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ABSTRACT

Adaptive observation strategies in numerical weather prediction aim to improve forecasts by exploiting ad-
ditional observations at locations that are themselves optimized with respect to the current state of the atmosphere.
The role played by an inexact estimate of the current state of the atmosphere (i.e., error in the ‘‘analysis’’) in
restricting adaptive observation strategies is investigated; necessary conditions valid across a broad class of
modeling strategies are identified for strategies based on linearized model dynamics to be productive. It is
demonstrated that the assimilation scheme, or more precisely, the magnitude of the analysis error is crucial in
limiting the applicability of dynamically based strategies. In short, strategies based on linearized dynamics
require that analysis error is sufficiently small so that the model linearization about the analysis is relevant to
linearized dynamics of the full system about the true system state. Inasmuch as the analysis error depends on
the assimilation scheme, the level of observational error, the spatial distribution of observations, and model
imperfection, so too will the preferred adaptive observation strategy. For analysis errors of sufficiently small
magnitude, dynamically based selection schemes will outperform those based only upon uncertainty estimates;
it is in this limit that singular vector-based adaptive observation strategies will be productive. A test to evaluate
the relevance of this limit is demonstrated.

1. Introduction

Just as the predictability of the atmosphere changes
from day to day, so does the location at which an ad-
ditional observation would most improve the forecasts
of the day. The use of supplementary observations in
numerical weather prediction (NWP) was first suggested
by Emanuel et al. (1995), and has recently been con-
sidered by a number of authors [Langland and Rohaly
(1996); Joly et al. (1997); Hansen (1998); Lorenz and
Emanuel (1998); Palmer et al. (1998); Berliner et al.
(1999); Bishop and Toth (1999); Joly et al. (1999, man-
uscript submitted to Quart. J. Roy. Meteor. Soc.)] who
contrast a range of adaptive observation strategies
(AOS) each attempting to determine the best location
to observe. In general, the accuracy of forecasts for
spatially extended nonlinear systems will vary with the
quality of the model(s) employed, the uncertainty in the
best estimate of the initial condition (hereafter, the anal-
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ysis), and both the spatial distribution of and noise level
in the observations. These basic issues are independent
of the details of the physical system one is attempting
to predict, suggesting that a general dynamical systems
approach might provide insight for any operational ap-
plication. Just such an approach was taken by Lorenz
and Emanuel (1998, hereafter LE98), employing the 40-
dimensional model introduced by Lorenz (1995). Draw-
ing on results from Hansen (1998), we take a similar
approach in the current paper, first demonstrating the
explicit dependence of adaptive observation strategies
on the data assimilation scheme employed. Second, we
show that taking future dynamical information into ac-
count is beneficial, in contrast with the conclusions in
LE98. General arguments suggest that AOSs based on
singular vectors (see Palmer et al. 1998) will out per-
form other methods in certain limiting cases. Third, tests
of internal consistency (Gilmour and Smith 1997; Gil-
mour 1998) are adopted to determine the relevance of
the linear approximation crucial to the success of sin-
gular vector methods. The results of LE98 are explained
in this context. The arguments of this paper also apply
to cases of structural (as opposed to parametric) model
error and the impact of structural error on adaptive ob-
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servation strategies is documented using a distinct sys-
tem, also introduced by Lorenz (1995).

Ideally, an adaptive observation strategy identifies the
most valuable location at which an additional obser-
vation could be made. We demonstrate that, like forecast
accuracy, the AOS that proves optimal also depends on
the combination of model, assimilation scheme, and ob-
servational network; employing more complex AOSs
that include model dynamics can be profitable when the
analysis (and model) is accurate. The primary system,
model, data assimilation schemes, and AOSs employed
in this work are briefly introduced in section 2. The
experimental design of LE98 is adopted in section 2 to
allow for direct comparisons with previous work. In
particular, the ranking of AOSs is shown to vary with
changes in the assimilation scheme, even under the ob-
servational constraints used in LE98.

Fairly general conditions are identified within which
the AOSs based on singular vectors are near optimal.
In addition, necessary conditions for the relevance of
singular vectors are derived in section 3, which clarify
the reasons behind the poor results of LE98’s singular
vector AOS implementation. The importance of quan-
tifying the relevance of the linearization assumption is
stressed throughout, and a simple statistic for doing so
is discussed. The importance of using a sensible metric
in singular vector construction is then motivated, and
the impact of analysis error magnitude on dynamically
based AOSs is shown in section 4. Different assimilation
schemes produce different levels of analysis error, and
the rank ordering of the dynamically based AOSs is
dependent on these analysis error levels. Our results
generalize to the case of structural model error; section
5 introduces a different system and demonstrates the
impact of structural model error on data assimilation
schemes and adaptive observation strategies. A general
discussion of the relevance of results given other ob-
servational constraints (like the chosen method for as-
sessment) is given in section 6 where issues such as the
spatial distribution of fixed observing systems are also
touched upon. Section 7 provides a brief statement of
conclusions and notes implications for operational fore-
casting.

