Sketching stochastic valuation functions

Student: Yiliu Wang

Motivations

A typical example is the crowding-sourcing platform.

Workers are assigned to teams based on scores.

- Items of interest are workers.
- The agent approximate possible team performances
- Evaluations can be used for comparing different sets or selecting the best team

Other applications follow the same logic:
i) Gaming ii) Digital advertising iii) Online searching

Supervisor: Milan Vojnovic

Problem setup

Assume we have

- Indep random variables $X_{1}, \ldots X_{n}$ with distributions $p_{1}, \ldots p_{n}$
- Set utility function $u(S)=E\left[f\left(X_{i}, i \in S\right)\right]$
where $|S|=k$ and f is a submodular value function

Given a ground set items Ω, a set function $u: 2^{\Omega} \rightarrow R^{+}$is submodular if u satisfies the diminishing returns property:

$$
u(T \cup i)-u(T) \leq u(\mathrm{~S} \cup i)-u(S) \text { s.t. } S \subseteq T
$$

We are interested in finding compact representation $q_{1}, \ldots q_{n}$ of item distributions for approximation of set utility functions.

We have two specific goals:

- Approximate set function everywhere: Find a sketch set function v s.t. $\alpha v(S) \leq u(S) \leq v(S) \forall S \subseteq \Omega$
- Best set selection: Find set A of size k s.t. for some const c $u(A) \geq c \max \{u(S):|S|=k\}$

Algorithms and main results

Discretization algorithm
For each $i \in \Omega$:
Let τ_{i} be the top $1-\varepsilon$ quantile X_{i} and

$$
H_{i}=E\left[f\left(X_{i} \mid X_{i}>\tau_{i}\right)\right]
$$

- Let \widehat{X}_{i} be a new random variable s.t. $\widehat{X}_{i}=X_{i}$ if $X_{i} \leq \tau_{i}$ and $\widehat{X_{i}}=f^{-1}\left(H_{i}\right)$ o.w.
- Assign values of $\widehat{X}_{i} \leq a \tau_{i}$ to 0
- Transform \widehat{X}_{i} using an exponential binning of the interval $\left[a \tau_{i}, \tau_{i}\right]$.

Exponential Binning: Partition the range into l intervals $I_{1}, . . I_{l}$ where $l=\log _{1-\epsilon}(a)$ and map each value in a bin to the lower boundary of the bin.

$$
I_{j}=\left[\frac{a \tau}{(1-\varepsilon)^{j-1}}, \frac{a \tau}{(1-\varepsilon)^{j}}\right]
$$

Main results

Our work is the first step towards understanding approximation of stochastic valuation functions everywhere. Existing related work focused instead on optimization problems only, or approximation schemes using one-dimensional item value distribution representations (test scores).

A function f is weakly homogeneous with degree d and tolerance η over a set $\Theta \subseteq R$ if $(1 / \eta) \theta f(x) \leq$ $f(\theta x) \leq \theta^{d} f(x)$ for all x in the domain of f and $\theta \in \Theta$. Several commonly used valuation functions are weakly homogenous with degree $d=1$ and tolerance $\eta=1$, e.g. maximum value function.

Theorem 1 (approximate set function everywhere) Assume that f is a monotone subadditive or submodular function and is weakly homogeneuous with degree d and tolerance η over [0,1]. Then the discretization algorithm guarantees that for every set $S \subseteq \Omega$ such that $|S| \leq k$,

$$
\frac{1}{2}(1-\varepsilon)^{k-1} v(S) \leq u(S) \leq 2 \eta \frac{1+a^{d} k / \varepsilon}{(1-\varepsilon)^{k}} v(S)
$$

- This theorem implies a constant-factor approximation guarantee.
- The support size of each discretized distribution is $O((1 / d) k \log k)$.

A greedy algorithm start from an empty set and sequentially selects items that yields the largest marginal value $u(S \cup i)-u(S)$.

Theorem 2 (best set selection) For the class of functions satisfying conditions above, and by taking $\epsilon=c / k$, the greedy algorithm has the approximation ratio $\frac{1}{4 \eta}\left(1-\frac{1}{e}\right) \frac{e^{-4 c /(1-c)}}{1+c} \quad$ arbitrarily close to $\frac{1}{4 \eta}\left(1-\frac{1}{e}\right)$ by taking c small enough

Extensions

We further show that similar approximation guarantees hold under other conditions so the results extend to a wide range of functions. We have the following two corollaries of Theorem 1.

A monotone subadditive and concave function f on R_{+}^{n} is said to have an extension on R^{n} if there exists a function f^{*} on R^{n} s.t. $f^{*}(x)=f(x)$ for all $x \in R_{+}^{n}$ and monotone subadditive and concave.

Corollary 1 Assume that f is extendable concave, then the algorithm guarantees that for every set S such that $|S| \leq k$ we have

$$
\frac{1}{2}(1-\varepsilon)^{k-1} v(S) \leq u(S) \leq 2 \frac{1+a k / \varepsilon}{(1-\varepsilon)^{k}} v(S)
$$

Numerical results

Synthetic data

Three types of set utility functions and two parametric families of item value distributions (left: exponential, right: Pareto). Our sketch outperforms the test score baseline.

Real-world data
Three real-world datasets: YouTube, Stack Exchange and New York Times. Our sketch provides good approximation in most cases

