 
any ensemble members that represent the observed state, is an important 
example of what we aim for.  Similarly, one could ask – alternatively, for 
multi-model ensembles (MMEs) – if some model members do get certain 
phenomena right, and others don’t? In fact each model might outperform 
every other model robustly on some set of phenomena (in the short term), 
given the number of targets: Perhaps that can be used to identify the physical 
mechanisms for the model failures?  This affords the opportunity for case 
studies on short-term climate that examine individual members of each 
ensemble in detail. Tracking the subsequent temporal evolution of such 
“local in time and space” failures also permits the determination how the 
forecast loses utility at longer times and distant regions. 
 

2. Optimal use of multi-model ensembles 
 
An important issue is relates to better ways to use multi-model ensembles (MMEs) 
in the extrapolatory range.  Thus, in-sample comparison with past measurements 
(which have been used to guide model development) is potentially misleading – 
unless, of course, the model fails in such comparisons. 
 

• Consider a multi-model ensemble where each model contributes an initial 
condition (IC) ensemble. As time passes, each IC ensemble tends to separate 
into distinct future distributions.  Does this separation indicate (a) different 
initializations (i.e., the models would shadow each other given slightly 
different initial conditions), or (b) different emphasis in the physics of each 
model, or (c) physical inconsistencies between the models, or (d) identifiable 
loss of fidelity in some subset of models? 

 
Surely one aim of a MME is to yield distributions of trajectories ("tubes") that 
disagree in the fine details but agree on the big picture.  When a coherent 
"big picture" ceases to exist, do we have any confidence in any of the 
individual models (as we know the details matter in order one phenomena)?  

 
• How do we interpret the results of a multi-model ensemble?  What types of 

conclusions might we draw, other than subsets of models are “obviously 
erroneous” or “obviously consistent”?  

o When different MM ensembles offer very different outcome worlds, 
and we agree that the detail of implementation (things we know 
about) have a first order impact, we are faced with (at least) two 
options: (1) the outputs are at best mis-informative; or (2) we find a 
method of using “fuzzy” probabilities under the claim/hope that each 
ensemble under each model has some hope in Hades of saying 
something warm and fuzzy.  



o Note that on the time scales over which very different model 
structures yield similar future distributions, we then know that the 
(implementation of) details (we know of) do not matter.  

• We suggest that we can identify erroneous (unreliable) predictions by 
examining a set of output quantities from each of the models to determine if 
any of the set of output quantities (from any given model) is physically 
unreasonable, and so obviously erroneous. (This would be an example of the 
use of expert judgment.)  Since we have no data about the future, this could 
be used as a surrogate for observational data, and could be a possible way to 
quantify a value of Tau, i.e., a minimum length of time for which we do not 
have evidence that  the model is unreliable. 

 
3. Using dynamics to improve model trajectories. 
 
When model trajectories are not matching reality, one can explore model 
  inadequacy by finding ways to “nudge” the model trajectory, to be close to reality. 
The needed nudges (which may also be large, e.g., “bashes”) might indicate features 
of the model that could be problematic. 
 
As another possibility, one can use the existence of shadowing orbits to find better 
initialization procedures which in turn  produce better distributions of trajectories.  
If this cannot be done, or if the suggested  initializations are unreasonable, this 
indicates a limitation of the model. 
   
We note that the notions of “shadowing” and “nudging” need to be clearly 
differentiated.  A model can shadow if a trajectory exists that stays “close” to the 
target time series of states.  (N.b.: there are three definitions of “close”, leading to 
epsilon-shadows, iota-shadows and phi-shadows).   A forecast system can fail to be 
informative even when the model can shadow, simply because, say, the ensemble 
generation scheme failed to locate initial conditions which shadow.  Alternatively, 
there may be no trajectory of the model  (with probability one) that shadows.  In 
this case, there may be pseudo-orbits that stay close to the targets.  (Pseudo-orbits 
are not trajectories of the model, but segments of trajectory that are periodically 
“nudged” (thus, violating the dynamics of the model) so as to stay on/near track.) 
 
III.  Enhancing Predictive Aspects of Climate Modeling  
 
The question we address here is how one might go about identifying aspects of 
climate change that are both of interest to the “users” of models, and are plausibly 
forecast with some “skill” by the models. 
  