2. Adaptive observation strategies

Lorenz (1995) introduced a 40-dimensional system
that may be interpreted as representing an atmospheric
quantity distributed zonally about the earth (see also
Lorenz and Emanuel 1998; Hansen 1998). The equa-
tions are

dxi 5 2x x 1 x x 2 x 1 F,i22 i21 i21 i11 idt

i 5 1, m, (1)

where m 5 40 and F 5 8. The system is atmosphere-
like in that it contains analogs to the basic atmospheric

physics of external forcing, internal dissipation, and
convection. The boundary conditions are cyclic, and
information propagates from low-indexed components
to high-indexed components.1 The system has been
tuned to give characteristic length and timescales that
are similar to the atmospheric system. For a more de-
tailed discussion see LE98.

AOSs are contrasted using a structurally perfect fore-
cast model of this system, allowing direct comparison
with the results of LE98. Equations (1) are thus adopted
as the forecast model for this system, the only model
error being in the specification of the forcing, Fmodel 5
0.95F. In practice, structural model error may well play
a central role in an AOS, a point we return to in section
5. An observation consists of one component of the true
state variable, xi, plus one realization of an independent,
normally distributed random variable with standard de-
viation sobs. Each component of x is designated as either
‘‘land’’ or ‘‘ocean’’; in the absence of an AOS, obser-
vations are made over land (xi, i 5 21, . . . , 40) every
6 model hours and no observations are made over the
ocean (xi, i 5 1, . . . , 20). Thus the AOS will select
one of the 20 distinct components at which an additional
observation can be made.

Where should additional observations be made? In
this paper, the ‘‘best’’ observation is defined as that
which results in the smallest distance between the fore-
cast state and the true state at a chosen verification time,
t ver, taken here to be 3 days. The AOS that results pro-
vides an upper bound against which all other AOSs can
be gauged. This strategy is called the ‘‘forecast error’’
AOS (FEAOS) (see Table 1 for a summary of the AOSs
considered in this work). This best location need not
correspond either to the component that is most in error
(the basis for the ‘‘analysis error’’ AOS, hereafter
AEAOS), or to the location that would yield the greatest
decrease in the analysis error;2 in an imperfect model
scenario, the smallest forecast error need not result from
perfect initial conditions, and even when a perfect model
is in hand, state-dependent uncertainty dynamics sug-
gest that the smallest (finite) analysis error need not
result in the smallest forecast error. Of course, none of
these three strategies can be implemented operationally,
as each requires knowledge of the true state of the sys-
tem, but they do provide a benchmark against which
operationally obtainable selection strategies can be as-
sessed.

When the true state is not known, selection can target
the component with the largest estimated analysis error,
or uncertainty, (hereafter AUAOS). There are many
ways to estimate the uncertainty associated with a given

1 The term component is used throughout this work to denote in-
dividual xi’s.

2 This AOS is identical to the AEAOS for replacement assimilation
(discussed below), but is heavily dependent on the data assimilation
scheme employed for more complex data assimilation schemes.
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TABLE 1. Adaptive observation strategy acronyms, names, descriptions, and whether or not they are operationally realizable.

Acronym Name Description Realizable?

ROS Random Ocean components are selected at random Yes
FEAOS Forecast error Ocean component that results in smallest three-day zonally averaged

prediction error is selected
No

AEAOS Analysis error Ocean component with the largest analysis error is selected No
AUAOS Analysis uncertainty Ocean component with the largest expected analysis error (estimated

analysis error variance) is selected
Yes

MBAOS Multiple breeding Ocean component selected to minimize projection of resulting analy-
sis error into the direction of large expected error growth given by
bred vectors

Yes

SVAOS Singular vector Ocean component selected to minimize projection of resulting analy-
sis error into the direction of large expected error growth given by
singular vectors

Yes

analysis. A “multiple replication” method was employed
by LE98, but the current paper also considers uncer-
tainty estimates provided directly by the data assimi-
lation scheme. Both the particular component with the
largest estimated analysis error and the analysis uncer-
tainty itself, will, of course, depend on the assimilation
scheme employed. A primary goal of this paper it to
demonstrate the central role the assimilation scheme
plays in determining the optimal AOS in a given sce-
nario. Two schemes are used to reflect the range of
possible sequential assimilation implementations: re-
placement and the Kalman filter. Under assimilation by
replacement (Lorenz and Emanuel 1998), the value of
each observed component is adopted directly into the
model state. Alternatively, the ensemble Kalman filter
(hereafter EnKF) (Evensen 1994; Evensen and van
Leeuwen 1996) melds model forecasts with observa-
tions by weighting each source of information according
to its associated uncertainty. These two schemes were
chosen to contrast the cases of large analysis error (re-
placement) and small analysis error (EnKF). To insure
an accurate analysis in the latter case, a large ensemble
(Nens 5 1024) was used in the EnKF. Utilising the EnKF
as an assimilation scheme naturally suggests employing
ensemble forecasts, an approach that will pursued in
future work.

Selecting ocean locations at random (the ROS) and
assimilating them using replacement provides a minimal
standard that a more complicated AOS must surpass.3

Forecast error of this baseline AOS is contrasted with
forecast error with no AOS (i.e., no ocean observations)
in Figs. 1a,b, which mirror Figs. 5 and 6 of LE98. Note
that in contrast to LE98, time increases upward in the
figures of the current paper. The ROS results of Fig. 1b
are clearly superior, in particular the noticeable im-
provement about the central land–ocean boundary near
x20 where the rms error does not reach a value of 4 until
day 3 in the ROS case. Contrasting Figs. 1c and 1b

3 A reviewer suggested alternative baselines. While a variety of
options are contrasted in Hansen (1998), random selection was
deemed to be the most illustrative.

reveals the importance of the assimilation scheme given
the same AOS; Fig. 1c shows the result of employing
EnKF assimilation and random selection. Figure 1d is
discussed in section 6.

