Rank and Factor Loadings Estimation in Time Series Tensor Factor Model by Pre-averaging

Clifford Lam (joint work with Weilin Chen)

LSE Department of Statistics Research Showcase, June 14-15, 2022

Outline of the Talk

- Tensor factor models model and examples
- Basic tensor manipulations
- Pre-averaging and results
- Projection Re-estimation
- Projection Rank determination for core rank tensor
- Simulation studies
- Summary and Future Research

Tensor Time Series

- Tensor (multi-dimensional array) time series examples:
 - Genomics Multiple gene-gene interaction network of correlations from DNA microarray.
 - Neuroimaging analysis Tensor response (e.g. MRI 3-dimensional array) and vector predictors. Decomposition of regression coefficient tensor.
 - Economics import-export volume time series of products among different countries.
 - Finance 10 by 10 Fama-French return time series (e.g. 100 portfolios formed on 10 sizes and 10 Book-to-Market ratios/Operating profitability).

Can we find *simplifying* structures? *Factors* driving the dynamics of a particular category of variables?

Tensor Factor Models

• For a panel time series $\mathbf{x}_t \in \mathbb{R}^p$ (order-1 tensor), a multi-factor model is

$$\mathbf{x}_t = C_t + \epsilon_t = \mathbf{A}\mathbf{f}_t + \epsilon_t, \ t = 1, \dots, T.$$

• If $\mathbf{x}_t \in \mathbb{R}^{d_1 \times d_2}$, an order-2 tensor, then the Tucker decomposition of the common component C_t is

$$C_t = \mathbf{A}_1 \mathbf{f}_t \mathbf{A}_2^{\mathrm{T}}.$$

- Two factor loading matrices, $\mathbf{A}_1 \in \mathbb{R}^{d_1 \times r_1}$, $\mathbf{A}_2 \in \mathbb{R}^{d_2 \times r_2}$.
- The factor series is $\mathbf{f}_t \in \mathbb{R}^{r_1 \times r_2}$. \mathbf{A}_1 is relevant to the dynamics of the row variables, as \mathbf{A}_2 does for the columns.

Tensor Factor Models

Figure: Tensor factor model for order-3 tensor time series. [A. Phan and A. Cichocki (2011)]

Notations and Basic Manipulations

• For a general order-K tensor $\mathcal{X}_t \in \mathbb{R}^{d_1 \times \cdots \times d_K}$, write $\mathcal{X}_t = \mathcal{C}_t + \mathcal{E}_t$. The Tucker decomposition of \mathcal{C}_t is

$$\mathcal{C}_t = \mathcal{F}_t \times_1 \mathbf{A}_1 \times_2 \cdots \times_K \mathbf{A}_K.$$

- \mathcal{F}_t is also called the *core tensor*.
- The notation \times_k represents the *k*-mode product of a tensor $\mathcal{F} \in \mathbb{R}^{r_1 \times \cdots r_K}$ with a matrix $\mathbf{A} \in \mathbb{R}^{d \times r_k}$: $\mathcal{F} \times_k \mathbf{A} \in \mathbb{R}^{r_1 \times \cdots r_{k-1} \times d \times r_{k+1} \times \cdots \times r_K}$, where

$$(\mathcal{F} \times_k \mathbf{A})_{i_1 \cdots i_{k-1} j i_{k+1} \cdots i_K} = \sum_{i_k=1}^{r_k} f_{i_1 i_2 \cdots i_K} a_{j i_k}.$$

Notations and Basic Manipulations

• Mode-k fibres of a tensor $\mathcal{X} \in \mathbb{R}^{d_1 \times \cdots \times d_K}$ is defined by fixing all indices but the k-th.

Figure: Fibres of order-3 tensors. (Figure from Kolda and Bader (2009))

k-mode product F×k A is to sort all mode-k fibres of F in columns, pre-multiply them with A, then put them back into their corresponding places.

