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Problem
To predict the evolution of dynamic networks,
we model it by a network AR(1) process.
Given a sample of adjacency matrix
{X1, · · · , Xn}, our first purpose is to esti-
mate the parameters (αi,j)p×p, (βi,j)p×p, and
find a proper embedding into a space with lower
dimension (find a simpler representation for
parameters). Thus, the second purpose is to
estimate (θi, ηi)

p
i=1.

Concepts
The adjacency matrix is one way preferred by
mathematicians to represent networks. A net-
work with n nodes can be represented by an
n-by-n matrix X, where node i and j are con-
nected once Xi,j = 1.
α-mixing coefficient is firstly defined for two
σ-algebra A and B:

α(A,B) = sup
A∈A,B∈B

|P (A ∩B)− P (A)P (B)|.

For time series {Xt}∞t=0, it is defined as:

αXt(n) = sup
k≥1

α(Mk,Gk+n),

where Mj = σ({Xi, i ≤ j}), Gj = σ({Xi, i ≥
j})

Models
We consider an AR(1) dynamic network defined
on p fixed nodes, denoted by {1, · · · , p}, with
the p× p adjacency matrix Xt = (Xt

i,j) at time
t defined by

Xt
i,j = Xt−1

i,j I(εti,j = 0) + I(εti,j = 1), t ≥ 1,
(1)

innovations εti,j , 1 ≤ i < j ≤ p, are independent,
and
P (εti,j = 1) = αi,j , P (εti,j = −1) = βi,j ,
P (εti,j = 0) = 1− αi,j − βi,j .
Thus, {Xt} is a Markov process, with

P (Xt
i,j = 1|Xt−1

i,j = 0) = αi,j ,

P (Xt
i,j = 0|Xt−1

i,j = 1) = βi,j .

In addition, assume parameters αi,j and βi,j is
generated from {θi, ηi}pi=1 by:

αi,j = θiθj , βi,j = ηiηj .

This setting comes from the insights that con-
necting and breaking probability αi,j , βi,j should
be explained by node i and node j’s node-
specific property: θi, ηi and θj , ηj . Here the
property is in dimension 1, and the dimension
could be higher, the corresponding model is
called dot-product random graph.
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Sparsity is an Issue in Network Parameter Estimation
The sparsity in networks is not like in the linear model, where we assume only a small number of
all features are strong features that actually affect the response variable. Here, sparsity means the
expected number of edges divided by the number of all possible edges ρp =

∑p
i,j=1 E[Xi,j ]

p(p−1)/2 goes to zero
as p goes to infinity.
Under our setting, ρp =

∑p
i,j=1 E[Xi,j ]

p(p−1)/2 = 2
p(p−1)

∑
1≤i<j≤p

αi,j

αi,j+βi,j
= 2

p(p−1)

∑
1≤i<j≤p

1
1+βi,j/αi,j

. It
is clear that if αi,j and βi,j are bounded away from 0 (lim infp→∞ αi,j > 0, lim infp→∞ βi,j > 0),
then the network is not sparse. Asymptotic results under non-sparse settings have been thoroughly
investigated.
One way to understand why sparse is an issue is to treat it as signal processing:

X = E[X] + P

where E[X] = (
αi,j

αi,j+βi,j
)p×p is the expected value of the adjacency matrix, while X is the realisation

(of p(p − 1)/2 number of Bernoulli distribution), while P satisfying E[P ] = 0 is the noise (or error
term).

Methods
We estimate α and β by conditional Maximum Likelihood Estimation.

α̂i,j =

∑n
t=1 X

t
i,j(1−Xt−1

i,j )∑n
t=1(1−Xt−1

i,j )
, β̂i,j =

∑n
t=1(1−Xt

i,j)X
t−1
i,j∑n

t=1 X
t−1
i,j

, π̂i,j =
α̂i,j

α̂i,j + β̂i,j

. (2)

Next, by using α̂, we aim to estimate θ. Directly listing all equations α̂i,j = θ̂iθ̂j for 1 ≤ i < j ≤ p
does not necessarily yield solutions, since α̂i,j are noise versions of αi,j , therefore the matrix (α̂i,j)p×p

are very likely to not be in 1 dimension. (there are p(p−1)/2 number of equations, and only p number
of variables)
We propose a method to solve for θ̂i: consider summation for p number of rows:

p∑
j=1,j ̸=i

θ̂iθ̂j =

p∑
j=1,j ̸=i

α̂i,j , ∀i = 1, · · · , p.

Now there are p number of equations and p number of variables. Although it is in the quadratic
form, we prove this is a convex problem, thus having a unique solution.

Given the estimation strategy, we could derive the probability bound for these estimators.

Lemma 1. For t ≥ 1, Define Y t
i,j = Xt

i,j(1−Xt
i,j). Set cY = 1

4 (αi,j + βi,j), then, for any n ∈ N,

αYi,j
(n) ≤ exp{−2cY n}. (3)

Theorem 1. Let n ≥ 4. For any t such that

0 < t ≤ αi,jβi,j

8
[
log2

(
n

αi,j+βi,j

)]2
(αi,j + βi,j)

,

we have the non-asymptotic bound for the Moment Generating Function of S(0,n]:

logE exp{tS(0,n]} ≤ 15.5t2v2n+ 1.4n exp

{
−αi,j + βi,j

24t

}
+

8t2nαi,jβi,j

(αi,j + βi,j)3
+

1

8
. (4)

Furthermore, for any εn,p > 0 and εn,p = o

(
(αi,jβi,j)

2

(αi,j+βi,j)4
[
log2

(
n

αi,j+βi,j

)]2
)

, there exists a constant

C > 0 only depends on a upper bound of α-mixing coefficient of {Xt
i,j}

∞
t=0

, such that the inequality
below holds for all sufficiently large n.

P

(∣∣∣∣∣ 1n
n∑

t=1

(Xt
i,j − πi,j)

∣∣∣∣∣ ≥ εn,p

)
≤ 10 exp

{
−
Cn(αi,j + βi,j)

3ε2n,p
αi,jβi,j

}
. (5)

(C1) As n, p → ∞, it holds that (αi,j+βi,j)
3

(αi,jβi,j)3/2

(
log n

αi,j+βi,j

)2√
log p

n(αi,j+βi,j)
→ 0.

Corollary 1. Let condition (C1) hold. For any κ > 0, and any p there exists a constant Cκ only
depends on κ, such that for all sufficiently large n,

P

(∣∣∣∣∣ 1n
n∑

t=1

Xt
i,j − πi,j

∣∣∣∣∣ ≥ Cκ

√
αi,jβi,j log p

n(αi,j + βi,j)3

)
≤ p−κ. (6)