LE98 evaluated two strategies based on model dy-
namics: the multiple breeding AOS (MBAOS) and the
singular vector AOS (SVAOS). The MBAOS presented
here is a replication of their scheme and can be inter-
preted as a dynamically based method for estimating
analysis uncertainty. A common interpretation of bred
vectors is that they consist of a linear combination of
only the most rapidly growing directions of the recent
past (see Toth and Kalnay 1993). Insofar as errors in
an analysis will have experienced growth similar to that
of the bred vectors members, it is argued that large
discrepancies between an analysis and bred vector mem-
bers corresponds to large expected analysis error. In
contrast, the SVAOS aims to combine estimates of anal-
ysis uncertainty with future error growth to estimate
directions in which perturbations will result in the larg-
est expected forecast errors. The SVAOS implemented
in this paper differs in choice of optimization time and
norm from that of LE98 (see section 3). Lorenz and
Emanuel conclude that the SVAOS proved ‘‘unproduc-
tive’’ for sobs 5 0.2 and replacement assimilation. This
conclusion is supported in Fig. 2b, which indicates that,
in this case, SVAOS is worse than both the MBAOS
(Fig. 2a) and the ROS (Fig. 1b). LE98 argue that the
magnitude of forecast errors would change for different
assimilation schemes, but the relative scoring positions
of various AOSs would, most likely, remain the same.
This is not the case, as we show in section 4. The rel-
evance (or lack thereof ) of the singular vectors upon
which the SVAOS is constructed is dependent upon the
relevance of the associated (model) linear propagator.
In the next section, the assumptions that underly any
application of the linear propagator to an AOS are clar-
ified and a test of its relevance is given. Whenever the
linear propagator is rendered irrelevant, the SVAOS
must prove unproductive. Changing operational con-
straints (in particular, reducing the analysis error) will
alter the rank order of AOS performance.
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FIG. 1. Contours of rms prediction error for different combinations of AOS and assimilation
scheme. (a) No selection using replacement, (b) ROS using replacement, (c) ROS using the EnKF,
(d) ROS using the EnKF with an observational backbone that includes two islands and two lakes
(discussed in section 6). The model components are spaced across the x axis, with components
1–20 over ocean and 21–40 over land. Prediction time increases along the y axis.

3. On the relevance of linearized dynamics

Methods based on linearizations will only be effective
when the linearized dynamics of the model match the
linearized dynamics of the underlying system. While
this fact is widely acknowledged (Vukićević 1991;
Palmer et al. 1994; Buizza and Palmer 1995), consis-
tency is seldom tested for explicitly (exceptions include
Errico et al. 1993; Buizza 1995; Gilmour and Smith
1997; Gilmour 1998). The relevance of a linearity as-
sumption will, of course, depend on the quality of the
model, but also on the quality of the analysis and on
the verification time. Even given a perfect model, the
relevance of each linearization will vary with the state
of the system (it is time dependent), the size of the initial
error and the timescale over which the linearization is
carried out. For a perfect model and infinitesimal errors,
the linearization approximation holds for all time; finite
initial errors almost certainly imply its failure at finite
time. To demonstrate the linearization assumption va-
lidity’s dual dependence on verification time and initial
error magnitude, consider an initial condition of a non-
linear, deterministic system, and imagine isotropic un-
certainty isopleths of increasing magnitude associated
with that initial condition. If the initial condition and
associated uncertainty isopleths are evolved forward un-

der the full nonlinear flow, the initially isotropic un-
certainty isopleths will, after a short time, evolve into
hyper-ellipses, as would be specified by a linear uncer-
tainty propagator. At longer times, one expects a break-
down of the linear approximation first for the isopleths
corresponding to the largest initial uncertainty magni-
tude, but eventually for all isopleths of initially finite
magnitude. For any optimization time there exists an
initial uncertainty magnitude beyond which the linear-
ization assumption fails.

The Q statistic was introduced in order to ascertain
whether or not techniques based on the linear propagator
might be productive in operational NWP forecasts
(Smith and Gilmour 1998; Gilmour 1998). This statistic
is defined by examining the evolution of twin pertur-
bations about a control trajectory. Given a model state,
x(t0), the twin perturbations are defined by adding and
subtracting the same (vector) perturbation d to x(t0).
Thus in addition to the fiducial trajectory from x(t0),
two additional trajectories are defined as x1(t0) 5 x(t0)
1 d1(t0) and x2(t0) 5 x(t0) 1 d2(t0), where d1(t0) 5
2d2(t0). The final time perturbations at t 5 t0 1 t are
then d1(t) 5 F t[x1(t0)] 2 Ft[x(t0)] and d2(t) 5
Ft[x2(t0)] 2 Ft[x(t0)] where Ft(x) indicates the image
of an initial condition x evolved under model F for time
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FIG. 2. Contours of rms prediction error for (a) the MBAOS using replacement, and (b) the
SVAOS using replacement. Note that the SVAOS under replacement is inferior to the ROS (shown
in Fig. 1b.)