Notations and Basic Manipulations

- Mode-k flattening/unfolding/matricization of X ∈ ℝ^{d₁×···×d_K} is to put all mode-k fibres as columns into a matrix mat_k(X) of size d_k × d_{-k}, with d_{-k} := ∏_{j≠k} d_j.
- If $C_t = \mathcal{F}_t \times_1 \mathbf{A}_1 \times_2 \cdots \times_K \mathbf{A}_K$, then

 $\mathsf{mat}_k(\mathcal{C}_t) = \mathbf{A}_k \mathsf{mat}_k(\mathcal{F}_t) (\mathbf{A}_K \otimes \cdots \otimes \mathbf{A}_{k+1} \otimes \mathbf{A}_{k-1} \otimes \cdots \otimes \mathbf{A}_1)^{\mathrm{T}}$ =: $\mathbf{A}_k \mathsf{mat}_k(\mathcal{F}_t) \mathbf{A}_{-k}^{\mathrm{T}}.$

★ We want to estimate $A_1, ..., A_K$, and determine the ranks of the core tensor $r_1, ..., r_K$ from data $\mathcal{X}_t = \mathcal{C}_t + \mathcal{E}_t \in \mathbb{R}^{d_1 \times \cdots \times d_K}$, t = 1, ..., T.

Statistical and Econometric Factor Models

Two different types of assumptions for time series factor models:

- 'Statistical Factor Model' (Lam, Yao and Bathia (2011))
 - Common factors accommodate all dynamics. White noise, but allowing strong cross-correlations.
- 'Econometrics Factor Model' (Bai and Ng (2002))
 - Common factors have impact on most of the series. The noise has weak serial dependence and weak cross-correlations.
- Recent developments are based on statistical factor model assumptions.
- ★ No current literature on tensor factor models under econometric assumptions.

Pre-averaging idea

• Multiply Mode-k unfolded data by a vector **u**:

$$\begin{split} \mathbf{y}_t &:= \mathsf{mat}_k(\mathcal{X}_t - \bar{\mathcal{X}}) \mathbf{u} \\ &= \mathbf{A}_k \mathsf{mat}_k(\mathcal{F}_t - \bar{\mathcal{F}}) \mathbf{A}_{-k}^{\mathrm{T}} \mathbf{u} + \mathsf{mat}_k(\mathcal{E}_t - \bar{\mathcal{E}}) \mathbf{u}. \end{split}$$

• If $\mathbf{A}_k = \mathbf{U}_k \mathbf{G}_k \mathbf{V}_k^{\mathrm{T}}$, $\mathbf{A}_{-k}^{\mathrm{T}} = \mathbf{V}_{-k} \mathbf{G}_{-k} \mathbf{U}_{-k}^{\mathrm{T}} \Rightarrow \mathbf{u} = \mathbf{U}_{-k,(1)}$ inflates signal most, but unknown.

- Set $\mathbf{u} = \mathbf{1}_S$ for some set $S \subseteq [d_{-k}]$. $\mathbf{U}_{-k}^{\mathrm{T}} \mathbf{1}_S$ can be small \Rightarrow Try random S.
- Estimate \mathbf{A}_k (or part of it) by finding the first $z_k (\leq r_k)$ eigenvectors of the covariance matrix of \mathbf{y}_t .
- Set $z_k = 1$ for estimating the best direction $\mathbf{U}_{k,(1)}$, which usually is the most accurately estimated.

Assumptions on the Errors

 $\left(\mathrm{E1}\right)$ (Decomposition of error) Assume that

$$\begin{split} \mathsf{mat}_k(\mathcal{E}_t) &= (\pmb{\xi}_{t,1}^{(k)}, \dots, \pmb{\xi}_{t,d_k}^{(k)}), \quad \textit{where} \\ & \pmb{\xi}_{t,\ell}^{(k)} := \pmb{\Psi}_\ell^{(k)} \mathbf{e}_t^{(k)} + (\pmb{\Sigma}_{\epsilon,\ell}^{(k)})^{1/2} \epsilon_{t,\ell}^{(k)} \end{split}$$

