Dynamics and inference for voter model processes

Milan Vojnovic
Department of Statistics

Joint work with Kaifang Zhou

Nodes engage in pairwise interactions and upon interaction update their states Interactions restricted by a communication graph

Observations: node states

Observations: $n=$

Observations: node states (cont’d)

Stitching absorbing process realizations

Consensus times

Voter model

- Each node state of value 0 or 1
- At an interaction time a node adopts the state of randomly sampled neighbor
- Classical model: Holley and Liggett (1975), Liggett (1985), ...
- Studied under different assumptions about interaction time instances
- Our focus:
- Discrete-time model, in each time step every node updates its state
- Random neighbor selection with probabilities A where the u-th row is the sampling probability distribution of node u

Dynamics and inference

- Much work has been devoted to studying dynamics of voter model processes
- Hitting probabilities of absorption states (consensus), assuming convergence is to a consensus state
- Hitting time (consensus time)
- Much less is known about parameter estimation (node sampling probabilities) from observed data

Voter model process

- Initial state $X_{0} \sim \mu$, and

$$
X_{t+1, u} \mid X_{t} \sim \operatorname{Ber}\left(a_{u}^{\top} X_{t}\right) \quad \text { for } t=0,1, \ldots, u \in\{1, \ldots, n\}
$$

where $A=\left(a_{1}, \ldots, a_{n}\right)^{\top}$ is the model parameter

- Or, equivalently,

$$
X_{t+1}=Z_{t+1} X_{t} \text { for } t=0,1, \ldots
$$

where Z_{1}, Z_{2}, \ldots are i.i.d. random stochastic matrices in $\{0,1\}^{n \times n}, \mathbf{E}\left[Z_{1}\right]=A$

Parameter estimation is "hard"

- Path example
- At each time step a random node initiates interaction
- Communication graph is a path
- Initial state: k nodes on one end of path in state 1 , other nodes in state 0

- An interaction is informative only if initiated by a node with disagreeing neighbors
- Expected number of informative interactions $=k\left(\log \left(\frac{n}{k}\right)+\Theta(1)\right)$
- Number of unknown parameters: $\Theta(n)$

Challenges

- Number of observations is a priori random for any fixed number m of voter model process realizations
- Existing work focused on inference for stationary stochastic processes for a fixed number of observation points
- Some related work
- High-dimensional generalized linear autoregressive models: Hall et al (2019)
- Sparse multivariate Bernoulli processes in high dimensions: Pandit et al (2019)
- Network vector autoregression: Zhu et al (2017)
- Inferring graphs from cascades: Pouget-Abadie and Horel (2015)

Limit to a consensus state

- Thm [Hassin and Peleg, 2001] For any A corresponding to adjacency of a nonbipartite graph, for any initial state x,

$$
\lim _{t \rightarrow \infty} \mathbf{P}\left[X_{t}=1\right]=1-\lim _{t \rightarrow \infty} \mathbf{P}\left[X_{t}=0\right]=\pi^{\top} x
$$

where π is the stationary distribution for A, i.e. $\pi^{\top}=\pi^{\top} A$

- Consensus states $C=\{\mathbf{0}, \mathbf{1}\}$

Consensus time

- Hassin and Peleg (2001): $\mathbf{E}[\tau]=O(m(G) \log (n))$ where $m(G)$ is the worst-case expected meeting time for two random walks on G
- Berenbrink et al (2016): $\mathbf{E}[\tau]=O\left(\frac{1}{\Phi(G)} \frac{d(V)}{d_{\text {min }}}\right)$ for lazy random walk
- Kanade et al (2019): $m(G)=O\left(\frac{1}{\Phi(G)} n d_{\text {max }} \log \left(d_{\text {max }}\right)\right)$ for lazy random walks
- Lazy random walk: with probability $1 / 2$ moves to a randomly chosen neighbor and otherwise remains at the current node

Graph conductance

- Graph conductance of graph $G=(V, E)$,

$$
\Phi(G)=\min _{S \subset V: 0<|S|<n} \frac{\left|E\left(S, S^{c}\right)\right|}{\min \left\{d(S), d\left(S^{c}\right)\right\}}
$$

where $E\left(S, S^{c}\right)$ is the set of edges with vertices in S and $S^{c}, d(S)$ is the sum of degrees of nodes in S