FIG. 3. Construction of the Q statistic. See text for details.

t. The degree to which d1(t) approximates 2d2(t) re-
flects the degree to which the linear approximation of
F holds at time t. This can be quantified as

1 2\2d (t) 1 d (t)\
Q(t , d(t ), t) 5 (2)0 0 1

1 2(\d (t)\ 1 \d (t)\)
2

as illustrated in Fig. 3.
When the linear approximation is exact, Q 5 0 for

all initial orientations, while when Q 5 1 the error as-
sociated with the linear approximation are equal in mag-
nitude to the evolved perturbations themselves. By con-
struction Q # 2, with Q 5 2 indicating that the vectors
are oriented in the same direction; that is \d1(t)\ 5
\d2(t)\. For the 40-dimensional model considered here,
Q saturates to a value of Q 5 1.73 for large verification
times and/or large initial perturbation magnitudes. Note
that Q 5 0 is a necessary, but not sufficient condition
for assessing linearity assumption validity.

The Q statistic will vary with (i) initial condition, (ii)
initial perturbation direction, (iii) initial perturbation
magnitude, and (iv) verification time. A general picture
of ‘‘the linear range’’ may be obtained by tracing con-
tours of the median value of Q as a function of both
verification time and the magnitude of the initial un-
certainty, where the median is evaluated over many ini-
tial conditions. Figures 4a,b show these contours for

randomly oriented initial perturbations and Figs. 4c,d
for initial perturbations oriented in a locally most un-
stable direction defined by singular vectors optimized
over two model days.

The reason why Lorenz and Emanuel found the sin-
gular vector AOS to be unproductive is revealed by Fig.
4: a 10 day optimization time results in an expected
analysis uncertainty magnitude of 4.13 [using multiple
replication, see Lorenz and Emanuel (1998) for details].
Figure 4 suggests that the error in the linear approxi-
mation for such a magnitude is well over 100% even
for randomly oriented initial perturbations (note that
such an error value is beyond the range of the plot). In
this case even the system’s exact linear propagator has
little relevance to the dynamics of the analysis; if, how-
ever, the analysis error and/or optimization time can be
reduced then this need not remain the case, as illustrated
in section 4 below. First, the current paper’s implemen-
tation of the singular vector AOS is specified.

The singular value decomposition (SVD) of a model
linear propagator requires a choice of metric on the
model state space. For the cases considered here, this
metric is specified by a matrix defining the unit of dis-
tance in each state space direction. The implicit metric
(the identity matrix) chosen by LE98 implies isotropy.
For an SVD in the AOS context the metric should reflect
uncertainty in the analysis that is never isotropic in these
land–ocean experiments. Failure to account for this lack
of isotropy can result in irrelevant singular vectors, even
when the linear approximation is relevant. For this rea-
son, we adopt a metric specified by the inverse of the
(local) analysis error covariance matrix. Schematically,
such a metric is easily motivated; the forecast error re-
sulting from a relatively small growth of an initially
huge uncertainty may easily dominate the relatively
large growth of an initially tiny uncertainty. Detailed
algebraic arguments (and references) are given in the
appendix. The important quantity is the forecast error
at final time, which depends on the combination of ef-
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FIG. 4. Contours of Q as a function of verification time (x axis) and magnitude of initial
perturbation (y axis). Contours of Q measures the degree to which a system is behaving non-
linearly; Q 5 0 is a necessary, but not sufficient condition for uncertainty growth behaving
perfectly linearly. For Q 5 1, the errors associated with the linear assumption are of the same
magnitude as the final perturbations. (a) Shows contours of median Q for initial perturbations
oriented in random directions. (b) For the same situation as (a), but showing only the mean
(solid), median (dashes), and 1st and 99th percentiles (dotted) of the Q 5 0.2 contour. (c) and
(d) Are identical to panels (a) and (b), respectively, but for perturbations oriented in the direction
of the first singular vector optimized over two model days. In all cases, 512 different initial
conditions are considered.

fective growth factors and initial amplitudes. Exploiting
this metric operationally requires an estimate of the
analysis error covariance matrix. There are a number of
methods to provide such estimates, including both static
estimates (independent of system state) and and dynam-
ic estimates (usually) derived either from data assimi-
lation schemes or from ensemble approaches (as in the
case of LE98’s multiple replication AOS). This paper
also takes an ensemble approach, employing uncertainty
estimates that are a by-product of the EnKF.

There is a close relationship between the uncertainty
estimates produced by LE98’s multiple replication and
those produced by the EnKF. Both result from the in-
dependent assimilation of an ensemble of states, each
with a different realization of observational noise. The
primary difference between the two is that the inde-
pendent assimilation of the EnKF is intrinsic to the data
assimilation scheme, while for multiple replication it is
separate from the data assimilation scheme. Imple-
menting a multiple replication approach under the EnKF
produces results similar to the EnKF-based AUAOS.

4. AOSs and analysis error
Reducing the analysis error holds significant impli-

cations for an operational AOS. These implications are

now quantified through comparison with the ideal
FEAOS. This comparison shows that the SVAOS under
EnKF assimilation may provide a viable strategy even
for the observational conditions used by LE98. As ob-
servational error is reduced (thereby reducing the anal-
ysis error), the SVAOS performance is enhanced to the
point where it outperforms first the MBAOS, and then
the AUAOS. In general, as the analysis error approaches
zero the SVAOS is expected to outperform any strategy
based solely on analysis uncertainty information4 within
perfect a model. This need not be the case for an im-
perfect model, which we return to in section 5. First,
the impact of the particular data assimilation scheme
employed is demonstrated in section 4a, and the impact
of variations in the magnitude of expected observational
error on the AOS performance is presented in section
4b.

a. Dependence on assimilation scheme
Given a component-wise observational uncertainty

drawn from a Gaussian distribution with sobs 5 sLE98

4 Regardless of whether this is done by breeding, AUAOS, or some
other method.
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FIG. 5. Contours of rms prediction error under the EnKF assimilation scheme for (a) the MBAOS
and (b) the SVAOS (with the analysis error covariance norm). Contrary to the replacement results
of Fig. 2, the SVAOS is providing results comparable to the MBAOS.

