High-dimensional changepoint estimation with heterogeneous missingness

Tengyao Wang

London School of Economics

LSE Statistics Research Showcase

Jun 2023

うくで

Collaborators

Bertille Follain

Richard Samworth

High-dimensional changepoint models

- Evolution of technology enables collection of vast amount of time-ordered data
 - Healthcare devices
 - Covid case numbers
 - Network traffic data
 - Trading data of financial instruments

- Changes in the dynamics of the data streams are frequently of interest, leading to a renaissance of research on changepoint analysis.
- Modern data are often high-dimensional in nature combine high-dimensional statistics with changepoint analysis.

Missingness in Big Data

- The irony of Big Data is that missingness plays an even more prominent role.
- ► Consider running complete-case analysis with an *n* × *d* matrix, where each entry is missing independently with 1% probability.
 - When d = 5, around 95% of observations are retained.
 - When d = 300, only around 5% of observations are retained.
- In high-dimensional time series models, missingness can also arise due to asynchronous measurements.

High-dimensional change with missing data

Our goal is to study the high-dimensional sparse change in mean, but where our data are corrupted by missingness.

French river temperature in 2018

- Develop a robust methodology
- Quantify problem difficulty through interaction of signal and missingness

Problem setup

- Observed data $(X \circ \Omega, \Omega)$
 - Full data matrix $X = (X_{j,t}) \in \mathbb{R}^{p \times n}$
 - Revelation matrix $\Omega = (\omega_{j,t}) \in \{0,1\}^{p \times n}$: $\omega_{j,t} = 1$ if $X_{j,t}$ is observed and 0 otherwise.
- Data distribution:
 - Assume $X_t = (X_{1,t}, \dots, X_{p,t})^\top \sim N_p(\mu_t, \sigma^2 I_p)$ independently with

$$\mu_1 = \dots = \mu_z = \mu^{(1)}$$
 and $\mu_{z+1} = \dots = \mu_n = \mu^{(2)}$.

- Vector of change $\theta := \mu^{(2)} \mu^{(1)}$ is sparse in the sense that $\|\theta\|_0 \le k \ll p.$
- Missingness mechanism:
 - $\omega_{j,t} \sim \text{Bern}(q_j)$ independently, and independent of X.
- **Goal**: estimate the changepoint location *z*.

The MissInspect methodology

<□>

5900

Motivation of methodology

- The inspect method (W. and Samworth, 2018) works in the fully observed case:
 - Aggregate component series by finding a projection direction well-aligned with the vector of change.
 - Project data along this direction into a univariate series.
 - Estimate changepoint by looking at the CUSUM transform of the projected series.

$$a^{\top} X_t \sim N(a^{\top} \boldsymbol{\mu}, \sigma^2).$$

Optimal projection direction is $\theta/\|\theta\|_2$.

Use CUSUM transformation $\mathcal{T}: \mathbb{R}^{p \times n} \to \mathbb{R}^{p \times (n-1)}$ for temporal aggregation:

$$[\mathcal{T}(M)]_{j,t} := \sqrt{\frac{t(n-t)}{n}} \left(\frac{1}{n-t} \sum_{r=t+1}^{n} M_{j,r} - \frac{1}{t} \sum_{r=1}^{t} M_{j,r} \right).$$

Use CUSUM transformation $\mathcal{T}: \mathbb{R}^{p \times n} \to \mathbb{R}^{p \times (n-1)}$ for temporal aggregation:

$$[\mathcal{T}(M)]_{j,t} := \sqrt{\frac{t(n-t)}{n}} \left(\frac{1}{n-t} \sum_{r=t+1}^{n} M_{j,r} - \frac{1}{t} \sum_{r=1}^{t} M_{j,r} \right).$$

Use CUSUM transformation $\mathcal{T}: \mathbb{R}^{p \times n} \to \mathbb{R}^{p \times (n-1)}$ for temporal aggregation:

$$[\mathcal{T}(M)]_{j,t} := \sqrt{\frac{t(n-t)}{n}} \left(\frac{1}{n-t} \sum_{r=t+1}^{n} M_{j,r} - \frac{1}{t} \sum_{r=1}^{t} M_{j,r} \right).$$

Define $A := \mathcal{T}(\boldsymbol{\mu}), E := \mathcal{T}(W)$ and $T := \mathcal{T}(X)$.

