High-dimensional changepoint estimation with heterogeneous missingness

Tengyao Wang
London School of Economics

LSE Statistics Research Showcase
Jun 2023

Collaborators

Bertille Follain

Richard Samworth

High-dimensional changepoint models

- Evolution of technology enables collection of vast amount of time-ordered data
- Healthcare devices
- Covid case numbers
- Network traffic data
- Trading data of financial instruments

- Changes in the dynamics of the data streams are frequently of interest, leading to a renaissance of research on changepoint analysis.
- Modern data are often high-dimensional in nature - combine high-dimensional statistics with changepoint analysis.

Missingness in Big Data

- The irony of Big Data is that missingness plays an even more prominent role.
- Consider running complete-case analysis with an $n \times d$ matrix, where each entry is missing independently with 1% probability.
- When $d=5$, around 95% of observations are retained.
- When $d=300$, only around 5% of observations are retained.
- In high-dimensional time series models, missingness can also arise due to asynchronous measurements.

High-dimensional change with missing data

- Our goal is to study the high-dimensional sparse change in mean, but where our data are corrupted by missingness.

French river temperature in 2018

${ }^{13} \mathrm{C} /{ }^{12} \mathrm{C}$ in ocean cores $0-23 \mathrm{Ma}$

- Develop a robust methodology
- Quantify problem difficulty through interaction of signal and missingness

Problem setup

- Observed data ($X \circ \Omega, \Omega$)
- Full data matrix $X=\left(X_{j, t}\right) \in \mathbb{R}^{p \times n}$
- Revelation matrix $\Omega=\left(\omega_{j, t}\right) \in\{0,1\}^{p \times n}: \omega_{j, t}=1$ if $X_{j, t}$ is observed and 0 otherwise.
- Data distribution:
- Assume $X_{t}=\left(X_{1, t}, \ldots, X_{p, t}\right)^{\top} \sim N_{p}\left(\mu_{t}, \sigma^{2} I_{p}\right)$ independently with

$$
\mu_{1}=\cdots=\mu_{z}=\mu^{(1)} \quad \text { and } \quad \mu_{z+1}=\cdots=\mu_{n}=\mu^{(2)} .
$$

- Vector of change $\theta:=\mu^{(2)}-\mu^{(1)}$ is sparse in the sense that $\|\theta\|_{0} \leq k \ll p$.
- Missingness mechanism:
- $\omega_{j, t} \sim \operatorname{Bern}\left(q_{j}\right)$ independently, and independent of X.
- Goal: estimate the changepoint location z.

The MissInspect methodology

Motivation of methodology

- The inspect method (W. and Samworth, 2018) works in the fully observed case:
- Aggregate component series by finding a projection direction well-aligned with the vector of change.
- Project data along this direction into a univariate series.
- Estimate changepoint by looking at the CUSUM transform of the projected series.

μ

W

X

For $a \in \mathbb{S}^{p-1}$,

$$
a^{\top} X_{t} \sim N\left(a^{\top} \boldsymbol{\mu}, \sigma^{2}\right)
$$

Optimal projection direction is $\theta /\|\theta\|_{2}$.

Recap of the inspect methodology

Use CUSUM transformation $\mathcal{T}: \mathbb{R}^{p \times n} \rightarrow \mathbb{R}^{p \times(n-1)}$ for temporal aggregation:

$$
[\mathcal{T}(M)]_{j, t}:=\sqrt{\frac{t(n-t)}{n}}\left(\frac{1}{n-t} \sum_{r=t+1}^{n} M_{j, r}-\frac{1}{t} \sum_{r=1}^{t} M_{j, r}\right)
$$

μ

W

X

Recap of the inspect methodology

Use CUSUM transformation $\mathcal{T}: \mathbb{R}^{p \times n} \rightarrow \mathbb{R}^{p \times(n-1)}$ for temporal aggregation:

$$
[\mathcal{T}(M)]_{j, t}:=\sqrt{\frac{t(n-t)}{n}}\left(\frac{1}{n-t} \sum_{r=t+1}^{n} M_{j, r}-\frac{1}{t} \sum_{r=1}^{t} M_{j, r}\right)
$$

Recap of the inspect methodology

Use CUSUM transformation $\mathcal{T}: \mathbb{R}^{p \times n} \rightarrow \mathbb{R}^{p \times(n-1)}$ for temporal aggregation:

$$
[\mathcal{T}(M)]_{j, t}:=\sqrt{\frac{t(n-t)}{n}}\left(\frac{1}{n-t} \sum_{r=t+1}^{n} M_{j, r}-\frac{1}{t} \sum_{r=1}^{t} M_{j, r}\right)
$$

Define $A:=\mathcal{T}(\boldsymbol{\mu}), E:=\mathcal{T}(W)$ and $T:=\mathcal{T}(X)$.

