
..............................................................

Uncertainty in predictions of the
climate response to rising levels
of greenhouse gases
D. A. Stainforth1, T. Aina1, C. Christensen2, M. Collins3, N. Faull1,
D. J. Frame1, J. A. Kettleborough4, S. Knight1, A. Martin2, J. M. Murphy3,
C. Piani1, D. Sexton3, L. A. Smith5, R. A. Spicer6, A. J. Thorpe7

& M. R. Allen1

1Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
2Computing Laboratory, University of Oxford, Parks Road, Oxford OX1 3QD, UK
3Hadley Centre for Climate Prediction and Research, Met Office, Exeter EX1 3PB,
UK
4Rutherford Appleton Laboratory, Chilton, Oxfordshire, OX11 0QX, UK
5London School of Economics, London WC2A 2AE, UK
6Department of Earth Sciences, The Open University, Milton Keynes MK7 6AA,
UK
7Department of Meteorology, University of Reading, Reading RG6 6BB, UK
.............................................................................................................................................................................

The range of possibilities for future climate evolution1–3 needs to
be taken into account when planning climate change mitigation
and adaptation strategies. This requires ensembles of multi-
decadal simulations to assess both chaotic climate variability
and model response uncertainty4–9. Statistical estimates of model
response uncertainty, based on observations of recent climate
change10–13, admit climate sensitivities—defined as the equili-
brium response of global mean temperature to doubling levels of
atmospheric carbon dioxide—substantially greater than 5K. But
such strong responses are not used in ranges for future climate
change14 because they have not been seen in general circulation
models. Here we present results from the ‘climateprediction.net’
experiment, the first multi-thousand-member grand ensemble of
simulations using a general circulation model and thereby
explicitly resolving regional details15–21. We find model versions
as realistic as other state-of-the-art climate models but with
climate sensitivities ranging from less than 2K to more than
11K. Models with such extreme sensitivities are critical for the
study of the full range of possible responses of the climate system
to rising greenhouse gas levels, and for assessing the risks
associated with specific targets for stabilizing these levels.

As a first step towards a probabilistic climate prediction system
we have carried out a grand ensemble (an ensemble of ensembles)
exploring uncertainty in a state-of-the-art model. Uncertainty in
model response is investigated using a perturbed physics ensemble4

in which model parameters are set to alternative values considered
plausible by experts in the relevant parameterization schemes9. Two
or three values are taken for each parameter (see Methods);
simulations may have several parameters perturbed from their
standard model values simultaneously. For each combination of
parameter values (referred to here as a ‘model version’) an initial-
condition ensemble22 is used, creating an ensemble of ensembles.
Each individual member of this grand ensemble (referred to here as
a ‘simulation’) explores the response to changing boundary con-
ditions22 by including a period with doubled CO2 concentrations.

The general circulation model (GCM) is a version of the Met
Office Unified Model consisting of the atmospheric model
HadAM323, at standard resolution9 but with increased numerical
stability, coupled to a mixed-layer ocean. This allows us to explore
the effects of a wide range of uncertainties in the way the atmosphere
is represented, while avoiding a long spin-up for each model
version. Each simulation involves three 15-year phases: (1) cali-
bration, to deduce the ocean heat-flux convergence field used in the
subsequent phases; (2) control, used to quantify the relevance of the
particular model version and heat-flux convergence field; and (3)

doubled CO2, to explore the response to changing boundary
conditions.

Individual simulations are carried out using idle processing
capacity on personal computers volunteered by members of the
general public19. This distributed-computing method16,18,19 leads to
a continually expanding data set of results, requiring us to use a
specified subset of data available at a specific point in time. The
analysis presented here uses 2,578 simulations (.100,000 simulated
years), chosen to explore combinations of perturbations in six
parameters.

