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Introduction
Motivation: Dimension reduction on high-dimensional time series, through revealing its underlying process.
Background:

This project utilizes the idea of Factor Modeling for high-dimensional time series.

By Factor Modeling, a p-dimensional time series Y is composed of linear mixture of r -dimensional time series
X, where r < p.

Goal: Estimation on number of factors r .
Contribution: An estimation method on r when factors have different strength.

Factor Model
Y

(n×p)
= X

(n×r)
A⊤
(r×p)

+ ϵ
(n×p)

(1)

X is an unobserved latent process with r ≤ p.

A is a p × r constant factor loading matrix with rank r .

ϵ is a vector white-noise process.

Factor Strength
Let a ≍ b if a = O(b) and b = O(a), assume that for A = (a1, . . . , ar),

∥aj∥22 ≍ p1−δj , j = 1, . . . , r , δj ∈ [0, 1],

If δj = 0, Xj is called a strong factor. Else, Xj is called a weak factor.

Permutation Tests
Permutation test checks for serial correlation of a time series. The hypothesis is

H0 : ∀k ∈ [1,m], ρ(k) = 0, HA : ∃k ∈ [1,m]s.t. ρ(k) ̸= 0,

where ρ(k) represents the autocorrelation at lag k , and m is the maximal lag to be considered.

Steps for Permutation Tests
1 Given a time series Sobs = s1, . . . , sn, permute its elements to get Sπ = sπ(1), . . . , sπ(n), Repeat L times.

2 Choose test statistic for serial correlation: T (·) = n(n + 2)
∑m

k=1
m−k+1

m
ρ̂2k
n−k , calculate p-value by:

p-value =
1

L

L∑
i=1

1(T (Sπi) ≥ T (Sobs)). (2)

3 If p-value ≤ α, Sobs is serially correlated. α is the pre-specified significance level.

Estimation on Number of Factors
1 Use covariance matrix of Y at lag k : Σy(k) = Cov(yt+k, yt), gather information across multiple lags by

M =
m∑

k=1

Σy(k)Σy(k)
⊤, m ≥ 1. (3)

2 Perform eigen-decomposition on M. Define Γ = (b1, . . . , bp), where (b1, . . . , bp) are eigenvectors of M in
descending order of corresponding eigenvalues. Γ’s columns contain estimation of A and noise.

3 Define Z = YΓ, which is an approximation of X. Conduct permutation tests on all p columns of Z, obtain a
sequence of p-values (p1, . . . , pp).

4 Obtain the estimator by identifying number of columns with significant serial correlation:

r̂PT =

p∑
i=1

1(pi ≤ α). (4)

Estimation Accuracy of r̂PT
We demonstrate our estimator through 2 sets of simulations. In first setting, all factors are strong
(δi = 0). In second setting, δi ∼ Unif (0, 1). For both simulations,

n = (400, 900, 1600, 2500, 3600), p = (
√
n, 0.5n, n, 2n), r = 9, L = 1000.

Factor within X from AR(1) process.

Elements of ϵ ∼ N(0, 1), independent of time, elements of A ∼ N(0, 1).

Maximal lag for covariance estimation is 1.

To compare, r̂Ratio from Lam&Yao (2012) is added, which is based on ratio of eigenvalues of M.

Figure: Accuracy of estimators from Permutation Test and Ratio Test with 100 repetitions. Figure on left represents the
result when all factors are strong, and figure on right is when all factors are weak with different strength.

Remark: r̂Ratio has better performance when factors are strong and dimension p < 2n. If factors are
weak, r̂PT is stable at a reasonable accuracy level, yet r̂Ratio cannot give good estimation.