5 0.2, a 6-h sampling time, and a 10-day optimization
time (as specified in LE98), the performance of the
SVAOS is poor under replacement assimilation5 (see
Fig. 2b). Employing the EnKF assimilation scheme,
however, changes the rank ordering of the AOSs. The
SVAOS not only outperforms the ROS, but is compa-
rable with, although slightly inferior to, the MBAOS
when EnKF assimilation is applied. This result is quan-
tified in Figs. 5a and 5b. The AUAOS, however, pro-
duces forecasts (not shown) that outperform both the
SVAOS and MBAOS, suggesting that given these par-
ticular operational constraints more value is obtained
from uncertainty information than from dynamical in-
formation.

The absolute quality of these selection schemes may
be evaluated through comparison with the FEAOS, in
which the location observed is that which yields the
minimum three day, zonally averaged rms forecast error.
While the FEAOS is, of course, not feasible operation-
ally, its role here is to quantify how close the operational
AOSs are to this ultimate target. Figure 6 contrasts the
FEAOS in Fig. 6b with the AEAOS in Fig. 6a, both
under EnKF assimilation; the results of AEAOS are, in
general, inferior to the FEAOS. This inferiority is even
more pronounced under replacement (not shown). Thus,
Fig. 6 indicates that there is useful information in the
future dynamics of the system; any AOS that is able to
successfully capture this information will outperform an
AOS based only on current or past information. The
three-day verification time was chosen to be represen-
tative of ‘‘medium-range’’ forecasts, and it proved ad-
equate for illustrating the importance of future dynam-
ics. Comparing results from FEAOSs constructed over
different lead times would prove informative for this
particular system, but would serve only to strengthen
the above result. The importance of an accurate line-

5 Changing the metric does not appreciably alter the results.

arization is amplified in the case of an imperfect model.
In an imperfect model, the smallest analysis error, even
if it is zero, need not result in the smallest forecast error.
For the conditions of LE98, the average analysis error
for the AEAOS is 1.14, while the average analysis error
for the FEAOS is 1.67. On average, the AEAOS pro-
duces smaller forecast errors for lead times less than 1.5
model days, and the FEAOS produces smaller forecasts
for longer lead times.

Contrasting the panels in Fig. 6 with those in Fig. 5
indicates that both the multibreeding AOS and singular
vector AOS are productive; further, both are approach-
ing the best performance possible.

b. Dependence on observational noise level

The analysis error will also be reduced if observa-
tional noise is decreased, again extending the range over
which the linear approximation is relevant. When the
component-wise observational uncertainty is reduced by
a factor of 16 (i.e., sobs 5 sLE98/16 5 0.0125), the
SVAOS (Fig. 7b) outperforms the MBAOS (Fig. 7a).
This result becomes more obvious if one concentrates
on a single forecast time. Figure 8 shows average three-
day forecast errors over the ocean as a function of ex-
pected component-wise observational uncertainty for
the AUAOS, SVAOS, and MBAOS for four different
levels of observational uncertainties. Results from three
independent experiments are shown. As sobs decreases,
there are three changes in the rank ordering of the AOSs.
For sobs 5 sLE98, the rank ordering is 1) AUAOS, 2)
MBAOS, and 3) SVAOS. At sobs 5 sLE98/4, the ordering
has changed so that the SVAOS and AUAOS give com-
parable results and both outperform the MBAOS. At
sobs # sLE98/16, the rankings appear to have converged
to 1) SVAOS, 2) AUAOS, and 3) MBAOS. Ultimately,
the model error present in the LE98 configuration will
limit the level to which the analysis error can be reduced,
even given perfect observations. The results of these
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FIG. 6. Contours of rms prediction error for operationally infeasible, ‘‘perfect knowledge’’
AOSs. (a) the AEAOS using EnKF assimilation, and (b) the FEAOS (defined at three days) using
EnKF assimilation. The fact that the FEAOS outperforms the AEAOS suggest that there is useful
information contained in the future dynamics of the model.

FIG. 7. Contours of rms prediction error for observational noise level at a 16th of that of Fig.
5. Panel (a) is the MBAOS result and panel (b) the SVAOS result. The decrease in observational
error results in a decrease in analysis error, allowing the SVAOS to outperform the MBAOS.

operationally feasible AOSs are compared with those of
the ideal AOS (the nonoperational FEAOS), shown as
diamonds.