The 2,578 simulations contain 2,017 unique simulations (dupli-
cates are used to verify the experimental design—see Methods).
Figure 1a shows the grand ensemble frequency distribution of global
mean, annual mean, near-surface temperature (Tg) in these 2,017
simulations, as it develops through each phase. Some model
versions show substantial drifts in the control phase owing to the
use of a simplified ocean (see Supplementary Information). We
remove unstable simulations (see Methods) and average over
initial-condition ensembles of identical model versions to reduce
sampling uncertainty. The frequency distribution of initial-con-
dition-ensemble-mean time series of Tg for the resulting 414 model
versions (for which the initial-condition ensembles involve 1,148
independent stable simulations) is shown in Fig. 1b. Six of these
model versions show a significant cooling tendency in the doubled-
CO2 phase. This cooling is also due to known limitations with the
use of a simplified ocean (see Supplementary Information) so these
simulations are excluded from the remaining analysis of sensitivity.

The frequency distribution of the simulated climate sensitivities
(see Methods) for the remaining model versions is shown in Fig. 2a
and ranges from 1.9 to 11.5 K. Two key features are that relatively
few model versions have sensitivities less than 2 K, and the long tail
of the distribution extending to very high values; 4.2% are .8 K.
Most sensitivities cluster round 3.4 K, the value for the unperturbed
model, suggesting that many of the parameter combinations

Figure 1 Frequency distributions of T g (colours indicate density of trajectories per 0.1 K

interval) through the three phases of the simulation. a, Frequency distribution of the 2,017

distinct independent simulations. b, Frequency distribution of the 414 model versions. In

b, T g is shown relative to the value at the end of the calibration phase and where initial-

condition ensemble members exist, their mean has been taken for each time point.
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explored have relatively little effect on this global variable. There are
a number of possible reasons for this clustering: the relevant
processes may in fact have only a limited impact on sensitivity,
the parameter ranges used may be too small to influence substan-
tially the response in this model, and/or multiple perturbations may
have mutually compensating effects when averaged on global scales.
Of course, many significant regional impacts are invisible in a global
average.

The range of sensitivities across different versions of the same
model is more than twice that found in the GCMs used in the IPCC
Third Assessment Report14. The possibility of such high sensitivities
has been reported by studies using observations to constrain this
quantity9,11,24,25, but this is the first time that GCMs have generated
such behaviour. The shape of the distribution is determined by the
parameters selected for perturbation and the perturbed values
chosen, which were relatively arbitrary. Model developers provided
plausible high and low values for each model parameter; however,
we cannot interpret these as absolute upper and lower bounds
because experts are known to underestimate uncertainty even in
straightforward elicitation exercises where the import of the ques-
tion is clear26. In our case even the physical interpretation of many of
these parameters is ambiguous27. We can illustrate the importance
of the parameter choices by subsampling the model versions. If all
perturbations to one parameter (the cloud-to-rain conversion
threshold) are omitted, the red histogram in Fig. 2a is obtained,
with a slightly increased fraction (4.9%) of model versions .8 K. If
perturbations to another parameter (the entrainment coefficient)
are omitted, the blue histogram in Fig. 2a is obtained, with no
model versions .8 K. (See Supplementary Information for further
sensitivity analyses.)

Can either high-end or low-end sensitivities be rejected on the
basis of the model-version control climates? Fig. 2b suggests not; it
illustrates the relative ability of model versions to simulate obser-
vations using a global root-mean-squared error (r.m.s.e.) normal-
ized by the errors in the unperturbed model (see Methods). For all
model versions this relative r.m.s.e. is within (or below) the range of
values for other state-of-the-art models, such as those used in the
second Coupled Model Inter Comparison (CMIP II) project28

(triangles). The five variables used for this comparison are each
standard variables in model evaluation and inter-comparison exer-
cises29 (see Methods). This lack of an observational constraint,
combined with the sensitivity of the results to the way in which
parameters are perturbed, means that we cannot provide an
objective probability density function for simulated climate sensi-
tivity. Nevertheless, our results demonstrate the wide range of
behaviour possible within a GCM and show that high sensitivities
cannot yet be neglected as they were in the headline uncertainty
ranges of the IPCC Third Assessment Report (for example, the 1.4–
5.8 K range for 1990 to 2100 warming).14 Further, they tell us about
the sensitivities of our models, allowing better-informed decisions
on resource allocation both for observational studies and for model
development.

