

PhD in Statistics, Department of Statistics

Sketching stochastic valuation functions Supervisor: Milan Vojnovic **Student**: Yiliu Wang

Motivations

A typical example is the crowding-sourcing platform.

Workers are assigned to teams based on scores.

- Items of interest are workers.
- The agent **approximate** possible team performances ۲
- Evaluations can be used for comparing different sets or ۲ selecting the best team.

Other applications follow the same logic: i) Gaming ii) Digital advertising iii) Online searching

Problem setup

Assume we have

- Indep random variables X_1, \dots, X_n with distributions p_1, \dots, p_n
- Set utility function $u(S) = E[f(X_i, i \in S)]$ where |S| = k and f is a submodular value function

Given a ground set items Ω , a set function $u: 2^{\Omega} \to R^+$ is submodular if *u* satisfies the diminishing returns property: $u(T \cup i) - u(T) \le u(S \cup i) - u(S)$ s.t. $S \subseteq T$

We are interested in finding compact representation q_1, \dots, q_n of item distributions for approximation of set utility functions.

We have two specific goals:

Approximate set function everywhere: Find a sketch set function v s.t. $(C) \leftarrow (C) \leftarrow (C) \lor c = 0$

$$\alpha v(S) \le u(S) \le v(S) \ \forall S \subseteq \Omega$$

Best set selection: Find set A of size k s.t. for some const c, $u(A) \ge c \max\{u(S) \colon |S| = k\}$

Algorithms and main results

Discretization algorithm

For each $i \in \Omega$: Let τ_i be the top $1 - \varepsilon$ quantile X_i and $H_i = E[f(X_i \mid X_i > \tau_i)]$

- Let \widehat{X}_i be a new random variable s.t. $\widehat{X}_i = X_i$ if $X_i \leq \tau_i$ and $\widehat{X}_i = f^{-1}(H_i)$ o.w.
- Assign values of $\widehat{X}_i \leq a\tau_i$ to 0
- Transform \widehat{X}_i using an exponential binning of the interval $[a\tau_i, \tau_i]$.

Exponential Binning: Partition the range into l intervals $I_1, ..., I_l$ where $l = log_{1-\epsilon}(a)$ and map each value in a bin to the lower boundary of the bin.

$$I_j = \left[\frac{a\tau}{(1-\varepsilon)^{j-1}}, \frac{a\tau}{(1-\varepsilon)^j}\right]$$

Main results

Our work is the first step towards understanding approximation of stochastic valuation functions everywhere. Existing related work focused instead on optimization problems only, or approximation schemes using one-dimensional item value distribution representations (test scores).

A function f is weakly homogeneous with degree d and tolerance η over a set $\Theta \subseteq R$ if $(1/\eta)\theta f(x) \leq$ $f(\theta x) \leq \theta^d f(x)$ for all x in the domain of f and $\theta \in \Theta$. Several commonly used valuation functions are weakly homogenous with degree d = 1 and tolerance $\eta = 1$, e.g. maximum value function.

Theorem 1 (approximate set function everywhere) Assume that *f* is a monotone subadditive or submodular function and is weakly homogeneuous with degree d and tolerance η over [0,1]. Then the discretization algorithm guarantees that for every set $S \subseteq \Omega$ such that $|S| \leq k$,

 $\frac{1}{2}(1-\varepsilon)^{k-1}v(S) \le u(S) \le 2\eta \frac{1+a^d k/\varepsilon}{(1-\varepsilon)^k}v(S)$

- This theorem implies a **constant-factor** approximation guarantee.
- The support size of each discretized distribution is $O((1/d)k \log k)$.

A greedy algorithm start from an empty set and sequentially selects items that yields the largest marginal value $u(S \cup i) - u(S)$.

Theorem 2 (best set selection) For the class of functions satisfying conditions above, and by taking $\epsilon = c/k$, the greedy algorithm has the approximation ratio

 $\frac{1}{4n}\left(1-\frac{1}{e}\right)\frac{e^{-4c/(1-c)}}{1+c}$ arbitrarily close to $\frac{1}{4n}\left(1-\frac{1}{e}\right)$ by taking c small enough

Numerical results

Extensions

We further show that similar approximation guarantees hold under other conditions so the results extend to a wide range of functions. We have the following two corollaries of Theorem 1.

A monotone subadditive and concave function f on R^n_+ is said to have an extension on \mathbb{R}^n if there exists a function f^* on \mathbb{R}^n s.t. $f^*(x) = f(x)$ for all $x \in \mathbb{R}^n_+$ and monotone subadditive and concave.

Corollary 1 Assume that *f* is **extendable concave**, then the algorithm guarantees that for every set S such that $|S| \leq k$ we have $\frac{1}{2}(1-\varepsilon)^{k-1}v(S) \le u(S) \le 2\frac{1+ak/\varepsilon}{(1-\varepsilon)^k}v(S)$

Corollary 2 Similar approximation guarantees can be established for:

- **Coordinate-wise** weakly homogeneous functions
- Same set of functions with random variables transformed by a continuous and strictly increasing function.

Synthetic data

Three types of set utility functions and two parametric families of item value distributions (left: exponential, right: Pareto). Our sketch outperforms the test score baseline.

Real-world data

Three real-world datasets: YouTube, Stack Exchange and New York Times. Our sketch provides good approximation in most cases.