Recap of the inspect methodology

- For a single changepoint, $A=\theta \gamma^{\top}$ for some $\gamma \in \mathbb{R}^{n-1}$.
- Oracle projection direction $\theta /\|\theta\|_{2}$ is the leading left singular vector of A.
- We could therefore estimate v by

$$
\hat{v}_{\max , k} \in \underset{u \in \mathbb{S}^{p-1}(k)}{\operatorname{argmax}}\left\|u^{\top} T\right\|_{2}
$$

However, computing $\hat{v}_{\text {max }, k}$ is NP-hard.

Recap of the inspect methodology

- We obtain a computationally efficient projection direction via convex relaxation.

$$
\begin{aligned}
\max _{u \in \mathbb{S}^{p-1}(k)}\left\|u^{\top} T\right\|_{2} & =\max _{u \in \mathbb{S}^{p-1}(k), w \in \mathbb{S}^{n-2}} u^{\top} T w \\
& =\max _{u \in \mathbb{S}^{p-1}, w \in \mathbb{S}^{n-2},\|u\| \leq k}\left\langle u w^{\top}, T\right\rangle=\max _{M \in \mathcal{M}}\langle M, T\rangle
\end{aligned}
$$

where $\mathcal{M}:=\left\{M:\|M\|_{*}=1, \operatorname{rk}(M)=1, \operatorname{nnzr}(M) \leq k\right\}$.

- Therefore, a convex relaxation of the above optimisation problem is to compute

$$
\hat{M} \in \underset{M \in \mathcal{S}_{1}}{\operatorname{argmax}}\left\{\langle M, T\rangle-\lambda\|M\|_{1}\right\},
$$

where $\mathcal{S}_{1}=\left\{M \in \mathbb{R}^{p \times(n-1)}:\|M\|_{*} \leq 1\right\}$.

- Estimate $\theta /\|\theta\|_{2}$ by the leading left singular vector of \hat{M}.

Motivation of methodology

- The inspect method (W. and Samworth, 2018) works in the fully observed case:
- Aggregate component series by finding a projection direction well-aligned with the vector of change.
- Project data along this direction into a univariate series.
- Estimate changepoint by looking at the CUSUM transform of the projected series.
- In the presence of missingness
- Projection of data with missingness does not make sense.
- But the notion of CUSUM transformation can be extended to missing data setting.
- Project the CUSUM transformation instead.

MissCUSUM transform

- Writing

$$
L_{j, t}:=\sum_{r=1}^{t} \omega_{j, t}, \quad R_{j, t}:=\sum_{j=n-t+1}^{n} \omega_{j, t}, \quad N_{j}:=L_{j, n}=R_{j, n} .
$$

- The MissCUSUM transformation $\mathcal{T}^{\text {Miss }}: \mathbb{R}^{p \times n} \times\{0,1\}^{p \times n} \rightarrow \mathbb{R}^{p \times(n-1)}$ is defined such that $T_{\Omega}=\mathcal{T}^{\text {Miss }}(X, \Omega)$ satisfies

$$
\left(T_{\Omega}\right)_{j, t}:=\sqrt{\frac{L_{j, t} R_{j, n-t}}{N_{j}}}\left(\frac{1}{R_{j, n-t}} \sum_{r=t+1}^{n}(X \circ \Omega)_{j, r}-\frac{1}{L_{j, t}} \sum_{r=1}^{t}(X \circ \Omega)_{j, r}\right),
$$

when $\min \left\{L_{j, t}, R_{j, t}\right\}>0$ and 0 otherwise.

- When the data are fully-observed, i.e. Ω is an all-one matrix, $\mathcal{T}^{\text {Miss }}$ reduces to the standard CUSUM transformation.

How to aggregate signal

- Given the MissCUSUM transformed matrix $T_{\Omega}=\mathcal{T}^{\text {Miss }}(X, \Omega)$, we want to find a good projection direction to aggregate signal across coordinates.
- T_{Ω} can be viewed as a perturbation of A_{Ω}, the MissCUSUM transformation of $(\mathbb{E}(X) \circ \Omega, \Omega)$.
- A_{Ω} can in turn be viewed as a perturbation of the rank one matrix with a leading left singular vector $\theta \circ \sqrt{\boldsymbol{q}}$.
- This suggests an 'oracle projection direction' of $\theta \circ \sqrt{\boldsymbol{q}} /\|\theta \circ \sqrt{\boldsymbol{q}}\|$.

