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Nodes engage in pairwise interactions and upon interaction update their states
Interactions restricted by a communication graph 2



Observations: node states
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Observations: node states (cont’d)
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Stitching absorbing process realizations
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Consensus times
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Voter model

• Each node state of value 0 or 1
• At an interaction time a node adopts the state of randomly sampled neighbor

• Classical model: Holley and Liggett (1975), Liggett (1985), …

• Studied under different assumptions about interaction time instances

• Our focus: 
• Discrete-time model, in each time step every node updates its state
• Random neighbor selection with probabilities 𝐴 where the 𝑢-th row is the 

sampling probability distribution of node 𝑢
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Dynamics and inference

• Much work has been devoted to studying dynamics of voter model processes
• Hitting probabilities of absorption states (consensus), assuming convergence 

is to a consensus state
• Hitting time (consensus time)

• Much less is known about parameter estimation (node sampling probabilities) 
from observed data
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Voter model process

• Initial state 𝑋+ ∼ 𝜇, and

𝑋,-.,0 | 𝑋, ∼ Ber 𝑎01𝑋, for   𝑡 = 0,1, … , 𝑢 ∈ 1,… , 𝑛

where 𝐴 = 𝑎., … , 𝑎2 1 is the model parameter

• Or, equivalently,

𝑋,-. = 𝑍,-.𝑋, for 𝑡 = 0,1, … ,

where 𝑍., 𝑍3, … are i.i.d. random stochastic matrices in 0,1 2×2, 𝐄 𝑍. = 𝐴
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Parameter estimation is “hard”
• Path example
• At each time step a random node initiates interaction
• Communication graph is a path
• Initial state: 𝑘 nodes on one end of path in state 1, other nodes in state 0

• An interaction is informative only if initiated by a node with disagreeing neighbors

• Expected number of informative interactions = 𝑘 log 2
5 + Θ(1)

• Number of unknown parameters: Θ(𝑛)
10
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Challenges

• Number of observations is a priori random for any fixed number 𝑚 of voter 
model process realizations

• Existing work focused on inference for stationary stochastic processes for a fixed 
number of observation points

• Some related work
• High-dimensional generalized linear autoregressive models: Hall et al (2019)
• Sparse multivariate Bernoulli processes in high dimensions: Pandit et al (2019)
• Network vector autoregression: Zhu et al (2017)
• Inferring graphs from cascades: Pouget-Abadie and Horel (2015)
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Limit to a consensus state 

• Thm [Hassin and Peleg, 2001] For any 𝐴 corresponding to adjacency of a 
nonbipartite graph, for any initial state 𝑥,

lim
,→8

𝐏 𝑋, = 𝟏 = 1 − lim
,→8

𝐏 𝑋, = 𝟎 = 𝜋1𝑥

where 𝜋 is the stationary distribution for 𝐴, i.e. 𝜋1 = 𝜋1𝐴

• Consensus states 𝐶 = {𝟎, 𝟏}
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Consensus time

• Hassin and Peleg (2001): 𝐄 𝜏 = 𝑂 𝑚 𝐺 log 𝑛 where 𝑚(𝐺) is the worst-case 
expected meeting time for two random walks on 𝐺

• Berenbrink et al (2016): 𝐄 𝜏 = 𝑂 .
9 :
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for lazy random walk

• Kanade et al (2019): 𝑚 𝐺 = 𝑂 .
9 :

𝑛𝑑?@Alog(𝑑?@A) for lazy random walks

• Lazy random walk: with probability ½ moves to a randomly chosen neighbor and
otherwise remains at the current node
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Graph conductance

• Graph conductance of graph 𝐺 = (𝑉, 𝐸),

Φ 𝐺 = min
B⊂=:+E B E2

|𝐸(𝑆, 𝑆F)|
min{𝑑 𝑆 , 𝑑(𝑆F)}

where 𝐸 𝑆, 𝑆F is the set of edges with vertices in 𝑆 and 𝑆F, 𝑑(𝑆) is the sum of 
degrees of nodes in 𝑆

• Cheeger’s inequality: G$
3
≤ Φ 𝐺 ≤ 2𝜆3 where 𝜆3 is the second smallest 

eigenvalue of the normalized Laplacian matrix

𝐿 = 𝐼 − 𝐷H
%
$𝐴𝐷H

%
$

𝑆

𝑆$
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Consensus time (cont’d)

• Cooper and Rivera (2016): 

𝐄 𝜏 ≤ JK
L&

where

ΨM = 𝜋∗YΨM

and

YΨM = minO∈ +,. '∖R
S ∑()%' U((O(H∑*)%' V(,*O*)