In general, as the observational uncertainty decreases
so too will the analysis error, and an AOS based on
model linearization will come to the fore. The Q statistic
provides a test of whether (or not) one can expect a
linearization-based approach to provide relevant infor-
mation. For LE98 conditions a linearization-based ap-
proach cannot; uncertainty rules. The Q test is easily
applied to operational models (as in Gilmour 1998), and
once the Q test is satisfied, techniques based on the
linearity assumption become viable candidates. One
must keep in mind that while the Q statistic can inform
when singular vectors are expected to be relevant, it
need not imply that they are the best choice for the basis
of an AOS. We agree with an anonymous referee that
this test is rather obvious, and hope it will be widely
implemented as it has already revealed shortcomings
both in an operational AOS and in the common as-
sumption that the linear range in numerical weather pre-

diction extends to 48 h (Smith and Gilmour 1998; Gil-
mour 1998).

5. AOSs and model error

Lorenz and Emanuel considered parametric model er-
ror; the difference between the system and model was
only in the magnitude of the external forcing term [see
Eq. (1)]. This section focuses on structural model error.
A model that lacks essential dynamics will be used to
assimilate and predict the behavior of a more complex
system. The new system is constructed by coupling the
ordinary differential equations (ODEs) of Eq. (1) (sub-
sequently denoted Model I), with a second set of ODEs.
This second set of ODEs has a characteristic timescale
that is faster than that in Model I, and a spatial scale
that is smaller than that in Model I. The coupling of
these two sets of ODEs defines a system designated
System II. Following Lorenz (1995), the system equa-
tions take the form
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FIG. 8. Average three-day forecast errors over the ocean as a function of expected observational
error magnitude (sobs) for the AUAOS, SVAOS, and MBAOS under EnKF assimilation. Results
for sLE98, sLE98/4, sLE98/16, and sLE98/64 are shown. Results from three independent experiments
are presented for each AOS to help quantify the variation in the results. As the component-wise
expected observational error magnitude (sobs) is decreased, the SVAOS and AUAOS show marked
improvement over the MBAOS. For the sLE98/16 and sLE98/64 cases, the SVAOS both outperforms
the AUAOS and shows a stronger convergence of results. The combination of the spatial dis-
tribution of observations and the model error makes smaller analysis errors difficult to achieve,
even with vanishingly small observational error. The diamonds reflect the smallest possible
forecast error obtained by assimilating an observation from each ocean component in turn and
selecting the one which yields the smallest three-day forecast error ; this is the (nonoperational)
FEAOS.

Jdx h ci x5 2x x 1 x x 2 x 1 F 2 y , (3)Oi22 i21 i21 i11 i j,idt b j51

dy h cj,i y5 2cby y 1 cby y 2 cy 1 x . (4)j11, i j12, i j21, i j11, i j,i idt b

As is the case for the large-scale variables (xi), the
small-scale variables as a whole (yj,i) have cyclic bound-
ary conditions. Sectors of small-scale variables of size
J are coupled to each of the large-scale variables. Each
of the small-scale sectors are coupled by setting yj2J,i

5 yj,i21 and yj1J,i 5 yj,i11. Just as the xi can be considered
as some atmospheric quantity distributed zonally about
the globe, so too can the yj,i with J small-scale variables
associated with each of the large-scale variables. The
constants c and b are both set to the value of 10; thus
the small-scale dynamics operate on a scale 10 times as
fast and 1/10th as large as the large-scale dynamics. The
value of J, the number of small-scale variables coupled
to each large scale, is set to 5. With xi, i 5 1, 40, the
associated dimension of the yj,is is 200, and System II
has a 240-D state space. The values of hx and hy, the

coupling coefficients, are set to unity. For the experi-
ments discussed below, m 5 40 and F 5 8.0.

Model I is used to assimilate observations drawn from
the large-scale components of System II, and then pre-
dict the large-scale components’ future evolution. It is
necessary to parameterize the impact of Model I’s miss-
ing dynamics. The combination of the external forcing
term and the coupling term in Eq. (3) can be considered
as an effective forcing term that varies deterministically
in space and time. This effective forcing is parameter-
ized to zeroth order by applying its mean value as a
fixed forcing term in Model I.

Repeating the experiments of section 4 using the new
model–system configuration yields the results of Fig. 9
that show that this level of model error strengthens the
data assimilation scheme dependence of AOSs; the
MBAOS results in Fig. 9a are markedly inferior to the
SVAOS results in Fig. 9b. Even at this level of model
error the EnKF is able to move the analysis close enough
to the system state for the linearity approximation in-
trinsic to singular vectors to be of value.

The dependence of AOS on observation error mag-
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FIG. 9. Contours of rms prediction error under the EnKF assimilation scheme for (a) the MBAOS
and (b) SVAOS (with the analysis error covariance norm) in the case where the model is struc-
turally imperfect. The MBAOS is less robust than the SVAOS under this level of model error.

FIG. 10. Magnitude of the three-day forecast errors averaged over the ocean for the structurally
imperfect model as a function of expected observational error magnitude (sobs) for the AUAOS,
and SVAOS (the MBAOS is off the scale of the plot). Results for sLE98/4, sLE98/16, and sLE98/64
are shown. Results from three independent experiments are presented for each AOS to illustrate
the variability in the results. For sobs # sLE98/16, the SVAOS and AUAOS produce comparable
results. SVAOS outperform AUAOS for the smallest expected observational uncertainty level,
sLE98/64.