- For a single changepoint, $A = \theta \gamma^{\top}$ for some $\gamma \in \mathbb{R}^{n-1}$.
- Oracle projection direction $\theta/\|\theta\|_2$ is the leading left singular vector of A.
- We could therefore estimate v by

 $\hat{v}_{\max,k} \in \operatorname*{argmax}_{u \in \mathbb{S}^{p-1}(k)} \| u^\top T \|_2.$

However, computing $\hat{v}_{\max,k}$ is **NP-hard**.

We obtain a computationally efficient projection direction via convex relaxation.

$$\max_{u \in \mathbb{S}^{p-1}(k)} \| u^{\top} T \|_{2} = \max_{u \in \mathbb{S}^{p-1}(k), w \in \mathbb{S}^{n-2}} u^{\top} T w$$
$$= \max_{u \in \mathbb{S}^{p-1}, w \in \mathbb{S}^{n-2}, \| u \| \le k} \langle u w^{\top}, T \rangle = \max_{M \in \mathcal{M}} \langle M, T \rangle,$$

where
$$\mathcal{M} := \{M : \|M\|_* = 1, \operatorname{rk}(M) = 1, \operatorname{nnzr}(M) \le k\}.$$

Therefore, a convex relaxation of the above optimisation problem is to compute

$$\hat{M} \in \operatorname*{argmax}_{M \in \mathcal{S}_1} \{ \langle M, T \rangle - \lambda \| M \|_1 \},\$$

where $S_1 = \{ M \in \mathbb{R}^{p \times (n-1)} : ||M||_* \le 1 \}.$

• Estimate $\theta/\|\theta\|_2$ by the leading left singular vector of \hat{M} .

Motivation of methodology

- The inspect method (W. and Samworth, 2018) works in the fully observed case:
 - Aggregate component series by finding a projection direction well-aligned with the vector of change.
 - Project data along this direction into a univariate series.
 - Estimate changepoint by looking at the CUSUM transform of the projected series.
- In the presence of missingness
 - Projection of data with missingness does not make sense.
 - But the notion of CUSUM transformation can be extended to missing data setting.
 - Project the CUSUM transformation instead.

MissCUSUM transform

Writing

$$L_{j,t} := \sum_{r=1}^{t} \omega_{j,t}, \quad R_{j,t} := \sum_{j=n-t+1}^{n} \omega_{j,t}, \quad N_j := L_{j,n} = R_{j,n}.$$

► The MissCUSUM transformation $\mathcal{T}^{\text{Miss}} : \mathbb{R}^{p \times n} \times \{0, 1\}^{p \times n} \to \mathbb{R}^{p \times (n-1)}$ is defined such that $T_{\Omega} = \mathcal{T}^{\text{Miss}}(X, \Omega)$ satisfies

$$(T_{\Omega})_{j,t} := \sqrt{\frac{L_{j,t}R_{j,n-t}}{N_j}} \left(\frac{1}{R_{j,n-t}} \sum_{r=t+1}^n (X \circ \Omega)_{j,r} - \frac{1}{L_{j,t}} \sum_{r=1}^t (X \circ \Omega)_{j,r}\right),$$

when $\min\{L_{j,t}, R_{j,t}\} > 0$ and 0 otherwise.

• When the data are fully-observed, i.e. Ω is an all-one matrix, \mathcal{T}^{Miss} reduces to the standard CUSUM transformation.

- Given the MissCUSUM transformed matrix T_Ω = T^{Miss}(X, Ω), we want to find a good projection direction to aggregate signal across coordinates.
- T_{Ω} can be viewed as a perturbation of A_{Ω} , the MissCUSUM transformation of $(\mathbb{E}(X) \circ \Omega, \Omega)$.
- A_{Ω} can in turn be viewed as a perturbation of the rank one matrix with a leading left singular vector $\theta \circ \sqrt{q}$.
- This suggests an 'oracle projection direction' of $\theta \circ \sqrt{q}/\|\theta \circ \sqrt{q}\|$.