?WX{U,O,.HU,O}
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Expected consensus time bound

• Thm For every initial state 𝑥 ∈ 0,1 2,

𝐄O+ 𝜏 ≤
1
ΦM

log
1
2𝜋∗

where

ΦM = min
∑0[.2 𝜋03𝑉\((𝑥)
𝜋1𝑥(1 − 𝜋1𝑥)

: 𝑥 ∈ 0,1 2, 𝑥 ∉ 𝐶

and 𝜋∗ = min{𝜋0: 𝑢 = 1,… , 𝑛}
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Comments on Φ!
• Fact: 0 < ΦM ≤ 1

• For 𝐴 according to graph 𝐺, i.e. 𝑎0,` = 1/𝑑0 for 𝑢, 𝑣 ∈ 𝐸

ΦM = min
B⊂=:+E B E2

|𝐸3(𝑆, 𝑆F)|
𝑑 𝑆 𝑑(𝑆F)

where 𝐸3 𝑆, 𝑆F is the set of paths of length equal to two edges, connecting a 
vertex in 𝑆 and a vertex in 𝑆F
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Examples

• Complete graph 𝐾2: 

ΦM =
𝑛 − 2
𝑛 − 1 3 =

1
𝑛
(1 + 𝑜(1))

• Cycle 𝐶2:

ΦM = 4
1
𝑛3
(1 + 𝑜 1 )
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Relations between Φ!, Φ 𝐺 , Ψ!
• Assume 𝑎0,` =

.
31 0[` + .

3
.
;(
1{ 0,` ∈S} (lazy random walk)

• Then, 
.
9&

≤ 2 ;(=)
;!"#

.
9(:) and      .

9(:) ≤
.
aL&

• Hence, 
1
ΦM

≤ 2
1
ΨM
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Exponential moment bound

• Thm For any 𝑥 ∈ 0,1 2 such that 𝑥 ∉ 𝐶 and any 𝜃 ∈ 𝐑 such that 1 − ΦM 𝑒b ≤
1, we have

𝐄O+ 𝑒bc ≤
𝑉U(𝑥)

min
d∈ +,. '∖R

𝑉U(𝑧)

Proof: Follows from a general result for Markov chain hitting times.

Let 𝜏B = min{𝑡 > 0: 𝑋, ∈ 𝑆}

Assume that 𝑉:𝒳 → 1,∞ is a measurable function that satisfies, for some set 𝐶
and 𝜆 < 1, 𝐄 𝑉 𝑋. 𝑋+ = 𝑥 ≤ 𝜆𝑉(𝑥) for all 𝑥 ∉ 𝐶. Then, 𝐄O 𝜆Hc- ≤ 𝑉(𝑥).  
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A probability bound

• Thm Let 𝜏., … , 𝜏e be consensus times of 𝑚 independent realizations of voter 
model processes with parameter 𝐴 with independent initial states according to 
arbitrary distributions. Then, for any 𝑎 ≥ 0,

𝐏+ ∑f[.e 𝜏f ≥ 𝑚𝑎 ≤ 𝐄. =/ h.
?WX0∈ .,% '\3 =/ d 1 − ΦM \

e

It follows that for any 𝛿 ∈ (0,1], with probability at least 1 − 𝛿,

∑f[.e 𝜏f ≤
.
9&

𝑚 log .
3U∗ + log .

i
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Parameter estimation

• Data: 𝑋 = 𝑋+
. , … , 𝑋c%

. , … , 𝑋+
e , … , 𝑋c5

e 1

• We consider maximum likelihood estimation:

o𝐴 ∈ argmin
M∈j

ℒ 𝐴; 𝑋

where ℒ 𝐴; 𝑋 = −ℓ 𝐴; 𝑋 + 𝜆e 𝐴 .,.

negative 
log-likelihood function

𝐵 ',) = 𝑏! )
', … , 𝑏* )

' !/'

⋯

regularization
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Parameter estimation bound
• Thm Consider the voter model process with parameter 𝐴∗ with support size 𝑠 and 
𝑎0,`∗ ≥ 𝛼 whenever 𝑎0,`∗ > 0 for some 𝛼 > 0. Assume that o𝐴 is a minimizer of 
ℒ(𝐴; 𝑋) with the regularization parameter

𝜆e = 2 2
F',/∗
n 9&∗

𝑚

and 𝑚 is sufficiently large (precise condition omitted). Then, for some constant 
𝑐 > 0, with probability at least 1 − 5/𝑛,

o𝐴 − 𝐴∗ o
3 ≤ 𝑐

𝑠𝑐2,U∗
3

𝛼3 ΦM∗𝐄+ 𝜏 3𝜆?WX 𝐄 𝑋+𝑋+1 3ΦM∗
1
𝑚

where

𝑐2,U∗
3 = log

1
2𝜋∗

+ log(2𝑛p) log 4𝑛p
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Proof sketch
• Proof is based on the framework of M-estimators with decomposable regularizers

