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Change point detection

Consider the model

X = θ + E ∈ Rp×n.y y y
observations signal noise

Entries of E are independent random variables with mean 0, variance 1 and
distribution Pe.

Task: mean change point testing

H0 : no change in the columns of θ

vs.

H1 : ∃ a change in the columns of θ
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Change point detection – testing problem
Model: X = θ + E ∈ Rp×n

I Null hypothesis H0 (no change)

H0 : θ ∈ Θ0(p, n) :=
{
θ : θ1 = θ2 = . . . = θn = µ ∈ Rp for some µ

}
.

I Alternative hypothesis H1 (∃ change)

H1 : θ ∈ Θ(p, n, s, ρ) :=
n−1⋃
t0=1

Θ(t0)(p, n, s, ρ)

where

Θ(t0)(p, n, s, ρ) :=
{
θ :θt = µ1 for 1 ≤ t ≤ t0, θt = µ2 for t0 + 1 ≤ t ≤ n,

‖µ1 − µ2‖0︸ ︷︷ ︸
sparsity level

≤ s, t0(n− t0)

n
‖µ1 − µ2‖22︸ ︷︷ ︸

normalised signal strength

≥ ρ2
}
.
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Minimax testing rate

Definition. Let Φ be the set of all test functions φ : Rp×n → {0, 1}. Denote
the minimax testing error

RQ(ρ) := inf
φ∈Φ
RQ(ρ, φ)

:= inf
φ∈Φ

{
sup
Pe∈Q

sup
θ∈Θ0(p,n)

Eφ︸ ︷︷ ︸
Type I error

+ sup
Pe∈Q

sup
θ∈Θ(p,n,s,ρ)

E(1− φ)︸ ︷︷ ︸
Type II error

}
.

v∗Q(p, n, s) is the minimax testing rate if

1. ∃ test φ, s.t. RQ(ρ, φ) ≤ 1/2 when ρ2 & v∗Q(p, n, s),

2. ∀ test φ, haveRQ(ρ, φ) > 1/2 when ρ2 . v∗Q(p, n, s).

I The distribution of each entry in E belongs to some class Q.
I Liu et al. (2021) derived the minimax testing rate for Q = {N(0, 1)}.
I Heavy-tailed distributions in Q?
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Heavy-tailed distributions

Two types of heavy-tailedness:

Definition (Gα,K class). For any P ∈ Gα,K and r.v. W ∼ P ,

EW = 0, EW 2 = 1 and E exp
{
|W/K|α

}
≤ 2.

Sub-Weibull distributions of order α; possessing exponentially-decaying tails

Definition (Pα,K class). For any P ∈ Pα,K and r.v. W ∼ P ,

EW = 0, EW 2 = 1 and E|W/K|α ≤ 1.

Distributions with finite α-th moment; possessing polynomially-decaying tails
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Main results – transition boundary

s∗P = p
1
2 p−γ(α) s∗G = p

1
2 log−β(α)(ep)
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Main results – minimax rates

I Minimax rate upper bound vU: construct a test procedure φ, such that
RQ(ρ, φ) ≤ 1/2 when ρ2 ≥ vU.

I Minimax rate lower bound vL: usually via Le Cam’s two point method.

Note: ω1 = 1{
s>

√
p log log(8n)

} and ω2 = 1{
s>

√
p log log(8n) and α≥4

}.
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Sub-Weibull Gα,K – dense

I Consider a dyadic grid T :=
{

1, 2, 4, . . . , 2blog2(n/2)c} and CUSUM-type
statistics

Yt :=

∑t
i=1Xi −

∑t
i=1Xn+1−i√

2t
∈ Rp.

I Aggregation across coordinates:

At :=

p∑
j=1

(
Y 2
t (j)− 1

)
.

I Test:
φG,dense := 1{maxt∈T At>r}.

I RG(ρ, φG,dense) ≤ 1/2 as long as ρ2 &
√
p log log(8n) + log log(8n).
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Sub-Weibull Gα,K – sparse

I Recall that for t ∈ T , we compute

Yt :=

∑t
i=1Xi −

∑t
i=1Xn+1−i√

2t
∈ Rp.

and

At :=

p∑
j=1

(
Y 2
t (j)− 1

)
.

I Test:
φG,sparse := 1{maxt∈T At,a>r}.

I RG(ρ, φG,sparse) ≤ 1/2 as long as ρ2 & s log2/α(ep/s) + log log(8n).
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Three messages

In Pα,K , each entry of the noise matrix E has finite α-th moment. For
high-dimensional mean change point testing problem:

1. When α ≤ 4, the sparse regime disappears.

2. Median-of-means-type statistics are e�ective in handling heavy-tailed data.

3. When α ≥ 4, in the sparse regime, we propose a computationally e�icient
test that achieves minimax optimality.

Robust mean change 12/21



Transition boundary under Pα,K

s∗P = p
1
2 p−γ(α)
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Finite moment Pα,K – dense lower bound

I Consider the dense regime

s ≥ p
1
2−( 1

α−2∧
1
2 ).