Estimating the oracle projection direction

• We can estimate $\theta \circ \sqrt{q}/\|\theta \circ \sqrt{q}\|$ by looking at 'sparse leading left singular vector' of T_{Ω}

 $\max_{(v,w)\in\mathbb{R}^p\times\mathbb{R}^{n-1}} \quad v^{\top}T_{\Omega}w \qquad \text{subject to} \quad \|v\|_0 \le k.$

- Problem non-convex and requires knowledge of k.
- W. and Samworth (2018) adopts a semidefinite relaxation approach to convexify the problem. But this the fact that A_Ω is not rank one means the semi-definite relaxation is too coarse in this case.
- We instead relax it into a bi-convex problem

$$(\hat{v}, \hat{w}) \in \operatorname*{argmax}_{(v,w) \in \mathbb{R}^p \times \mathbb{R}^{n-1}} \left\{ v^\top T_\Omega w - \lambda \|v\|_1 \right\}$$

Additional benefit: directly exploits the row sparsity pattern.

The MissInspect algorithm

Algorithm 1: Pseudocode of the MissInspect algorithm Input: $X_{\Omega} = X \circ \Omega \in \mathbb{R}^{p \times n}, \ \Omega \in \{0, 1\}^{p \times n}, \ \lambda > 0$ 1 $T_{\Omega} \leftarrow \mathcal{T}^{\text{Miss}}(X_{\Omega}, \Omega);$ 2 Find $(\hat{v}, \hat{w}) \in \operatorname{argmax}_{\hat{v} \in \mathbb{B}^{p-1}, \tilde{w} \in \mathbb{B}^{n-2}} \{ \langle T_{\Omega}, \tilde{v} \tilde{w}^{\top} \rangle - \lambda \| \tilde{v} \|_1 \};$ 3 $\hat{z} \leftarrow \operatorname{median}(\operatorname{argmax}_{t \in [n-1]} | (\hat{v}^{\top} T_{\Omega})_t |);$ Output: \hat{z}

Algorithm 2: Pseudocode for an iterative procedure optimising (2)

Input: $T_{\Omega} \in \mathbb{R}^{p \times (n-1)}, \lambda \in (0, \|T_{\Omega}\|_{2 \to \infty})$

1 $\tilde{v} \leftarrow$ leading left singular vector of T_{Ω} ;

2 repeat

$$\begin{array}{c|c} \mathbf{3} & \tilde{w} \leftarrow \frac{T_{\Omega}^{\top} \tilde{v}}{\|T_{\Omega}^{\top} \tilde{v}\|_{2}}; \\ \mathbf{4} & \tilde{v} \leftarrow \frac{\operatorname{soft}(T_{\Omega} \tilde{w}, \lambda)}{\|\operatorname{soft}(T_{\Omega} \bar{w}, \lambda)\|_{2}}; \end{array}$$

5 until convergence;

Output: $(\hat{v}, \hat{w}) = (\tilde{v}, \tilde{w})$

Illustration of the algorithm in action

Parameters: $p = 100, n = 250, z = 100, k = 10, ||\theta||_2 = 2, q_j = 0.2 \ \forall j$

Tengyao Wang

Theoretical guarantees

Projection direction estimation

• Let $\tau := n^{-1} \min\{z, n-z\}$. Define the 'observation rate-weighted signal ℓ_2 norm':

$$\|\theta\|_{2,\boldsymbol{q}} := \left(\sum_{j=1}^p \theta_j^2 q_j\right)^{1/2}$$