- Cheeger's inequality: $\frac{\lambda_{2}}{2} \leq \Phi(G) \leq \sqrt{2 \lambda_{2}}$ where λ_{2} is the second smallest eigenvalue of the normalized Laplacian matrix

$$
L=I-D^{-\frac{1}{2}} A D^{-\frac{1}{2}}
$$

Consensus time (cont'd)

- Cooper and Rivera (2016):

$$
\mathbf{E}[\tau] \leq \frac{64}{\Psi_{A}}
$$

where

$$
\Psi_{A}=\pi^{*} \widetilde{\Psi}_{A}
$$

and

$$
\widetilde{\Psi}_{A}=\min _{x \in\{0,1\}^{n} \backslash C} \frac{E\left[\mid \sum_{u=1}^{n} \pi_{u}\left(x_{u}-\sum_{v=1}^{n} z_{u, v} x_{v}\right)\right]}{\min \left\{\pi^{\top} x, 1-\pi^{\top} x\right\}}
$$

Expected consensus time bound

- Thm For every initial state $x \in\{0,1\}^{n}$,

$$
\mathbf{E}_{x}^{0}[\tau] \leq \frac{1}{\Phi_{A}} \log \left(\frac{1}{2 \pi^{*}}\right)
$$

where

$$
\Phi_{A}=\min \left\{\frac{\sum_{u=1}^{n} \pi_{u}^{2} V_{a_{u}}(x)}{\pi^{\top} x\left(1-\pi^{\top} x\right)}: x \in\{0,1\}^{n}, x \notin C\right\}
$$

$$
\text { and } \pi^{*}=\min \left\{\pi_{u}: u=1, \ldots, n\right\}
$$

Comments on Φ_{A}

- Fact: $0<\Phi_{A} \leq 1$
- For A according to graph G, i.e. $a_{u, v}=1 / d_{u}$ for $(u, v) \in E$

$$
\Phi_{A}=\min _{S \subset V: 0<|S|<n} \frac{\left|E_{2}\left(S, S^{c}\right)\right|}{d(S) d\left(S^{c}\right)}
$$

where $E_{2}\left(S, S^{c}\right)$ is the set of paths of length equal to two edges, connecting a vertex in S and a vertex in S^{C}

Examples

- Complete graph K_{n} :

$$
\Phi_{A}=\frac{n-2}{(n-1)^{2}}=\frac{1}{n}(1+o(1))
$$

- Cycle C_{n} :

$$
\Phi_{A}=4 \frac{1}{n^{2}}(1+o(1))
$$

Relations between $\Phi_{A}, \Phi(G), \Psi_{A}$

- Assume $a_{u, v}=\frac{1}{2} 1_{\{u=v\}}+\frac{1}{2} \frac{1}{d_{u}} 1_{\{(u, v) \in E\}}$ (lazy random walk)
- Then,

$$
\frac{1}{\Phi_{A}} \leq 2 \frac{d(V)}{d_{\min }} \frac{1}{\Phi(G)} \quad \text { and } \quad \frac{1}{\Phi(G)} \leq \frac{1}{\widetilde{\Psi}_{A}}
$$

- Hence,

$$
\frac{1}{\Phi_{A}} \leq 2 \frac{1}{\Psi_{A}}
$$

Exponential moment bound

- Thm For any $x \in\{0,1\}^{n}$ such that $x \notin C$ and any $\theta \in \mathbf{R}$ such that $\left(1-\Phi_{A}\right) e^{\theta} \leq$ 1, we have

$$
\mathbf{E}_{x}^{0}\left[e^{\theta \tau}\right] \leq \frac{V_{\pi}(x)}{\min _{z \in\{0,1\}^{n} \backslash C} V_{\pi}(z)}
$$

Proof: Follows from a general result for Markov chain hitting times.
Let $\tau_{S}=\min \left\{t>0: X_{t} \in S\right\}$
Assume that $V: \mathcal{X} \rightarrow[1, \infty)$ is a measurable function that satisfies, for some set C and $\lambda<1, \mathbf{E}\left[V\left(X_{1}\right) \mid X_{0}=x\right] \leq \lambda V(x)$ for all $x \notin C$. Then, $\mathbf{E}_{x}\left[\lambda^{-\tau_{C}}\right] \leq V(x)$.

