Estimation and Inference in Sparse Autoregressive Networks

Binyan Jiang, Yutong Wang, Qiwei Yao
by.jiang@polyu.edu.hk, y.wang487@lse.ac.uk, q.yao@lse.ac.uk

Problem

To predict the evolution of dynamic networks, we model it by a network AR(1) process.
Given a sample of adjacency matrix $\left\{X_{1}, \cdots, X_{n}\right\}$, our first purpose is to estimate the parameters $\left(\alpha_{i, j}\right)_{p \times p},\left(\beta_{i, j}\right)_{p \times p}$, and find a proper embedding into a space with lower dimension (find a simpler representation for parameters). Thus, the second purpose is to estimate $\left(\theta_{i}, \eta_{i}\right)_{i=1}^{p}$

Concepts

The adjacency matrix is one way preferred by mathematicians to represent networks. A network with n nodes can be represented by an n-by- n matrix X, where node i and j are connected once $X_{i, j}=1$.
α-mixing coefficient is firstly defined for two σ-algebra \mathcal{A} and \mathcal{B} :
$\alpha(\mathcal{A}, \mathcal{B})=\sup _{A \in \mathcal{A}, B \in \mathcal{B}}|P(A \cap B)-P(A) P(B)|$.
For time series $\left\{X_{t}\right\}_{t=0}^{\infty}$, it is defined as:

$$
\alpha_{X_{t}}(n)=\sup _{k \geq 1} \alpha\left(\mathcal{M}_{k}, \mathcal{G}_{k+n}\right),
$$

where $\mathcal{M}_{j}=\sigma\left(\left\{X_{i}, i \leq j\right\}\right), \mathcal{G}_{j}=\sigma\left(\left\{X_{i}, i \geq\right.\right.$ j\})

Models

We consider an $\mathrm{AR}(1)$ dynamic network defined on p fixed nodes, denoted by $\{1, \cdots, p\}$, with the $p \times p$ adjacency matrix $X_{t}=\left(X_{i, j}^{t}\right)$ at time t defined by

$$
\begin{equation*}
X_{i, j}^{t}=X_{i, j}^{t-1} I\left(\varepsilon_{i, j}^{t}=0\right)+I\left(\varepsilon_{i, j}^{t}=1\right), t \geq 1 \tag{1}
\end{equation*}
$$

innovations $\varepsilon_{i, j}^{t}, 1 \leq i<j \leq p$, are independent, and
$P\left(\varepsilon_{i, j}^{t}=1\right)=\alpha_{i, j}, P\left(\varepsilon_{i, j}^{t}=-1\right)=\beta_{i, j}$,
$P\left(\varepsilon_{i, j}^{t}=0\right)=1-\alpha_{i, j}-\beta_{i, j}$.
Thus, $\left\{X_{t}\right\}$ is a Markov process, with

$$
\begin{aligned}
& P\left(X_{i, j}^{t}=1 \mid X_{i, j}^{t-1}=0\right)=\alpha_{i, j} \\
& P\left(X_{i, j}^{t}=0 \mid X_{i, j}^{t-1}=1\right)=\beta_{i, j}
\end{aligned}
$$

In addition, assume parameters $\alpha_{i, j}$ and $\beta_{i, j}$ is generated from $\left\{\theta_{i}, \eta_{i}\right\}_{i=1}^{p}$ by:

$$
\alpha_{i, j}=\theta_{i} \theta_{j}, \quad \beta_{i, j}=\eta_{i} \eta_{j} .
$$

This setting comes from the insights that connecting and breaking probability $\alpha_{i, j}, \beta_{i, j}$ should be explained by node i and node j 's nodespecific property: θ_{i}, η_{i} and θ_{j}, η_{j}. Here the property is in dimension 1 , and the dimension could be higher, the corresponding model is called dot-product random graph.

References

[1] Merlevede, F., Peligrad, M., Rio, E., et al. (2009). Bernstein inequality and moderate deviations under strong mixing conditions. In High dimensional probability V: the Luminy volume, pages 273-292. Institute of Mathematical Statistics.
[2] Jiang, B., Li, J., and Yao, Q. (2020). Autoregressive networks. arXiv preprint arXiv:2010.04492.

Sparsity is an Issue in Network Parameter Estimation

The sparsity in networks is not like in the linear model, where we assume only a small number of all features are strong features that actually affect the response variable. Here, sparsity means the expected number of edges divided by the number of all possible edges $\rho_{p}=\frac{\sum_{i, j=1}^{p} E\left[X_{i, j}\right]}{p(p-1) / 2}$ goes to zero as p goes to infinity.
Under our setting, $\rho_{p}=\frac{\sum_{i, j=1}^{p} E\left[X_{i, j}\right]}{p(p-1) / 2}=\frac{2}{p(p-1)} \sum_{1 \leq i<j \leq p} \frac{\alpha_{i, j}}{\alpha_{i, j}+\beta_{i, j}}=\frac{2}{p(p-1)} \sum_{1 \leq i<j \leq p} \frac{1}{1+\beta_{i, j} / \alpha_{i, j}}$. It is clear that if $\alpha_{i, j}$ and $\beta_{i, j}$ are bounded away from $0\left(\liminf _{p \rightarrow \infty} \alpha_{i, j}>0, \liminf _{p \rightarrow \infty} \beta_{i, j}>0\right)$, then the network is not sparse. Asymptotic results under non-sparse settings have been thoroughly investigated.
One way to understand why sparse is an issue is to treat it as signal processing:

$$
X=E[X]+P
$$

where $E[X]=\left(\frac{\alpha_{i, j}}{\alpha_{i, j}+\beta_{i, j}}\right)_{p \times p}$ is the expected value of the adjacency matrix, while X is the realisation (of $p(p-1) / 2$ number of Bernoulli distribution), while P satisfying $E[P]=0$ is the noise (or error term).