Estimating the oracle projection direction

- We can estimate $\theta \circ \sqrt{\boldsymbol{q}} /\|\theta \circ \sqrt{\boldsymbol{q}}\|$ by looking at 'sparse leading left singular vector' of T_{Ω}

$$
\max _{(v, w) \in \mathbb{R}^{p} \times \mathbb{R}^{n-1}} v^{\top} T_{\Omega} w \quad \text { subject to } \quad\|v\|_{0} \leq k .
$$

- Problem non-convex and requires knowledge of k.
- W. and Samworth (2018) adopts a semidefinite relaxation approach to convexify the problem. But this the fact that A_{Ω} is not rank one means the semi-definite relaxation is too coarse in this case.
- We instead relax it into a bi-convex problem

$$
(\hat{v}, \hat{w}) \in \underset{(v, w) \in \mathbb{R}^{p} \times \mathbb{R}^{n-1}}{\operatorname{argmax}}\left\{v^{\top} T_{\Omega} w-\lambda\|v\|_{1}\right\}
$$

- Additional benefit: directly exploits the row sparsity pattern.

The MissInspect algorithm

Algorithm 1: Pseudocode of the MissInspect algorithm
Input: $X_{\Omega}=X \circ \Omega \in \mathbb{R}^{p \times n}, \Omega \in\{0,1\}^{p \times n}, \lambda>0$
${ }_{1} T_{\Omega} \leftarrow \mathcal{T}^{\text {Miss }}\left(X_{\Omega}, \Omega\right)$;
2 Find $(\hat{v}, \hat{w}) \in \operatorname{argmax}_{\tilde{v} \in \mathbb{B}^{p-1}, \tilde{w} \in \mathbb{B}^{n-2}}\left\{\left\langle T_{\Omega}, \tilde{v} \tilde{w}^{\top}\right\rangle-\lambda\|\tilde{v}\|_{1}\right\}$;
$3 \hat{z} \leftarrow \operatorname{median}\left(\operatorname{argmax}_{t \in[n-1]}\left|\left(\hat{v}^{\top} T_{\Omega}\right)_{t}\right|\right)$;
Output: \hat{z}

Algorithm 2: Pseudocode for an iterative procedure optimising (2)
Input: $T_{\Omega} \in \mathbb{R}^{p \times(n-1)}, \lambda \in\left(0,\left\|T_{\Omega}\right\|_{2 \rightarrow \infty}\right)$
$\tilde{v} \leftarrow$ leading left singular vector of T_{Ω};
2 repeat

3	$\tilde{w} \leftarrow \frac{T_{S}^{T} \tilde{v}}{\left\\|T_{S}^{T} \tilde{v}\right\\|_{2}} ;$
4	$\tilde{v} \leftarrow \frac{\left.\text { soft } T_{2} \tilde{\sim}, \lambda\right)}{\left\\|\operatorname{soft}\left(T_{\Omega} \tilde{w}, \lambda\right)\right\\|_{2}} ;$

5 until convergence;
Output: $(\hat{v}, \hat{w})=(\tilde{v}, \tilde{w})$

Illustration of the algorithm in action

Parameters: $p=100, n=250, z=100, k=10,\|\theta\|_{2}=2, q_{j}=0.2 \forall j$

Theoretical guarantees

4ロ・4吕 4 三

Projection direction estimation

- Let $\tau:=n^{-1} \min \{z, n-z\}$. Define the 'observation rate-weighted signal ℓ_{2} norm':

$$
\|\theta\|_{2, \boldsymbol{q}}:=\left(\sum_{j=1}^{p} \theta_{j}^{2} q_{j}\right)^{1 / 2}
$$

Proposition. Let (\hat{v}, \hat{w}) be the optimiser in Step 1 of Algorithm 1, applied with $\lambda=2 \sigma \sqrt{n \log (p n)}$. Then
$\mathbb{P}\left\{\sin \angle(\hat{v}, \theta \circ \sqrt{\boldsymbol{q}}) \leq \frac{64 \sigma}{\tau\|\theta\|_{2, \boldsymbol{q}}} \sqrt{\frac{k \log (p n)}{n}}+\frac{112\|\theta\|_{2}}{\tau\|\theta\|_{2, \boldsymbol{q}}} \sqrt{\frac{6 \log (k n)}{n}}\right\} \geq 1-\frac{6}{k n}$.