A probability bound

- Thm Let $\tau_{1}, \ldots, \tau_{m}$ be consensus times of m independent realizations of voter model processes with parameter A with independent initial states according to arbitrary distributions. Then, for any $a \geq 0$,

$$
\mathbf{P}^{0}\left[\sum_{i=1}^{m} \tau_{i} \geq m a\right] \leq\left(\frac{\mathbf{E}^{0}\left[V_{\pi}\left(X_{0}\right)\right]}{\min _{z \in\{0,1\}^{n} \backslash \mathrm{C}} V_{\pi}(z)}\left(1-\Phi_{A}\right)^{a}\right)^{m}
$$

It follows that for any $\delta \in(0,1]$, with probability at least $1-\delta$,

$$
\sum_{i=1}^{m} \tau_{i} \leq \frac{1}{\Phi_{A}}\left(m \log \left(\frac{1}{2 \pi^{*}}\right)+\log \left(\frac{1}{\delta}\right)\right)
$$

Parameter estimation

- Data: $X=\left(X_{0}^{(1)}, \ldots, X_{\tau_{1}}^{(1)}, \ldots, X_{0}^{(m)}, \ldots, X_{\tau_{m}}^{(m)}\right)^{\top}$
- We consider maximum likelihood estimation:

$$
\hat{A} \in \arg \min _{A \in \Theta}\{\mathcal{L}(A ; X)\}
$$

where $\mathcal{L}(A ; X)=-\ell(A ; X)+\lambda_{m}\|A\|_{1,1}$

negative log-likelihood function

Parameter estimation bound

- Thm Consider the voter model process with parameter A^{*} with support size s and $a_{u, v}^{*} \geq \alpha$ whenever $a_{u, v}^{*}>0$ for some $\alpha>0$. Assume that \hat{A} is a minimizer of $\mathcal{L}(A ; X)$ with the regularization parameter

$$
\lambda_{m}=2 \sqrt{2} \frac{c_{n, \pi^{*}}}{\alpha \sqrt{\Phi_{A^{*}}}} \sqrt{m}
$$

and m is sufficiently large (precise condition omitted). Then, for some constant $c>0$, with probability at least $1-5 / n$,

$$
\left\|\hat{A}-A^{*}\right\|_{F}^{2} \leq c \frac{s c_{n, \pi^{*}}^{2}}{\alpha^{2}\left(\Phi_{A^{*}} \mathbf{E}^{0}[\tau]\right)^{2} \lambda_{\min }\left(\mathbf{E}\left[X_{0} X_{0}^{\top}\right]\right)^{2}} \Phi_{A^{*}} \frac{1}{m}
$$

where

$$
c_{n, \pi^{*}}^{2}=\left(\log \left(\frac{1}{2 \pi^{*}}\right)+\log \left(2 n^{3}\right)\right) \log \left(4 n^{3}\right)
$$

Proof sketch

- Proof is based on the framework of M-estimators with decomposable regularizers (Negahban et al 2012, Wainwright 2019)
- Thm Assume that loss function $\mathcal{L}(A ; X)$ has the regularization parameter such that
(C1) $\lambda_{m} \geq 2\left\|\nabla \ell\left(A^{*}\right)\right\|_{\infty}$
and
(C2) for some $S \subseteq V^{2},-\ell(A ; X)$ satisfies the restricted strong convexity (RSC) condition relative to A^{*} and S with curvature $\kappa>0$ and tolerance γ^{2}

Then,

$$
\left\|\hat{A}-A^{*}\right\|_{F}^{2} \leq 9|S|\left(\frac{\lambda_{m}}{\kappa}\right)^{2}+\left(2 \gamma^{2} \frac{1}{m}+4\left\|A_{S^{c}}^{*}\right\|_{1,1}\right) \frac{\lambda_{m}}{\kappa}
$$