1. We identified a potentially productive approach:  Define a set of events that 

historically have had very low probability, but whose probability is increased 
significantly as a result of climate change. 
 



The aim is to avoid post hoc attribution of events by recasting the prediction 
problem for climate change.  This could be done by a priori identifying a set of 
events that would not be expected to be observed without climate change.  The 
observation of a sufficient number of such events would therefore be evidence for 
climate change. What we want to do is to define a set of events taking into account 
variables for which we can detect significant change (and we expect significant 
change on a physical basis); furthermore, we will need to determine what that 
“sufficient number” ought to be.  The key element here is that we define ahead of 
time what might change, instead of doing attribution of events that have been 
observed, after the fact. 
 
All this will involve completing the following tasks: 

 
a. Use our physics knowledge to define rare events that may be unprecedented, 

and might occur more frequently because of climate change. Physics will also 
help to identify what would be the mechanisms (teleconnections, changes in 
blocking etc., changes in ocean circulation) 
 

b. Identify variables that are most useful to users and to the general public. We 
may wish to construct different baskets based on different user groups. 

 
c. Use statistics to define how many samples would be needed in order to 

characterize significant change. Exploit the fact that one could operate at 
different spatial and temporal scales to get more samples. Exclude variables 
where this is not possible. Empirical sampling from model simulations can 
also help to assess statistical significance. 

 
d. Construct proof-of-concept analyses/experiments using model simulations. 

 
e. An additional idea is that for each basket we could build one single index of 

change (possibly similar to the idea of climate hot-spots indices). This could 
be tracked historically. See for example the HY-INT index of hydroclimatic 
change by Giorgi et al. 2011 (doi:10.1175/2011JCLI3979.1.) 

 
The goal articulated above can also be addressed by examining changes in the 
distributions, such as changes in the tails of the distributions (e.g., changes in 
extreme precipitation), or changes in, viz., the position of quartile distributions.  The 
idea would be to predict expected changes in distribution functions for some 
particular observable, based on our physics/model understanding of climate 
change, and then to ask whether historical comparison of distributions for such 
observables show significant differences.  It will be important to identify such 
observables for which such comparisons have NOT already been made, since the 
strength of this approach is to make a priori predictions (not post-dictions) of 
expected climate change-driven distribution function evolution.  
 
2. “Packaging” 



 
The idea is to make information usable for the greatest number of customers 
through a nested binary system.  The core message is a binary one:  
 

(a) I need to pay attention, 
or 

(b) Not to worry. 
 
If (a), then there are two options: 
 

(i) Our capacity to predict the future is severely compromised 
and 

(ii) We have reason for concern – at best, we may know that the chance of 
exceeding a user-defined threshold is greater than a certain level of interest. 

 
This leads to a traditional stoplight (“tercile “) chart partitioning: Green (no worries) 
Yellow (pay attention: I have lost forecast capability), and Red (I have evidence that 
thresholds will likely be exceeded). 
 
Events might include specific local events such as floods or intense precipitation, or 
might be regional impacts such as drought in South Africa or, more than x stations 
experiencing some climatic phenomena.  

 
It is critical that the structure and flow of these decision trees be transparent, and 
may prove critical that information structures beyond those of probability be 
considered (non-probabilistic odds, for example). 
 
3. Studying and comparing ensembles from a range of existing models 
  
The idea here is to take advantage of existing (and possibly additionally computed) 
ensembles, based on existing models, to extract information that can inform risk 
assessments.  For example: 
 

o Diagnose model errors.  Substantial differences in model results likely point 
to model inadequacies in at least one of the models.  Diagnosing why the 
models  diverge should provide useful insight into lim itations of specific 
models and provide indications of what physical processes need to be 
modeled more accurately.  Once these inadequacies have been identified, the 
relevant sub- models could be identified and modified to improve the sub-
model’s representation of the real world.  

 
o Identify model limitations.  These diagnostics of specific model weaknesses 

could be used as guidance to forecasters on the limits of a model’s usability. 
For example, if a model tends to persist El Nino features too long into the 
boreal spring, we may decide to only use this model for seasonal forecasts 
out to late summer. 



   
o Inform forecasters.  How can we use our understanding of the observed 

climate dynamics of a region, combined with a diagnostics of the model 
climate to produce forecasts?  For example, imagine we are trying to make a 
prediction at climate change timescales for South Asia.  We would start with 
identifying the important controls on climate variability in the real world, 
such as the monsoon trough. We would then examine how the monsoon 
trough changes in the model climate.  This approach would be more useful 
than downscaling, especially in areas with minimal global model accuracy.    