Can we coherently predict the model’s response to multiple
parameter perturbations from a small number of simulations each
of which perturbs only a single parameter9? The question is import-
ant because it bears on the applicability of linear optimization
methods in the design and analysis of smaller ensembles. Figure 2c
shows that assuming that changes in the climate feedback param-
eter14 l combine linearly provides some insight, but fails in two
important respects. First, combining uncertainties gives large frac-
tional uncertainties for small predicted l and hence large uncer-
tainties for high sensitivities. This effect becomes more pronounced
the greater the number of parameters perturbed. Second, this
method systematically underestimates the simulated sensitivity, as
shown in Fig. 2c, and consequently artificially reduces the implied
likelihood of a high response. Furthermore, more than 20% of the
linear predictions are more than two standard errors from the

Figure 2 The response to parameter perturbations. a, The frequency distribution of

simulated climate sensitivity using all model versions (black), all model versions except

those with perturbations to the cloud-to-rain conversion threshold (red), and all model

versions except those with perturbations to the entrainment coefficient (blue).

b, Variations in the relative r.m.s.e. of model versions. The unperturbedmodel is shown by

the red diamond. Model versions with only a single parameter perturbed are highlighted

by yellow diamonds. The triangles show the CMIP II models for which data are

available; HadCM3 (having the same atmosphere as the unperturbed model but with a

dynamic ocean) is shown in red and the others in blue. c, Linear prediction of climate

sensitivity based on summing the change in l for the relevant single-parameter-

perturbation model versions, to estimate l when multiple perturbations are combined.

Error bars show the resulting uncertainty (^ one sigma) caused by the combination of a

number of Dl values where each l has an uncertainty deduced from the initial-condition

ensembles having only a single parameter perturbed. Linear predictions within one sigma

of the simulated value are shown in green, between one and two sigma in black, and

above two sigma in red. Mean uncertainties in the simulated value (two-sigma range,

inferred from the initial-condition ensembles) are shown at the bottom for four regions of

sensitivity (0–3, 3–6, 6–9, 9–12).
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simulated sensitivities. Thus, comprehensive multiple-perturbed-
parameter ensembles appear to be necessary for robust probabilistic
analyses.

Figure 3 shows the initial-condition ensemble-mean of the
temperature and precipitation changes for years 8–15 after doubling
CO2 concentrations, for three model versions: (1) the unperturbed
model; (2) a version with low sensitivity; and (3) a version with high
sensitivity (see Supplementary Information for details of the control
climates in these model versions). All three models show the
familiar increased warming at high latitudes and the overall
surface-temperature pattern scales with sensitivity. Even in the
low-sensitivity model version the warming in certain regions is
substantial, exceeding 3 K in Amazonia and 4 K in much of North

America. The precipitation field shows a greater variety of response.
For instance, this particular low-sensitivity model version shows a
region of substantially reduced precipitation east of the Mediterra-
nean; something not evident in either the standard or high-
sensitivity model versions shown. It is critical to note that model
versions with similar sensitivities often also show differences in such
regional details9. The use of a GCM-based grand ensemble allows
the significance of such details to be ascertained.

Thanks to the participation and enthusiasm of tens of thousands
of individuals world-wide we have been able to discover GCM
versions with comparatively realistic control climates and with
sensitivities covering a much wider range than has ever been
seen before. These results are a critical step towards a better under-

Figure 3 The temperature (left panels) and precipitation (right panels) anomaly fields in

response to doubling the CO2 concentrations. a, b, The unperturbed model (simulated

climate sensitivity, 3.4 K). c, d, A model version with low simulated climate sensitivity

(2.5 K). e, f, A model version with high simulated climate sensitivity (10.5 K). These fields

are the means of years eight to fifteen after the change of forcing is applied, averaged over

initial-condition ensemble members; they are not the equilibrium response.
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standing of the potential responses to increasing levels of green-
house gases, regional and seasonal impacts, our models and internal
variability. Future experiments will include a grand ensemble of
transient simulations of the years 1950–2100 using a model with a
fully dynamic ocean. A

