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Abstract

Machine learning andAI models are increasingly used to make impactful decisions about peo-

ple, from lending to crime to education. Explaining the output and processes of these models

is essential. For example, explanations may be needed to understand whether the model sat-

isfies regulations about discrimination or privacy. Methods for model explanation/interpre-

tation can be used to audit such models and inform or educate stakeholders, and potentially

also to learn about relationships in the world that generated the training data. Audits often

do not have access directly to the algorithm and so rely on model agnostic methods, such as

the partial dependence plot (PDP). We investigate the efficacy of PDPs for fairness audits,

followed by our development of causal dependence plots, addressing some of the limitations

of PDPs.

1. Background

Explainability: generating explanations that can help users and other stakeholders

understand how an algorithm has come to a decision.

Algorithmic Fairness: different individuals receiving different treatment from an algorithm

based on features that have been systemically discriminated against.

Audits: systematic reviews of algorithms, often having a particularly focus in mind, e.g.

reviewing if an algorithm performs fairly.

Partial Dependence Plot: A partial dependence plot (PDP) displays the marginal effect of

a feature on the predicted outcome of a machine learning model, marginalized over a

dataset. Where f̂ is the predictor function, the PD function is defined as

f̂s (xS) = EXC

[
f̂ (xS , XC)

]
=

∫
f̂ (xS , XC) dP (XC), where xS are the features for

which the partial dependence function is plotted for [1].

Causal Modelling

We follow causal modelling as defined by [2].

Structural Causal Model (SCM). A (probabilistic) SCM M is a tuple 〈U, V, F, PU〉 where
PU is the joint distribution of the exogeneous variables.

Interventions. For the SCM M an intervention I produces a modified SCM denoted

Mdo(I) which may have different structural equations FI . The DAG representation Gdo(I)

may also change, and the new interventional distribution is P M;do(I).

Counterfactuals. A counterfactual distribution is an interventional distribution defined

over a specific dataset that lets us answer ‘what if questions’. For variable Vj with observed

values of its parentsPAj = v, we may hold some or all of v fixed and varyUj := u, passing
these through fj(v, u). The counterfactuals Vj(ṽ, u) are values Vj would have taken if any

of its observed and/or exogeneous parents had taken the different values (ṽ, u).
Individual counterfactuals and expected effects. Denote f̂(P M) to denote using
data from M as the input the the black-box function f̂ . Individual counterfac-

tual curves are(P M|V=v;do(I)) with empirical average over the explanatory dataset:
Ê
[
(P M|V=v;do(I))

]
.

2. Analysis of PDP

Figure 1. DAGs helpful for explaining PDP limitations for fairness. Left to right: Data

Dependence, Unfairness via Mediators, Interaction, Attrition

Data Dependence: Unrepresentative data could lead to inaccurate conclusions about the

world.

Unfairness via Mediators (Proxy Discrimination): If a black-box does not take a sensitive at-

tribute as an input it can still perform proxy discrimination

Interaction: PDPs are most effective at showing model dependence on each predictor if the

model is additive, but can hide dependence if there are interactions. This strong dependence

on model structure complicates the interpretation of PDPs. However, an ICE plot may alle-

viate this.

Attrition and Counterfactual Fairness: Attrition by age has been studied related to unfair-

ness to in law and health , where age interacts with other factors. In such examples, attrition

can violate the backdoor criterion [3].

3. PDP Experiment: Hiring Interaction Simulation

Based on the first DAG in Figure 1.

f̂E : only experience as a predictor.

f̂EAG: experience, age, and gender, but as linear effects.

f̂int: experience, age, and gender as predictors with interaction effects (correctly
specified).

Figure 2. Conditional PDPs of age conditional on gender. The left plot shows a PDP of f̂E ,

the center plot f̂EAG, and the right plot f̂int.

4. Causal Dependence Plots

Total Dependence Plot (TDP): The empirical average of TE(I) = (P MX |=x;do(I))
estimates the total effect

Partially Controlled Dependence Plot (PCDP): The empirical average of

PCE(I) = (P MX |=x;(I,C)), estimates a partially conditioned effect, where atomic
intervention C holds constant other variables.

Natural Direct Dependence Plot (NDDP): The empirical average of

NDE(I) = (P MX |=x;(I,J)) estimates the natural direct dependence where J is an
intervention on all children of nodes that are intervened upon by I . PDPs show this

effect.

Natural Indirect Dependence Plot (NIDP): The empirical average of

NIE(I) = (P Mdo(I)
X |=x;(K)) estimates the natural indirect effect, where K removes

outgoing edges from any nodes intervened on by I .

Figure 3. TDP, PCDP, NDDP, NIDP for a correctly specified black box function (bottom row),

and an incorrectly specified black box function (top row), for the data: X ∼ N (0, 1),
MediatorM = 1

2 X3 + N (0, 1), Outcome Y = M2 − 1
2 X2 + N (0, 1)

5. Summary

PDPs contain important limitations for auditing for fairness

Incorporating causal knowledge can help alleviate the problems with PDP

Causal dependence plots have other applications: scientific discovery with causal

discovery methods, explanations under covariate shift, causal semi-supervised learning

Limitation: Other model-agnostic methods not explored: SHAP and LIME explanations

Limitation: Requires some causal knowledge about the ground truth data to be

meaningful
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