- First term represents estimation error caused by noise in data: $\|\theta\|_{2, \boldsymbol{q}} / \sigma$ is the signal-to-noise ratio
- Second term reflects error due to incomplete observation: $\|\theta\|_{2, \boldsymbol{q}}^{2} /\|\theta\|_{2}^{2}$ may be regarded as 'signal-weighted observation probability'.

Rate of location estimation

- With a good projection direction estimator, MissInspect algorithm produces good changepoint location estimator.
- We analyse a sample-splitting variant of Algorithm 1
- Odd time points for projection direction estimation
- Even time points for changepoint estimation after projection
- Two different rates of convergence of the location estimator depending on how much we are willing to assume on \boldsymbol{q} :
- slow rate: algorithm works well even if some coordinates are almost completely missing.
- fast rate: when at least a logarithmic number of observations are seen in each coordinate.

Slow and fast rates

Theorem. Set tuning parameter $\lambda=2 \sigma \sqrt{n \log (p n)}$. There exists universal constants c, C, C_{1}, C_{2} such that if

$$
\frac{1}{\tau} \sqrt{\frac{\log (p n)}{n}}\left(\frac{\sigma \sqrt{k}}{\|\theta\|_{2, \boldsymbol{q}}}+\frac{\|\theta\|_{2}}{\|\theta\|_{2, \boldsymbol{q}}}\right) \leq c
$$

then

$$
\mathbb{P}\left\{\frac{|\hat{z}-z|}{n \tau} \leq C \sqrt{\frac{\log (k n)}{n \tau}}\left(\frac{\sigma}{\|\theta\|_{2, \boldsymbol{q}}}+\frac{\|\theta\|_{2}}{\|\theta\|_{2, \boldsymbol{q}}}\right)\right\} \geq 1-\frac{22}{n} .
$$

If in addition, $n \tau^{2} \min _{j} q_{j} \geq C_{1} k \log (p n)$, then

$$
\mathbb{P}\left\{\frac{|\hat{z}-z|}{n \tau} \leq \frac{C_{2} \log (p n)}{n \tau}\left(\frac{\sigma^{2}}{\|\theta\|_{2, q}^{2}}+\frac{\|\theta\|_{\infty}^{2}}{\|\theta\|_{2, q}^{2}}\right)\right\} \geq 1-\frac{23}{n} .
$$

Lower bound

- Let $P_{n, p, z, \theta, \sigma, q}$ denote all distributions satisfying our modelling assumption.
- Let $\hat{\mathcal{Z}}$ be the set of all estimators of z.

Theorem. Let $M \geq 1$ satisfy $\|\theta\|_{\infty} \leq M \min _{j \in[p]: \theta_{j} \neq 0}\left|\theta_{j}\right|$. If $\max \left\{\sigma^{2},\|\theta\|_{\infty}^{2} /\left(2 M^{2}\right)\right\} \geq\|\theta\|_{2, q}^{2}$, then there exists $c>0$, depending only on M, such that for $n \geq 4$,

$$
\inf _{\tilde{z} \in \hat{\mathcal{Z}}} \max _{z \in[n-1]} \mathbb{E}_{P_{n, p, z, \theta, \sigma, q}} \frac{|\tilde{z}(X \circ \Omega, \Omega)-z|}{n \tau} \geq \frac{c}{n \tau} \min \left\{\frac{\sigma^{2}}{\|\theta\|_{2, q}^{2}}+\frac{\|\theta\|_{\infty}^{2}}{\|\theta\|_{2, \boldsymbol{q}}^{2}}, n\right\}
$$

Numerical studies

Choice of the tuning parameter

- The tuning parameter $\lambda=2 \sigma \sqrt{n \log (p n)}$ is convenient for theoretical analysis but often too conservative in practice.
- Examine the performance of the projection direction estimator for $\lambda=a \sigma \sqrt{n \log (p n)}$ by varying a.
- Best choice around $a=1 / 2$.

Validation of theory

- We show via simulation that the quantity $\|\theta\|_{2, q}$ indeed captures the appropriate interaction between signal and missingness in this problem.

Parameters: $n=1200, p=1000, z=400, k=3, \boldsymbol{q}=q \mathbf{1}_{p}$ with $q \in\{0.1,0.2,0.4,0.8\}$.

Comparison with a competitor

- ImputeInspect algorithm
- First impute missing data using the softImpute matrix completion algorithm (since the mean matrix of $X \circ \Omega$ is low-rank)
- Then run the inspect procedure on the imputed data.
- Compare both projection direction estimator quality and changepoint location estimation accuracy.