Methods
Model simulations
Participants in the climateprediction.net experiment download an executable version of a
full GCM. They are allocated a particular set of parameter perturbations and initial
conditions enabling them to run one simulation: that is, one member of the grand
ensemble. Their personal computer then carries out 45 years of simulation and returns
results to the project’s servers. Over 90,000 participants from more than 140 countries
have registered to date. The model, based on HadSM330, is a climate resolution version of
the Met Office Unified Model with the usual horizontal grid of 3.758 longitude £ 2.58
latitude and 19 layers in the vertical. The ocean consists of a single thermodynamic layer
with ocean heat transport prescribed using a heat-flux convergence field that varies with
position and season but has no inter-annual variability. For each simulation the heat-flux
convergence field is calculated in the calibration phase where sea surface temperatures
(SSTs) are fixed; in subsequent phases the SSTs vary according to changes in the
atmosphere–ocean heat flux. The initial-condition ensemble members have different
starting conditions for the calibration and therefore allow for uncertainty in the heat-flux
convergence fields used in the control and doubled-CO2 phases.

Data quality
Most model simulations are unique members of the grand ensemble, each being a
combination of perturbed model parameters and perturbed initial conditions. To evaluate
the reliability of the experimental design a certain number of identical simulations are
distributed; most give identical results. Where they do not, they are usually very similar,
suggesting that a few computational bits were lost at some point and consequently they are
essentially different members of the initial-condition ensemble. In these cases the mean of
the simulations is taken.

There are a small number of simulations (1.6%) which show obvious flaws in the data:
for example, sudden jumps of data values from of the order of 102 to of the order of 108.
These probably result from loss of information, for instance during a PC shut-down at a
critical point in processing or a result of machine ‘overclocking’. These are removed from
this analysis. Finally, runs that show a drift in T g greater than 0.02 K yr21 in the last eight
years of the control are judged to be unstable and are also removed from this analysis.

Perturbations
Perturbations are made to six parameters, chosen to affect the representation of clouds
and precipitation: the threshold of relative humidity for cloud formation, the cloud-
to-rain conversion threshold, the cloud-to-rain conversion rate, the ice fall speed, the
cloud fraction at saturation and the convection entrainment rate coefficient. This is a
subset of those explored by ref. 9. In each model version each parameter takes one of
three values (the same values as those used by ref. 9); for cloud fraction at saturation
only the standard and intermediate values are used. As climateprediction.net continues,
the experiment is exploring 21 parameters covering a wider range of processes and
values.

Climate sensitivity calculations
The simulated climate sensitivity is taken as the difference between the predicted
equilibrium Tg in the doubled-CO2 and control phases. The latter is simply the mean of the
last eight years of that phase. The former is deduced by fitting the change in Tg, relative to the
start of the phase, to the exponential expression: DTg(t) ¼ DTg (2£CO2)(1 2 exp(2t/t)),
giving us a value of T g (2£CO2) that allows for uncertainty in the response timescale, t. Even
for high simulated climate sensitivities the uncertainty in this procedure is small (see Fig.
2c) and alternative methods give similar results. Because it is based on the first 15 years’
response, the l associated with this simulated climate sensitivity reflects the decadal
timescale feedbacks in the system. Longer, centennial-timescale processes could affect the
ultimate value of the equilibrium sensitivity and are best studied using models with
dynamic oceans and cryospheres.

Relative root-mean-square error
Models are compared with gridded observations of annual mean temperature, sea level
pressure, precipitation and atmosphere–ocean sensible and latent heat flux. The total error
in variable j is defined simply as:

12
js ¼ ðSiwiðmis 2 oiÞ

2 ð1Þ

where m is is the simulated value in grid-box i averaged over the last 8 yr of the control
phase of simulation s, o i is the observed value9 and w i is an area weighting. Mean squared
errors relative to the standard model are computed as:

12
s ¼ ðSj1

2
js=1

2
juÞ=N ð2Þ

where N is the number of variables and 1 ju
2 is the mean 1 js

2 for the unperturbed model,
and averaged across initial-condition ensembles. Normalizing errors in individual
variables by the corresponding errors in the unperturbed model ensures that all
variables are given equal weight. The relative r.m.s.e. is plotted in Fig. 2b. Note that
because we do not have an explicit and adequate noise model (1 js

2 does not account for
correlations, for example), these ‘scores’ cannot be interpreted explicitly in terms of

likelihood, but nevertheless provide an indication of the relative merits of different
model control climates.

For the CMIP II data the (m i 2 o i)
2 term is reduced by the variance of the mean to

compensate for the greater variability found in models with dynamic oceans.
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