RSC condition

- A loss function \mathcal{L} is said to satisfy the RSC relative to A^{*} and S with curvature $\kappa>0$ and tolerance γ^{2} if

$$
\mathcal{E}(\Delta) \geq \kappa\|\Delta\|_{F}^{2}-\gamma^{2} \text { for all } \Delta \in \mathcal{C}\left(S ; A^{*}\right)
$$

where

$$
\mathcal{E}(\Delta)=\mathcal{L}\left(A^{*}+\Delta\right)-\mathcal{L}\left(A^{*}\right)-\nabla \mathcal{L}\left(A^{*}\right)^{\top} \operatorname{vec}(\Delta)
$$

and

$$
\mathcal{C}\left(S ; A^{*}\right)=\left\{\Delta:\left\|\Delta_{S^{c}}\right\|_{1,1} \leq 3\left\|\Delta_{S}\right\|_{1,1}+4\left\|A_{S^{c}}^{*}\right\|_{1,1}\right\}
$$

Condition (C1)

- Lem For any $\delta \in(0,1]$ and any $m \geq 1$ independent realizations of the voter model process with parameter A^{*} and initial value distribution μ, with probability at least $1-\delta$,

$$
\left\|\nabla \ell\left(A^{*}\right)\right\|_{\infty} \leq \sqrt{2} \frac{1}{\alpha} \frac{1}{\sqrt{\Phi_{A^{*}}}} \sqrt{m} c_{n, \delta, \pi^{*}}(m)
$$

where

$$
c_{n, \delta, \pi^{*}}(m)^{2}=\left(\log \left(\frac{1}{2 \pi^{*}}\right)+\frac{1}{m} \log \left(\frac{2 n^{2}}{\delta}\right)\right) \log \left(\frac{4 n^{2}}{\delta}\right)
$$

Proof: Using a truncation argument, consensus time probability tail bound, and Azuma-Hoeffding's inequality for bounded-difference martingale sequences

Truncation argument in a picture

Condition (C2)

- Show

$$
\mathcal{E}(\Delta) \geq h(\Delta ; X):=\sum_{i=1}^{m} \sum_{t=0}^{\tau_{i}-1} \sum_{u=1}^{n}\left(\Delta_{u}^{\top} X_{t}^{(i)}\right)^{2}
$$

- Then show (C2'): $h(\Delta ; X)$ satisfies the RSC condition with high probability

Condition (C2')

- Step 1: $\mathbf{E}^{0}[h(\Delta ; X)] \geq \kappa_{1}\|\Delta\|_{F}^{2}$ for all Δ where

$$
\kappa_{1} \leq m \mathbf{E}^{0}[\tau] \lambda_{\min }\left(\mathbf{E}\left[X_{0} X_{0}^{\top}\right]\right)
$$

- Step 2: For any $\delta \in(0,1 / 2]$, any S such that $|S| \leq s$ and any $\Delta \in \mathcal{C}\left(S ; A^{*}\right)$, $h(\Delta ; X) \geq \frac{\kappa_{1}}{2}\|\Delta\|_{F}^{2}$ with probability at least $1-\delta$ provided that

$$
m \geq \frac{s^{2}}{\Phi_{A^{*}}} \frac{1}{\mathbf{E}^{0}[\tau]^{2} \lambda_{\min }\left(\mathbf{E}\left[X_{0} X_{0}^{\top}\right]\right)^{2}} c_{\delta, \pi^{*}}(m)
$$

where

$$
c_{\delta, \pi^{*}}(m)=8\left(\log \left(\frac{1}{2 \pi^{*}}\right)+\frac{1}{m} \log \left(\frac{2}{\delta}\right)\right) \log \left(\frac{2}{\delta}\right)
$$

Condition (C2') cont'd

- Step 3: Show that

$$
\mathbf{P}\left[h(\Delta ; X) \geq \kappa^{\prime}\|\Delta\|_{F}^{2}-\gamma^{\prime 2} \text { for all } \Delta \in \mathcal{C}\left(S ; A^{*}\right)\right] \geq 1-\frac{4}{n}
$$

To show this, we apply some set covering arguments and combine with the bound in Step 2

Conclusion

- Shown a new bound on consensus time, in expectation and probability
- Shown new parameter estimation bounds for absorbing voter model processes, obtained by leveraging the consensus time bounds