Methods

We estimate α and β by conditional Maximum Likelihood Estimation.

$$
\begin{equation*}
\widehat{\alpha}_{i, j}=\frac{\sum_{t=1}^{n} X_{i, j}^{t}\left(1-X_{i, j}^{t-1}\right)}{\sum_{t=1}^{n}\left(1-X_{i, j}^{t-1}\right)}, \quad \widehat{\beta}_{i, j}=\frac{\sum_{t=1}^{n}\left(1-X_{i, j}^{t}\right) X_{i, j}^{t-1}}{\sum_{t=1}^{n} X_{i, j}^{t-1}}, \quad \widehat{\pi}_{i, j}=\frac{\widehat{\alpha}_{i, j}}{\widehat{\alpha}_{i, j}+\widehat{\beta}_{i, j}} . \tag{2}
\end{equation*}
$$

Next, by using $\widehat{\alpha}$, we aim to estimate θ. Directly listing all equations $\widehat{\alpha}_{i, j}=\widehat{\theta}_{i} \widehat{\theta}_{j}$ for $1 \leq i<j \leq p$ does not necessarily yield solutions, since $\widehat{\alpha}_{i, j}$ are noise versions of $\alpha_{i, j}$, therefore the matrix $\left(\widehat{\alpha}_{i, j}\right)_{p \times p}$ are very likely to not be in 1 dimension. (there are $p(p-1) / 2$ number of equations, and only p number of variables)
We propose a method to solve for $\widehat{\theta}_{i}$: consider summation for p number of rows:

$$
\sum_{j=1, j \neq i}^{p} \widehat{\theta}_{i} \widehat{\theta}_{j}=\sum_{j=1, j \neq i}^{p} \widehat{\alpha}_{i, j}, \forall i=1, \cdots, p
$$

Now there are p number of equations and p number of variables. Although it is in the quadratic form, we prove this is a convex problem, thus having a unique solution.

Given the estimation strategy, we could derive the probability bound for these estimators.
Lemma 1. For $t \geq 1$, Define $Y_{i, j}^{t}=X_{i, j}^{t}\left(1-X_{i, j}^{t}\right)$. Set $c_{Y}=\frac{1}{4}\left(\alpha_{i, j}+\beta_{i, j}\right)$, then, for any $n \in \mathbb{N}$,

$$
\begin{equation*}
\boldsymbol{\alpha}_{Y_{i, j}}(n) \leq \exp \left\{-2 c_{Y} n\right\} \tag{3}
\end{equation*}
$$

Theorem 1. Let $n \geq 4$. For any t such that

$$
0<t \leq \frac{\alpha_{i, j} \beta_{i, j}}{8\left[\log _{2}\left(\frac{n}{\alpha_{i, j}+\beta_{i, j}}\right)\right]^{2}\left(\alpha_{i, j}+\beta_{i, j}\right)}
$$

we have the non-asymptotic bound for the Moment Generating Function of $S_{(0, n]}$:

$$
\begin{equation*}
\log \mathbb{E} \exp \left\{t S_{(0, n]}\right\} \leq 15.5 t^{2} v^{2} n+1.4 n \exp \left\{-\frac{\alpha_{i, j}+\beta_{i, j}}{24 t}\right\}+\frac{8 t^{2} n \alpha_{i, j} \beta_{i, j}}{\left(\alpha_{i, j}+\beta_{i, j}\right)^{3}}+\frac{1}{8} \tag{4}
\end{equation*}
$$

Furthermore, for any $\varepsilon_{n, p}>0$ and $\varepsilon_{n, p}=o\left(\frac{\left(\alpha_{i, j} \beta_{i, j}\right)^{2}}{\left(\alpha_{i, j}+\beta_{i, j}\right)^{4}\left[\log _{2}\left(\frac{n}{\alpha_{i, j}+\beta_{i, j}}\right)\right]^{2}}\right)$, there exists a constant $C>0$ only depends on a upper bound of α-mixing coefficient of $\left\{X_{i, j}^{t}\right\}_{t=0}^{\infty}$, such that the inequality below holds for all sufficiently large n.

$$
\begin{equation*}
\mathbb{P}\left(\left|\frac{1}{n} \sum_{t=1}^{n}\left(X_{i, j}^{t}-\pi_{i, j}\right)\right| \geq \varepsilon_{n, p}\right) \leq 10 \exp \left\{-\frac{C n\left(\alpha_{i, j}+\beta_{i, j}\right)^{3} \varepsilon_{n, p}^{2}}{\alpha_{i, j} \beta_{i, j}}\right\} \tag{5}
\end{equation*}
$$

(C1) As $n, p \rightarrow \infty$, it holds that $\frac{\left(\alpha_{i, j}+\beta_{i, j}\right)^{3}}{\left(\alpha_{i, j} \beta_{i, j}\right)^{3 / 2}}\left(\log \frac{n}{\alpha_{i, j}+\beta_{i, j}}\right)^{2} \sqrt{\frac{\log p}{n\left(\alpha_{i, j}+\beta_{i, j}\right)}} \rightarrow 0$.
Corollary 1. Let condition (C1) hold. For any $\kappa>0$, and any p there exists a constant C_{κ} only depends on κ, such that for all sufficiently large n,

$$
\begin{equation*}
\mathbb{P}\left(\left|\frac{1}{n} \sum_{t=1}^{n} X_{i, j}^{t}-\pi_{i, j}\right| \geq C_{\kappa} \sqrt{\frac{\alpha_{i, j} \beta_{i, j} \log p}{n\left(\alpha_{i, j}+\beta_{i, j}\right)^{3}}}\right) \leq p^{-\kappa} \tag{6}
\end{equation*}
$$