Proposition. Let (\hat{v}, \hat{w}) be the optimiser in Step 1 of Algorithm 1, applied with $\lambda = 2\sigma \sqrt{n \log(pn)}$. Then

$$\mathbb{P}\left\{\sin\angle(\hat{v},\theta\circ\sqrt{\boldsymbol{q}}) \leq \frac{64\sigma}{\tau\|\theta\|_{2,\boldsymbol{q}}}\sqrt{\frac{k\log(pn)}{n}} + \frac{112\|\theta\|_{2}}{\tau\|\theta\|_{2,\boldsymbol{q}}}\sqrt{\frac{6\log(kn)}{n}}\right\} \geq 1 - \frac{6}{kn}.$$

- First term represents estimation error caused by noise in data: $\|\theta\|_{2,q}/\sigma$ is the signal-to-noise ratio
- Second term reflects error due to incomplete observation: ||θ||²_{2,q}/||θ||²₂ may be regarded as 'signal-weighted observation probability'.

Rate of location estimation

- With a good projection direction estimator, MissInspect algorithm produces good changepoint location estimator.
- We analyse a sample-splitting variant of Algorithm 1
 - Odd time points for projection direction estimation
 - Even time points for changepoint estimation after projection
- Two different rates of convergence of the location estimator depending on how much we are willing to assume on q:
 - slow rate: algorithm works well even if some coordinates are almost completely missing.
 - fast rate: when at least a logarithmic number of observations are seen in each coordinate.

Slow and fast rates

Theorem. Set tuning parameter $\lambda = 2\sigma \sqrt{n \log(pn)}$. There exists universal constants c, C, C_1, C_2 such that if

$$\frac{1}{\tau}\sqrt{\frac{\log(pn)}{n}}\left(\frac{\sigma\sqrt{k}}{\|\theta\|_{2,\boldsymbol{q}}}+\frac{\|\theta\|_2}{\|\theta\|_{2,\boldsymbol{q}}}\right)\leq c,$$

then

$$\mathbb{P}\bigg\{\frac{|\hat{z}-z|}{n\tau} \le C\sqrt{\frac{\log(kn)}{n\tau}}\bigg(\frac{\sigma}{\|\theta\|_{2,\boldsymbol{q}}} + \frac{\|\theta\|_2}{\|\theta\|_{2,\boldsymbol{q}}}\bigg)\bigg\} \ge 1 - \frac{22}{n}$$

If in addition, $n\tau^2 \min_j q_j \ge C_1 k \log(pn)$, then

$$\mathbb{P}\left\{\frac{|\hat{z}-z|}{n\tau} \le \frac{C_2 \log(pn)}{n\tau} \left(\frac{\sigma^2}{\|\theta\|_{2,q}^2} + \frac{\|\theta\|_{\infty}^2}{\|\theta\|_{2,q}^2}\right)\right\} \ge 1 - \frac{23}{n}.$$

Lower bound

- Let $P_{n,p,z,\theta,\sigma,q}$ denote all distributions satisfying our modelling assumption.
- Let $\hat{\mathcal{Z}}$ be the set of all estimators of z.

Theorem. Let $M \ge 1$ satisfy $\|\theta\|_{\infty} \le M \min_{j \in [p]: \theta_j \ne 0} |\theta_j|$. If $\max\{\sigma^2, \|\theta\|_{\infty}^2/(2M^2)\} \ge \|\theta\|_{2,q}^2$, then there exists c > 0, depending only on M, such that for $n \ge 4$,

$$\inf_{\tilde{z}\in\hat{\mathcal{Z}}}\max_{z\in[n-1]}\mathbb{E}_{P_{n,p,z,\theta,\sigma,q}}\frac{|\tilde{z}(X\circ\Omega,\Omega)-z|}{n\tau}\geq \frac{c}{n\tau}\min\bigg\{\frac{\sigma^2}{\|\theta\|_{2,q}^2}+\frac{\|\theta\|_{\infty}^2}{\|\theta\|_{2,q}^2},n\bigg\}.$$

Numerical studies

Choice of the tuning parameter

- The tuning parameter $\lambda = 2\sigma \sqrt{n \log(pn)}$ is convenient for theoretical analysis but often too conservative in practice.
- Examine the performance of the projection direction estimator for $\lambda = a\sigma \sqrt{n \log(pn)}$ by varying *a*.
- Best choice around a = 1/2.