Comparison with a competitor

ν	k	ϑ	$\angle\left(\hat{v}^{\mathrm{MI}}, \theta \circ \sqrt{\boldsymbol{q}}\right)$	$\angle\left(\hat{v}^{\mathrm{II}}, \theta\right)$	$\left\|\hat{z}^{\mathrm{MI}}-z\right\|$	$\left\|\hat{z}^{\mathrm{II}}-z\right\|$	$\left\|\hat{z}^{\mathrm{IMI}}-z\right\|$	$\left\|\hat{z}^{\mathrm{GLR}}-z\right\|$
0.1	3	1	$\mathbf{7 1 . 4}$	86.8	$\mathbf{1 4 1 . 7}$	468.0	184.1	212.4
0.1	3	2	$\mathbf{4 0 . 6}$	56.7	$\mathbf{3 6 . 5}$	304.8	147.7	139.8
0.1	3	3	$\mathbf{2 6 . 1}$	40.1	$\mathbf{1 4 . 5}$	257.5	101.0	66.6
0.1	44	1	$\mathbf{8 2 . 6}$	88.9	$\mathbf{1 8 5 . 9}$	468.9	187.6	209.4
0.1	44	2	$\mathbf{6 3 . 5}$	83.2	$\mathbf{6 6 . 9}$	404.5	133.7	118.3
0.1	44	3	$\mathbf{4 9 . 0}$	72.8	$\mathbf{1 8 . 7}$	308.6	90.8	52.0
0.1	2000	1	$\mathbf{8 6 . 5}$	88.2	$\mathbf{1 8 0 . 0}$	485.0	184.1	219.6
0.1	2000	2	$\mathbf{7 6 . 9}$	87.6	$\mathbf{1 2 1 . 2}$	457.3	138.9	137.5
0.1	2000	3	$\mathbf{6 7 . 7}$	82.9	50.4	376.9	79.2	$\mathbf{4 1 . 0}$
0.5	3	1	$\mathbf{3 2 . 3}$	81.0	$\mathbf{1 1 . 9}$	358.4	150.8	176.0
0.5	3	2	$\mathbf{1 3 . 6}$	42.1	$\mathbf{1 . 6}$	7.2	44.8	10.5
0.5	3	3	$\mathbf{9 . 6}$	24.8	$\mathbf{0 . 7}$	6.9	7.6	2.1
0.5	44	1	$\mathbf{6 2 . 7}$	88.4	$\mathbf{5 0 . 1}$	438.5	159.4	207.1
0.5	44	2	$\mathbf{3 7 . 3}$	73.6	$\mathbf{2 . 3}$	174.2	41.8	7.3
0.5	44	3	$\mathbf{2 6 . 9}$	58.1	$\mathbf{0 . 7}$	1.8	3.3	1.6
0.5	2000	1	$\mathbf{7 7 . 5}$	88.6	$\mathbf{1 1 4 . 3}$	448.1	162.5	202.9
0.5	2000	2	$\mathbf{5 9 . 2}$	85.5	$\mathbf{6 . 7}$	338.6	40.6	6.8
0.5	2000	3	$\mathbf{5 2 . 0}$	72.4	$\mathbf{1 . 7}$	48.2	3.9	$\mathbf{1 . 7}$

Parameters: $n=1200, p=2000, z=400, q_{1}, \ldots, q_{p} \stackrel{\text { iid }}{\sim} \operatorname{Beta}(10 \nu, 10(1-\nu))$

Real data analysis

- Oceanographic dataset covering the Neogene geological period (Samworth and Poore, 2005; Poore et al., 2006).
- Cores were extracted from North Atlantic, Pacific and Southern Oceans measuring ratio of abundance of ${ }^{13} \mathrm{C}$ to ${ }^{12} \mathrm{C}$ isotope ratio in microfossils at different depths (proxy for geological age).
- 7369 observations at 6295 distinct time points.
- Due to physical constraints and heterogeneity in the analysis carried out in different cores, appropriate to treat the series as data with missingness.

Real data analysis

- The most prominent change at 6.13 Ma was previously identified as a time of rapid change in oceanographic current flows (Poore et al., 2006).

Summary

- We propose a new method for high-dimensional changepoint estimation in the presence of missing data.
- A good projection direction for aggregation is estimated after applying a MissCUSUM transformation to the data.
- Theory reveals interesting interaction between signal and missingness in this problem.
- R package available on https://github.com/wangtengyao/MissInspect.

Main reference

- Follain, B., Wang, T. and Samworth, R. J. (2021) High-dimensional changepoint estimation with heterogeneous missingness. arXiv preprint, arxiv:2108.01525.

Thank you!