(Negahban et al 2012, Wainwright 2019)

• Thm Assume that loss function ℒ(𝐴; 𝑋) has the regularization parameter such 
that 

(C1) 𝜆e ≥ 2 ∇ℓ 𝐴∗ 8

and 

(C2) for some 𝑆 ⊆ 𝑉3, −ℓ(𝐴; 𝑋) satisfies the restricted strong convexity (RSC) 
condition relative to 𝐴∗ and 𝑆 with curvature 𝜅 > 0 and tolerance 𝛾3

Then,
o𝐴 − 𝐴∗ o

3 ≤ 9 𝑆
𝜆e
𝜅

3
+ 2𝛾3

1
𝑚
+ 4 𝐴B6

∗
.,.

𝜆e
𝜅
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RSC condition

• A loss function ℒ is said to satisfy the RSC relative to 𝐴∗ and 𝑆 with curvature 𝜅 > 0
and tolerance 𝛾3 if 

ℰ Δ ≥ 𝜅 Δ o
3 − 𝛾3 for all Δ ∈ 𝒞(𝑆; 𝐴∗)

where

ℰ Δ = ℒ 𝐴∗ + Δ − ℒ 𝐴∗ − ∇ℒ 𝐴∗ 1𝑣𝑒𝑐(Δ) (first-order Taylor error)

and 

𝒞 𝑆; 𝐴∗ = Δ: ΔB6 .,. ≤ 3 ΔB .,. + 4 𝐴B6
∗

.,.
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Condition (C1)

• Lem For any 𝛿 ∈ 0,1 and any 𝑚 ≥ 1 independent realizations of the voter 
model process with parameter 𝐴∗ and initial value distribution 𝜇, with probability 
at least 1 − 𝛿,

∇ℓ 𝐴∗ 8 ≤ 2
1
𝛼

1
ΦM∗

𝑚𝑐2,i,U∗ 𝑚

where

𝑐2,i,U∗ 𝑚 3 = log
1
2𝜋∗

+
1
𝑚
log

2𝑛3

𝛿
log

4𝑛3

𝛿

Proof: Using a truncation argument, consensus time probability tail bound, and 
Azuma-Hoeffding’s inequality for bounded-difference martingale sequences
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Truncation argument in a picture

⋯X

0 ∑,-!# 𝜏, 𝑇

𝐏 𝐸∑7)%5 c7 ≤ 𝐏 𝐸r + 𝐏 ∑f[.e 𝜏f ≥ 𝑇
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Condition (C2)

• Show 

ℰ Δ ≥ ℎ Δ; 𝑋 ≔ ∑f[.e ∑,[+
c7H.∑0[.2 Δ01𝑋,

f 3

• Then show (C2’): ℎ Δ; 𝑋 satisfies the RSC condition with high probability
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Condition (C2’)
• Step 1: 𝐄+ ℎ Δ; 𝑋 ≥ 𝜅. Δ o

3 for all Δ where

𝜅. ≤ 𝑚𝐄+ 𝜏 𝜆?WX(𝐄[𝑋+𝑋+1])

• Step 2: For any 𝛿 ∈ (0,1/2], any 𝑆 such that 𝑆 ≤ 𝑠 and any Δ ∈ 𝒞(𝑆; 𝐴∗), 
ℎ Δ; 𝑋 ≥ s%

3 Δ o
3 with probability at least 1 − 𝛿 provided that

𝑚 ≥
𝑠3

ΦM∗
1

𝐄+ 𝜏 3𝜆?WX 𝐄 𝑋+𝑋+1 3 𝑐i,U∗ 𝑚

where

𝑐i,U∗ 𝑚 = 8 log
1
2𝜋∗

+
1
𝑚
log

2
𝛿

log
2
𝛿
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Condition (C2’) cont’d

• Step 3: Show that 

𝐏 ℎ Δ; 𝑋 ≥ 𝜅t Δ o
3 − 𝛾t3 for all Δ ∈ 𝒞 𝑆; 𝐴∗ ≥ 1 −

4
𝑛

To show this, we apply some set covering arguments and combine with the 
bound in Step 2
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Conclusion

• Shown a new bound on consensus time, in expectation and probability

• Shown new parameter estimation bounds for absorbing voter model processes, 
obtained by leveraging the consensus time bounds
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