with $E(\mathbf{e}_{t}^{(k)}) = \mathbf{0}$, $E(\boldsymbol{\xi}_{t,\ell}^{(k)}) = \mathbf{0}$, $\mathbf{e}_{t}^{(k)} \in \mathbb{R}^{r_{e}}$ independent of $\boldsymbol{\epsilon}_{s,\ell}^{(k)}$, $\boldsymbol{\epsilon}_{t,\ell}^{(k)}$ independent of $\boldsymbol{\epsilon}_{t,m}^{(k)}$ for $\ell \neq m$, $\operatorname{var}(\mathbf{e}_{t}^{(k)}) = \mathbf{I}_{r_{e}}$ and $\operatorname{var}(\boldsymbol{\epsilon}_{t,\ell}^{(k)}) = \mathbf{I}_{d_{k}}$ for each $s, t \in [T]$, $\ell, m \in [d_{-k}]$, $k \in [K]$. Also, each $\boldsymbol{\Sigma}_{\epsilon,\ell}^{(k)}$ has non-vanishing diagonals with $\operatorname{tr}(\boldsymbol{\Sigma}_{\epsilon,\ell}^{(k)}) = O(d_{k})$. Moreover, denote $\boldsymbol{\Psi}^{(k)} := \sum_{\ell=1}^{d_{-k}} \boldsymbol{\Psi}_{l}^{(k)}$ and $\boldsymbol{\Sigma}_{\epsilon}^{(k)} := \sum_{\ell=1}^{d_{-k}} \boldsymbol{\Sigma}_{\epsilon,\ell}^{(k)}$. Then we assume $\|\boldsymbol{\Psi}^{(k)}\boldsymbol{\Psi}^{(k)_{\mathrm{T}}}\| = O(d_{-k})$ and $\|\boldsymbol{\Sigma}_{\epsilon}^{(k)}\| = O(d_{-k})$.

With (E1), each mode-k fibre of \mathcal{E}_t is a sum of two independent parts. The first part $\Psi_{\ell}^{(k)} \mathbf{e}_t^{(k)}$ is similar to a common component in a factor model, but it is too weak to be detected. This promotes (weak) cross-correlations among the fibres.

Assumptions on the Errors

(E2) (Time series) The elements in $\mathbf{e}_t^{(k)} = (e_{t,j}^{(k)})$ and $\epsilon_{t,\ell}^{(k)} = (\epsilon_{t,\ell,j}^{(k)})$ are following weakly stationary general linear processes, such that with $\ell \in [d_{-k}]$, $t \in [T]$ and $k \in [K]$,

$$e_{t,j}^{(k)} = \sum_{q \ge 0} a_{e,q} z_{e,t-q,j}^{(k)}, \quad j \in [r_e],$$

$$\epsilon_{t,\ell,j}^{(k)} = \sum_{q \ge 0} a_{\epsilon,q} z_{\epsilon,t-q,\ell,j}^{(k)}, \quad j \in [d_k],$$

where the coefficients $a_{e,q}$ and $a_{\epsilon,q}$ are such that $\sum_{q\geq 0} a_{e,q}^2 = \sum_{q\geq 0} a_{\epsilon,q}^2 = 1$ and $\sum_{q\geq 0} |a_{e,q}| \leq C$, $\sum_{q\geq 0} |a_{\epsilon,q}| \leq C$ for some constant C. For each $k \in [K]$, the series of random variables $\{z_{e,t,j}^{(k)}\}$ and $\{z_{\epsilon,t,\ell,j}^{(k)}\}$ are independent of each other, with i.i.d. elements having mean 0 and variance 1.

With (E2), the error variables are serially correlated in general. Together with (E1), (weak) serial and cross-sectional dependence within and among fibres are allowed for the errors.

Similar to (E2), the factors in \mathcal{F}_t are assumed to follow general linear processes.

(F1) Let
$$\mathbf{f}_{t,\ell}^{(k)} = (f_{t,\ell,j}^{(k)})$$
 be the ℓ -th column vector in $\operatorname{mat}_k(\mathcal{F}_t)$, $\ell \in [r_{-k}]$, where $r_{-k} := \prod_{\ell \neq k} r_\ell$. We assume that $\operatorname{var}(\mathbf{f}_{t,\ell}^{(k)}) = \mathbf{I}_{r_k}$ (the identity matrix with size r_k), and $\operatorname{cov}(\mathbf{f}_{t,\ell_1}^{(k)}, \mathbf{f}_{t,\ell_2}^{(k)}) = \mathbf{0}$ for $\ell_1 \neq \ell_2$. Then we can write

$$f_{t,\ell,j}^{(k)} = \sum_{q \ge 0} a_{f,q} z_{f,t-q,\ell,j}^{(k)}, \ j \in [r_k],$$

where we have $\sum_{q\geq 0} a_{f,q}^2 = 1$ and $\sum_{q\geq 0} |a_{f,q}| \leq C$ for some constant C. For each $k \in [K]$, the series of random variables $\{z_{f,t,\ell,j}^{(k)}\}$ has i.i.d. elements having zero mean and variance 1.