For α ≥ 2, we show thatRP(ρ) ≥ 1/2 whenever

ρ2 . p(2/α)∨(1/2)(log log(8n))ω/2 + log log(8n),

with ω = 1{
s>
√
p log log(8n)

}
∩{α≥4}

.

I When α ≤ 4, the dense regime becomes s & 1, i.e. no sparse regime.
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Detour: Median-of-means (MoM)

Let X1, . . . , Xn ∈ R be i.i.d random variables with mean µ and variance σ2 and
consider the following median-of-means estimator

µ̂MoM = median

 1

m

m∑
i=1

Xi, . . . ,
1

m

km∑
i=(k−1)m+1

Xi

 .

Let δ ∈ (0, 1), k = d8 log(1/δ)e and m = n/k. Then w.p. at least 1− δ,

|µ̂MoM − µ| ≤ σ
√

32 log(1/δ)

n
.

I ‘sub-Gaussian’ property.
I δ is an input to the estimator, through k (number of groups).
I For a given δ, the result is only possible when n is at least 8 log(1/δ).
I Equivalently, for n fixed, δ needs to be larger than exp(−n/8).
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Finite moment Pα,K – dense
I (In sub-Weibull dense...) For t ∈ T , we compute

Yt :=

∑t
i=1Xi −

∑t
i=1Xn+1−i√

2t
∈ Rp.

and

At :=

p∑
j=1

(
Y 2
t (j)− 1

)
.

I For i ≤ n/2, denote

Zi := (Xi −Xn−i+1)/
√

2.

I For t ∈ T , split {Z1, . . . , Zt} into Gt groups of equal size

Zt,1,Zt,2, . . . ,Zt,Gt .
Each group contains t/Gt elements.

I Set Vt,g ∈ Rp with

Vt,g(j) := Z
2

t,g(j)−
Gt
t
,

where Zt,g is the sample mean of the g-th group Zt,g .

I Median-of-means type statistic:

AMoM
t := t ·median

(
p∑
j=1

Vt,1(j),

p∑
j=1

Vt,2(j), . . . ,

p∑
j=1

Vt,Gt(j)

)
.
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Finite moment Pα,K – dense

Test:
φP,dense := 1{maxt∈T AMoM

t /rt>1}.

Theorem. Assume α ≥ 2. Choose Gt = min{t,∆} and rt = Cp(2/α)∨(1/2)Gt,
with ∆ = 8 log log(8n). ThenRP(ρ, φP,dense) ≤ 1/2 as long as

ρ2 & p(2/α)∨(1/2) log log(8n).

I When t ∈ T ∩ {t ≤ ∆}, MoM simply becomes median.
I When t ∈ T ∩ {t > ∆}, number of groups Gt is at most log log(8n).
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Finite moment Pα,K – sparse

I In the sparse regime, using the MoM approach with thresholding and
sample spli�ing yields slightly sub-optimal rate.

I Alternative strategy: for each t ∈ T ∩ {t > ∆̃}, directly apply a robust
sparse mean estimator µ̂(·) to{

Zi = (Xi −Xn+1−i)/
√

2, i = 1, . . . , t
}

and use ARSM
t := t‖µ̂‖22 as the test statistic.

I One example of such estimator µ̂(·) is given in Prasad et al. (2019):

inf
µ∈Rp:‖µ‖0≤s

sup
u∈N 1/2

2s (Sp−1)

∣∣u>µ− 1DRobust({u>Wi}ni=1, η/(6ep/s)
s)
∣∣,

– 1DRobust: a univariate robust mean est. (e.g. MoM, trimmed mean).
– High computational complexity: |N 1/2

2s (Sp−1)| ≤ (6ep/s)s.
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Finite moment Pα,K – sparse

I We can construct a test φRSM
P,sparse (non-robust when t ∈ T ∩ {t ≤ ∆̃}) that

satisfiesRP
(
ρ, φRSM
P,sparse

)
≤ 1/2 as long as

ρ2 & s(p/s)2/α + log log(8n).

Minimax optimal!

I To overcome the computation issue, we only use this test when
p ≤ logα−2(log(8n)), and use MoM + thresholding + sample spli�ing
otherwise. Best of both worlds!
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Summary

I �antify the costs of heavy-tailedness on the fundamental di�iculty of
change point testing problems for high-dimensional data.

I Under Gα,K , a CUSUM-type test achieves minimax testing rate up to√
log log(8n).

I Under Pα,K , a median-of-means-type test achieves near-optimal testing
rate in both dense and sparse regimes.

I In the sparse regime, a computationally e�icient procedure can achieve
exact optimality.

I Phase transition at α = 4 for Pα,K – no sparse regime when 2 ≤ α ≤ 4.

Reference

Li, M.∗, Chen, Y.∗, Wang, T. and Yu, Y. (2023) Robust mean change point testing
in high-dimensional data with heavy tails. arXiv preprint, arXiv: 2305.18987.
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rate in both dense and sparse regimes.

I In the sparse regime, a computationally e�icient procedure can achieve
exact optimality.

I Phase transition at α = 4 for Pα,K – no sparse regime when 2 ≤ α ≤ 4.
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