nitude is demonstrated in Fig. 10. Inasmuch as both the
SVAOS and AUAOS significantly outperform the
MBAOS at all observational error magnitudes consid-
ered, only values of ocean-averaged, three-day forecast
errors for the SVAOS and AUAOS as a function of
expected observational error magnitude are shown.
Again four different expected observational uncertain-
ties are considered, sLE98 (beyond the range of the plot),
sLE98/4, sLE98/16, and sLE98/64. Again results from three

independent experiments are shown. For sobs $
sLE98/64, the SVAOS and AUAOS are comparable. It
is only at sobs 5 sLE98/64 that there is a distinction
between the two strategies with the SVAOS producing
smaller forecast errors. The spread among the three re-
alizations for each AOS is larger than for the parametric
model error case (Fig. 8), suggesting that even after 5.5
model years, the results have not fully converged. The
reason for this lack of convergence lies both in the AOS
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and the data assimilation scheme. For this level of model
error there is an increased autocorrelation in the analysis
(and forecast) errors relative to the parametric model
error case, reflecting the difficulty the AOS and data
assimilation scheme have reestablishing an accurate
analysis once a poor analysis has been generated.

There are, of course, many approaches to dealing with
model error. In this section a classical physicists’ model
error has been discussed; model and system are deter-
ministic systems, but different. An alternative approach
(as in Berliner et al. 1999) is to include stochastic el-
ements in the model. Both approaches are fundamentally
flawed, since the true physical system is almost certainly
not in either model class. Since we cannot account for
realistic model error, we have instead developed algo-
rithms that aim to quantify the effects and limitations
imposed by particular types of model error in cases of
interest. The aim is to attempt to explore the possible
range of behavior; by construction, the results will de-
pend on both the system and the model.

6. Discussion

In this work, the primary means of AOS assessment
has been through global patterns of forecast error. This
statistic was chosen to ease comparison with the work
of LE98. It is important to note, however, that the rank
ordering of AOSs may vary with the type of assessment
statistic employed. Alternatives to the statistics used
here include other characteristics of the distribution of
prediction error constructed at a specified location in
space and/or forecast time. For relatively simple sys-
tems, like Eq. (1) one may select each ocean location
in turn, rank each location on the basis of a particular
statistic, and then determine how well a particular AOS
performs at selecting high-ranked locations. Employing
this method of assessment shows that the SVAOS is
adept at selecting high-ranking locations when the lin-
earity assumption is good, and adept at selecting low-
ranking locations when the linearity assumption is poor,
or the choice of norm is poor. These, and other, alter-
native methods of evaluation are discussed by Hansen
(1998).

The performance of an AOS also varies with the spa-
tial structure of the observational network. Figure 1d
shows the rms forecast error using the ROS when the
observational ‘‘backbone’’ differs from that of 20 ad-
jacent observations over land adopted for all other adap-
tive observation experiments in this work. In Fig. 1d,
the observational backbone has been altered so that there
are two ‘‘lakes’’ in the land components (components
27 and 34) and two ‘‘islands’’ in the ocean components
(components 7 and 14). The lakes are never observed,
and the islands are continuously observed. The ROS
with this backbone systematically outperforms the ROS
on the original distribution of land–ocean, even though
21 components are observed in each case. In general,
given a perfect model and a particular backbone, a

smaller analysis error will imply better AOS results (as-
suming that the AOS is productive in the first place).
Altering the backbone itself, however, alters the distri-
bution of analyses in model state space in quite a dif-
ferent manner than merely reducing sobs. The impact
this has on the relevance of the linear approximation
will be heavily model dependent.

Ideally, a data assimilation scheme aims at the syn-
chronization of model and system (see Pecora and Car-
roll 1990 and references thereof) given a noisy, one-
way coupling. The difficulty of synchronizing model
and system will depend not only on the strength and
structure of the coupling, but also on the effects of struc-
tural model error, which may well dominate both. It is
interesting to note that Eqs. (1) support strange, chaotic
attractors that exist within proper subspaces of the the
full state space (these include system initial conditions
of equations 1 with periodic symmetry in the index i);
if the system evolves on such an attractor, it is not clear
that the model will synchronize with the system even
in the absence of model error (results to be reported
elsewhere).

In the experiments presented in this paper, the system
appeared to evolve in the full state space.6 Further, the
forecast experiments were initialized from initial system
states that sampled the range of variability exhibited by
the system. In each case the initial analyses had been
‘‘spun up’’ with the aim of avoiding the effects of initial
transients in the assimilation scheme.

7. Conclusions

The performance of several adaptive observation
strategies and assimilation schemes have been contrast-
ed in two simple, nonlinear systems. Variations in the
preferred AOS are linked to the level of observational
uncertainty, to the assimilation scheme, and to the level
of model error; in particular, the SVAOS is shown to
be productive in cases where the linear approximation
assumed in its construction is relevant. Under EnKF
assimilation, the SVAOS is shown to be comparable to
other methods at the same noise level investigated by
LE98, who concluded that the SVAOS was inferior (un-
der replacement assimilation). Both sets of results are
consistent and easily understood via explicit estimates
of the relevance of the linear approximation. The meth-
od of estimating the limit of the linear range can (and
should) be used whenever twin perturbations are
evolved. Others (Berliner et al. 1999) have constructed
a statistical framework for evaluating AOSs under the
assumption that the linear approximation is relevant; we
have attempted to quantify the relevance of the ap-
proximation.