Mean and Standard Deviation of r̂PT and r̂Ratio
n p r0 PT mean PT sd Ratio mean Ratio sd

1 400.00 20.00 9.00 8.51 1.60 9.00 0.00
2 400.00 200.00 9.00 8.58 1.81 9.00 0.00
3 400.00 400.00 9.00 8.44 1.53 9.00 0.00
4 400.00 800.00 9.00 8.52 1.21 386.33 66.69
5 900.00 30.00 9.00 8.83 1.54 9.00 0.00
6 900.00 450.00 9.00 8.82 1.32 9.00 0.00
7 900.00 900.00 9.00 8.65 1.08 9.00 0.00
8 900.00 1800.00 9.00 8.45 1.49 844.66 212.19
9 1600.00 40.00 9.00 9.16 1.25 9.00 0.00
10 1600.00 800.00 9.00 9.01 0.87 9.00 0.00
11 1600.00 1600.00 9.00 8.99 0.73 9.00 0.00
12 1600.00 3200.00 9.00 8.91 1.07 1375.54 554.14
13 2500.00 50.00 9.00 9.27 0.68 9.00 0.00
14 2500.00 1250.00 9.00 9.12 0.94 9.00 0.00
15 2500.00 2500.00 9.00 9.08 1.08 9.00 0.00
16 2500.00 5000.00 9.00 9.12 0.94 1004.60 1225.50
17 3600.00 60.00 9.00 9.20 0.74 9.00 0.00
18 3600.00 1800.00 9.00 9.19 1.08 9.00 0.00
19 3600.00 3600.00 9.00 9.22 1.14 9.00 0.00
20 3600.00 7200.00 9.00 9.42 1.26 9.00 0.00

(a) Mean & SD of r̂PT and r̂Ratio for Strong Factor Setting

n p r0 PT mean PT sd Ratio mean Ratio sd
1 400.00 20.00 9.00 8.02 2.08 5.70 3.21
2 400.00 200.00 9.00 8.76 1.66 4.17 2.50
3 400.00 400.00 9.00 8.90 1.44 3.78 2.34
4 400.00 800.00 9.00 8.56 1.81 398.62 0.49
5 900.00 30.00 9.00 9.05 1.20 7.02 2.74
6 900.00 450.00 9.00 9.07 1.41 4.01 2.45
7 900.00 900.00 9.00 8.82 1.30 4.11 2.11
8 900.00 1800.00 9.00 9.03 0.83 898.00 0.00
9 1600.00 40.00 9.00 9.22 0.72 7.64 2.68
10 1600.00 800.00 9.00 9.18 0.56 4.09 2.32
11 1600.00 1600.00 9.00 9.10 1.18 4.42 1.89
12 1600.00 3200.00 9.00 9.20 0.75 1598.00 0.00
13 2500.00 50.00 9.00 9.18 1.04 7.79 2.69
14 2500.00 1250.00 9.00 9.37 0.86 4.49 2.44
15 2500.00 2500.00 9.00 9.22 1.07 4.28 1.94
16 2500.00 5000.00 9.00 9.28 0.94 2498.00 0.00
17 3600.00 60.00 9.00 9.04 0.94 7.97 2.63
18 3600.00 1800.00 9.00 9.51 0.87 4.70 2.36
19 3600.00 3600.00 9.00 9.50 0.64 4.45 1.86
20 3600.00 7200.00 9.00 9.59 1.22 3598.00 0.00

(b) Mean & SD of r̂PT and r̂Ratio for Weak Factor Setting

Remark: r̂PT have more stable standard deviation across different settings, while r̂Ratio has perfect
performance only when factor strength is strong and p < 2n for small n.

Conclusions
Performance of r̂PT

Estimation accuracy of r̂PT is generally
reasonable.

Inaccurate estimations r̂PTwrong = r ± 1
most of the time.

r̂PT has similar performance in both
settings.

Accuracy drops when both n and p are
large, due to estimation error of sample
covariance matrix under large sample size.

Comparing r̂PT with r̂Ratio
When factors are strong, r̂PT is better
than r̂Ratio, only if p is relative large.

r̂PT can handle factors with different
levels of strength, yet r̂Ratio works only
when all factors have same strength.

r̂PT can perform well with small n, even
when p is large.

Future Work
1 Better estimation of sample
covariance matrix at large sample size.

2 Choice of Test Statistics might need
adjustment for deriving asymptotic
properties.

3 Improvement on speed of estimation is
needed.

4 Information from ordering of eigenvalues
can be further utilized by designing new
estimators.
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