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A typical example is the crowding-sourcing platform.
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Workers are assigned to teams based on scores.

* |tems of interest are workers.

e The agent approximate possible team performances

e Evaluations can be used for comparing different sets or
selecting the best team.

Other applications follow the same logic:
i) Gaming ii) Digital advertising iii) Online searching

Discretization algorithm

Foreachi € Q:
Let 7; be the top 1 — € quantile X; and
Hy =E[f(Xi| X; > 7))

 Let X; be a new random variable s.t.
X;=X;ifX; <t;and X; = f~1(H;) o.w.

Supervisor: Milan Vojnovic

Assume we have
* Indep random variables X;,... X,, with distributions p4,... p,,
 Set utility function u(S) = E[f(X;,i € S)]

where |S| = k and f is a submodular value function

Given a ground set items ), a set function u: 2% = R* is submodular

if u satisfies the diminishing returns property:
u(Tui)—u(T) <u(SUi)—u(S) st.SCT

We are interested in finding compact representation g4, ... g,, of item
distributions for approximation of set utility functions.

We have two specific goals:

* Approximate set function everywhere: Find a sketch set function v s.t.
av(S) <u(S) <v(S)Vvsc

* Best set selection: Find set A of size k s.t. for some const c,
u(4) = c max{u(S): S| = k}

Our work is the first step towards understanding approximation of stochastic valuation functions
everywhere. Existing related work focused instead on optimization problems only, or approximation
schemes using one-dimensional item value distribution representations (test scores).

A function f is weakly homogeneous with degree d and tolerance n overaset ® € Rif (1/1)0f (x) <
f(6x) < 62 f(x) for all x in the domain of fand 8 € ©. Several commonly used valuation functions are

weakly homogenous with degree d = 1 and tolerance n = 1, e.g. maximum value function.

e Assign valuesof X; < at;to 0

Theorem 1 (approximate set function everywhere) Assume that f is a monotone subadditive or

e Transform X; using an exponential
binning of the interval [at;, 7;].

submodular function and is weakly homogeneuous with degree d and tolerance n over [0,1].
Then the discretization algorithm guarantees that for every set S € Q) such that |S| < k,

1 k—1 1+a%k/e
Exponential Binning: Partition the range 2 (1—¢) v(S) =u(S) =27 (1—¢) ¥ v(S)
into [ intervals I1,.. I; where | = log,_.(a)
and map each value in a bin to the lower  This theorem implies a constant-factor approximation guarantee.

boundary of the bin.

at at
= [(1—e)f‘1 ’ (1—e)j]
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We further show that similar approximation guarantees hold under
other conditions so the results extend to a wide range of functions.
We have the following two corollaries of Theorem 1.

A monotone subadditive and concave function f on R is said to have an
extension on R™ if there exists a function f* on R s.t. f*(x) = f(x) for all
x € R} and monotone subadditive and concave.

Corollary 1 Assume that f is extendable concave, then the algorithm
guarantees that for every set S such that |S| < k we have

1 _ 1+ak
~(1-¢) =1p(S) < u(S) < 2 (;_ag)/,f v(S)

Corollary 2 Similar approximation guarantees can be established for:

e Coordinate-wise weakly homogeneous functions

e Same set of functions with random variables transformed by a
continuous and strictly increasing function.
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* The support size of each discretized distribution is 0 ((1/d)k logk).

A greedy algorithm start from an empty set and sequentially selects items that yields the largest
marginal value u(S U i) — u(S).

Theorem 2 (best set selection) For the class of functions satisfying conditions above, and by

taking € = c/k, the greedy algorithm has the approximation ratio
1 e—4C/(1—C)

)

arbitrarily close to % (1-— é) by taking ¢ small enough

Synthetic data

Three types of set utility functions and two parametric families of item value
distributions (left: exponential, right: Pareto). Our sketch outperforms the
test score baseline.
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Real-world data

Three real-world datasets: YouTube, Stack Exchange and New York Times. Our
sketch provides good approximation in most cases.
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