 
4. Will there be “changes” in predictability, in the future, on short time scales (say 

days to weeks) due to changes in the climate system over long time scales (decades 
to centuries)?  

 
To answer this question, we’re led to ask the following: 
 

a. How would we design experiments to shed light on this question? 
 

b. What are the diagnostics (both observational and ensemble-based) we would 
use in order to answer this question? 

 
c. Which (if any) changes would have the greatest consequence? Be easiest to 

 address?    
 
IV. Final Discussion 
 
Our final discussion led us to identify four distinct activities that appear to be 
feasible at this point in time: 
 
1. In order to progress, it is evident that we’ll have to show progress on at least one 

seasonal test case – such as, for example, the El Nino/S. Africa connection.  The 
key will then be to see whether one can actually demonstrate that something 
useful can be learned. 
 

2. Next, we believe that “floating” a test set (= “basket”) of events that can be used 
to “detect” or “confirm” our understanding of climatic change is both possible 
and will prove useful.  Issues will include how we chose such a test set, and how 
we manage to stay away from the bugaboo of “full attribution”.  This approach is 
somewhat risky because we are not in a position to evaluate the likelihood of 
event classes occurring in the future that have (on the basis of what we know 
about the past) extremely low probability of occurrence (viz., have never 
happened before).  A similar concern (without the risk) will plague attribution 
studies. 

 
3. In order to deal with the potential limitation of #2, we might “float” a set of event 

distributions which we have reason to believe (on the basis of, e.g., expert 



judgment) are likely (no computed probability!) to change significantly over 
some period into the future – with an aim similar to that of #2.  The choice of 
event distributions should stay away from event distributions for which such 
comparisons have already been made – we want to do the choice a priori … 

 
4. Position papers.  We identified four domains in which it will be useful to “plant 

our flag”: 
 

a. The solicitation and presentation of expert judgment and potential use of 
“fuzzy” probabilities, non-probabilistic odds, and so on. 

b. The development of rigorous techniques for capturing expert judgment 
 

c. Provide examples of traceable accountings of uncertainties for every 
significant example in the Summary for Policy Makers (SPM), as suggested in 
the current guidance notes.. 

 
d. When do you pull the plug on a model, i.e., what are the diagnostics that tell 

us that models are becoming inadequate (n.b.: “inadequate” could refer to 
general inadequacy, i.e., a model is basically useless for any interesting 
forecasting, or could refer to inadequacy in a particular forecasting domain).  
Perhaps we can also discuss diagnostics that tell us that a model is adequate 
– probably a much harder problem.  Finally, discussions of model failures 
may well be very informative for further model development and 
improvement, and improved physics understanding. 

 
 
Appendix: Vocabulary 
 
Bias:  In the context of seasonal prediction, bias is the temporally varying (with 
month of the year) component  of the systematic error(s).  
 
Ensemble: A set of model simulations (which may be differentiated by different 
initial conditions, different underlying models, or different model parameters) 
 
MME:  A Multi-Model Ensemble is a set of simulations produced using different 
climate models  
 
Nudges: Small perturbations to a model trajectory designed to accomplish some 
particular aim (keeping the trajectory near a sequence of observations, for 
example).  
 
Shadow trajectory: A model trajectory that remains near (shadows) a sequence of 
observations to within a given tolerance. Iota-shadows, for instance, remain close 
enough to the target observations that one could argue the observations were in fact 
generated by the trajectory, given the observational noise model.  The existence of a 
shadowing trajectory does not guarantee it would ever be found in an operational 



ensemble, but the time scales on which no trajectory can shadow reveals a true limit 
of predictability of that model..   
 
 
 
 
 
 
 