6 An analysis of the structure of this (and the symmetric) chaotic
attractor is given in Hansen (1998).
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In the limit as the analysis error approaches zero, the
system’s future dynamics can always be utilised to de-
termine where observations should be made in a perfect
model, and the SVAOS is the preferred AOS. For larger
analysis errors and/or imperfect models, the uncertainty
in the analysis can swamp the information in the model’s
future dynamics, and the dynamically based AOSs need
not outperform a strategy based purely on uncertainty
estimates (the AUAOS). The statistical approach to the
problem of AOS design taken by Berliner et al. (1999)
considers white-noise model error. Our approach differs
by explicitly considering the impact of parametric and
structural model error. A type of model error not con-
sidered in this work is that which results from differ-
ences between the model used to perform the lineari-
zation and the model used to perform the predictions.
This error is often present in NWP situations, and its
impact in the adaptive observation context is discussed
in Buizza and Montani (1999).

For the model considered in this work, Fig. 8 shows
that extremely small analysis uncertainty is required be-
fore dynamical information can provide the basis of an
AOS that will outperform a solely uncertainty-based
AOS. This result, and the AEAOS versus FEAOS result
of Fig. 6, conclusively demonstrate the potential benefit
of explicitly accounting for the dynamical evolution of
uncertainty. The implications of these results to NWP
is dependent on the relative magnitude of operational
analysis errors; the constraints imposed by the current
static observation network, data assimilation schemes
and NWP model error will dictate whether an AOS
based on model linearizations will be productive.
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APPENDIX

Metrics and Singular Vectors

The evolution of uncertainty growth is of extreme
interest in the NWP community for the purpose of pre-
dictability (Palmer et al. 1994), ensemble construction
(Ehrendorfer and Tribbia 1997) and adaptive observa-
tions (Lorenz and Emanuel 1998; Palmer et al. 1998;
Hansen 1998). Formally, directions of largest uncer-
tainty growth can be determined through the calculation
of expected growth factors over a fixed time. Define f
5 [xm(t) 2 xt(t)] to be the forecast error at t 5 t0 1
t opt , where xm(t) is the state of a model integration and
xt(t) is the system state. Similarly, g 5 [xa(t0) 2 xt(t0)]
is the analysis error where xa(t0) is the analyzed state

of the model at t0 and xt(t0) is the true state of the model
at t0. Let Wf be a forecast error weighting matrix that
describes the relative importance of forecast errors, and
Wg be an analysis error weighting matrix.

The growth rate of error over t opt can then be written
as

Tf W ffs 5 . (A.1)
Tg W gg

It is desired to find the directions in state space asso-
ciated with the growth rates obtained from maximizing
s. Equation (A.1) can immediately be rewritten in the
form of a generalized eigenvalue problem, but before
doing so, consider the following transformations.

If Wf and Wg are symmetric and positive definite, then
by Cholesky factorizationA1

TW 5 P P (A.2)f f f

TW 5 P P , (A.3)g g g

where Pf and Pg are lower triangular matrices. This gives
TTf P P ff fs 5 (A.4)

TTg P P gg g

or, by the change of variables f9 5 Pff and g9 5 Pgg
Tf9 f9

s 5 . (A.5)
Tg9 g9

Through linearization of the model equations, the
model linear uncertainty propagator, M, can be con-
structed so that f 5 Mg or f9 5 PfMg. From the change
of variables above, g can be rewritten as g 5 g921Pg

giving f9 5 Pf g9. This provides a growth factor21MPg

expression
T TT 21T 21g9 P M P P MP g9a f f as 5 , (A.6)

Tg9 g9

which can be expressed as the eigenvalue problem

MT Pf x 5 lx.21T T 21P P MPa f a (A.7)

The maximum growth factors and directions of max-
imum growth are then given by the eigenvalues and
eigenvectors of MT Pf or the singular values21T T 21P P MPg f g

and singular vectors produced by the SVD of Pf .21MPg

Consider the weighting matrices of Eq. (A.1). The
form of these weightings, or norms, is of great interest
in the current predictability literature (Ehrendorfer and
Tribbia 1995; Stephenson 1997; Ehrendorfer and Trib-
bia 1997; Palmer et al. 1998). For predictability studies,
the proper initial time norm Wg is the inverse of the
analysis error covariance matrix (Palmer et al. 1998;

A1 A special case of LU decomposition for symmetric, positive
definite matrices. Cholesky factorization is not the only method for
obtaining this type of decomposition. There are a number of other
methods for obtaining the ‘‘square root’’ of a matrix (Strang 1988).
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Barkmeijer et al. 1998). Applying the inverse of the
analysis error covariance matrix as an initial norm re-
sults in a set of final time singular vectors that are an
estimate of the forecast error covariance matrix. To bet-
ter understand the impact of an initial time norm, cast
Eq. (A.1) as a generalized eigenvalue problem

MTWfMx 5 lWgx. (A.8)

For positive definite Wg and MTWfM, Eq. (A.8) behaves
exactly as a standard eigenvalue problem, but in this
case Wg and MTWfM are simultaneously diagonalized.
The effect of Wg is to provide the definition of a hy-
persphere at initial time (Strang 1988). Neglecting the
Wg (effectively setting it equal to the identity matrix)
implies that uncertainties are equally likely in all di-
rections of state space; all analysis error uncertainty
information is neglected. Note that any choice of Wg

will define an initial time sphere, but the correct choice
for most predictability studies is the inverse of the anal-
ysis error covariance matrix (Ehrendorfer and Tribbia
1997).
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