Validation of theory

We show via simulation that the quantity ||θ||_{2,q} indeed captures the appropriate interaction between signal and missingness in this problem.

Parameters: $n = 1200, p = 1000, z = 400, k = 3, q = q\mathbf{1}_p$ with $q \in \{0.1, 0.2, 0.4, 0.8\}$.

Comparison with a competitor

ImputeInspect algorithm

- First impute missing data using the softImpute matrix completion algorithm (since the mean matrix of $X \circ \Omega$ is low-rank)
- Then run the inspect procedure on the imputed data.
- Compare both projection direction estimator quality and changepoint location estimation accuracy.

Comparison with a competitor

ν	$_{k}$	θ	$\angle(\hat{v}^{\mathrm{MI}}, \theta \circ \sqrt{q})$	$\angle(\hat{v}^{\mathrm{II}},\theta)$	$ \hat{z}^{MI} - z $	$ \hat{z}^{II} - z $	$ \hat{z}^{\text{IMI}} - z $	$ \hat{z}^{\text{GLR}} - z $
0.1	3	1	71.4	86.8	141.7	468.0	184.1	212.4
0.1	3	2	40.6	56.7	36.5	304.8	147.7	139.8
0.1	3	3	26.1	40.1	14.5	257.5	101.0	66.6
0.1	44	1	82.6	88.9	185.9	468.9	187.6	209.4
0.1	44	2	63.5	83.2	66.9	404.5	133.7	118.3
0.1	44	3	49.0	72.8	18.7	308.6	90.8	52.0
0.1	2000	1	86.5	88.2	180.0	485.0	184.1	219.6
0.1	2000	2	76.9	87.6	121.2	457.3	138.9	137.5
0.1	2000	3	67.7	82.9	50.4	376.9	79.2	41.0
0.5	3	1	32.3	81.0	11.9	358.4	150.8	176.0
0.5	3	2	13.6	42.1	1.6	7.2	44.8	10.5
0.5	3	3	9.6	24.8	0.7	6.9	7.6	2.1
0.5	44	1	62.7	88.4	50.1	438.5	159.4	207.1
0.5	44	2	37.3	73.6	2.3	174.2	41.8	7.3
0.5	44	3	26.9	58.1	0.7	1.8	3.3	1.6
0.5	2000	1	77.5	88.6	114.3	448.1	162.5	202.9
0.5	2000	2	59.2	85.5	6.7	338.6	40.6	6.8
0.5	2000	3	52.0	72.4	1.7	48.2	3.9	1.7

Parameters: $n = 1200, p = 2000, z = 400, q_1, \dots, q_p \stackrel{\text{iid}}{\sim} \text{Beta}(10\nu, 10(1-\nu))$

Real data analysis

- Oceanographic dataset covering the Neogene geological period (Samworth and Poore, 2005; Poore et al., 2006).
- Cores were extracted from North Atlantic, Pacific and Southern Oceans measuring ratio of abundance of ¹³C to ¹²C isotope ratio in microfossils at different depths (proxy for geological age).
- 7369 observations at 6295 distinct time points.
- Due to physical constraints and heterogeneity in the analysis carried out in different cores, appropriate to treat the series as data with missingness.

Real data analysis

The most prominent change at 6.13Ma was previously identified as a time of rapid change in oceanographic current flows (Poore et al., 2006).

Summary

- We propose a new method for high-dimensional changepoint estimation in the presence of missing data.
- A good projection direction for aggregation is estimated after applying a MissCUSUM transformation to the data.
- Theory reveals interesting interaction between signal and missingness in this problem.
- **R** package available on https://github.com/wangtengyao/MissInspect.

Main reference

Follain, B., Wang, T. and Samworth, R. J. (2021) High-dimensional changepoint estimation with heterogeneous missingness. *arXiv preprint*, arxiv:2108.01525.

Thank you!

<□>

999