Assumptions on the model parameters

(L1) (Factor Strength) We assume that, for $k \in [K]$, A_k is of full rank, $r_k = o(T^{1/3})$, and as $d_k \to \infty$,

$$\mathbf{D}_{k}^{-1/2}\mathbf{A}_{k}^{\mathrm{T}}\mathbf{A}_{k}\mathbf{D}_{k}^{-1/2} \to \Sigma_{\mathbf{A},k},$$

where $\mathbf{D}_k = \operatorname{diag}(\mathbf{A}_k^{\mathrm{T}}\mathbf{A}_k)$ is a diagonal matrix, and $\Sigma_{\mathbf{A},k}$ is positive definite with all eigenvalues bounded away from 0 and infinity. Let $(\mathbf{D}_k)_j$ be the *j*-th diagonal element of \mathbf{D}_k , then we assume $(\mathbf{D}_k)_j \asymp d_k^{\alpha_{k,j}}$ for $j \in [r_k]$, and $0 < \alpha_{k,r_k} \leq \cdots \leq \alpha_{k,2} \leq \alpha_{k,1} \leq 1$.

(L1) states that the factors can have different strengths. It generalizes the assumption of Bai and Ng (2021) to tensor time series with mixed strengths of factors.

Can show also the *j*-th singular values in \mathbf{G}_k is of order $d_k^{\alpha_{k,j}}$.

Assumptions on the model parameters

- (L2) (Signal Cancellation of maximum eigenvalue ratio sample) For $k \in [K]$, and for the m-th sample (of fibres) out of M_0 , define $s_{k,max} := \max_{|\mathcal{S}_{k,m}|=n_k,m\in[M_0]} \left[\sum_{j=1}^{r_k} \left(\sum_{i\in\mathcal{S}_{k,m}} (\mathbf{A}_k)_{ij} \right)^2 \right]$ and $s_{-k,max} := \prod_{l\in[K]\setminus\{k\}} s_{l,max}$. Then we assume $\frac{d_{\cdot k}}{s_{\cdot k,max}} \left(1 + \frac{d_k}{T}\right) = o\left(d_k^{\alpha_{k,z_k}}\right)$, for some $z_k \leq r_k$.
 - $S_{k,m} \subseteq [d_{k}]$ is set by the user through choosing $n_{\ell} \asymp d_{\ell}$ for each $\ell \in [K]$.
 - \bullet Consider many $\mathcal{S}_{k,m}$ and choose those that have large $s_{k,max}$, and hence large $s_{\text{-}k,max}.$
 - \star If $\widetilde{\mathbf{\Sigma}}_y$ is the covariance matrix corresponding to $\mathcal{S}_{k,m}$, then

$$\frac{\lambda_1(\widetilde{\mathbf{\Sigma}}_y)}{\lambda_j(\widetilde{\mathbf{\Sigma}}_y)} \asymp \frac{d_k^{\alpha_{k,1}}}{\frac{d_{-k}}{s_{-k,m}} \left(1 + \frac{d_k}{T}\right)}, \ r_k + 1 \leq j \leq \lfloor c\min(T, d_k) \rfloor - r_k,$$

for some constant c>0. Hence we choose $\mathcal{S}_{k,m}$ by taking those leading to largest eigenvalue ratios.

Pre-Averaging Estimator

- With different $S_{k,m}$ for different samples (only retain those with large $s_{-k,max}$), we can construct different covariance matrices for each such $S_{k,m}$.
- The pre-averaging estimator is the z_k eigenvectors corresponding to the largest z_k eigenvalues of the sum of all the covariance matrices above.

Theorem

Under Assumptions (E1), (E2), (F1), (L1), (L2), (R1), (R2), with $n_l \approx d_l$ for $l \neq k$, let $c_{k,max} := \min\left\{1 + \frac{d_k}{T}, \frac{r_k d_k}{T}\right\} \frac{d_{.k}}{s_{.k,max}} + d_k^{\alpha_{k,1}} \left(1 + \frac{d_k^2}{T^2}\right) \frac{d_{.k.}^2}{s_{.k,max}^2}$, then

$$\|\hat{\mathbf{U}}_{k,pre,(z_k)} - \mathbf{U}_{k,(z_k)}\|^2 = O_p\left(d_k^{-2\alpha_{k,z_k}}\left\lfloor d_k^{2\alpha_{k,1}} \frac{r_k}{T} + c_{k,max} \right\rfloor\right).$$

★ $\hat{\mathbf{U}}_{k,pre,(1)}$ serves as a good projection direction, i.e., take $\mathbf{c} = \hat{\mathbf{U}}_{k,pre,(1)}$.

Projection: Re-estimation through iterations

• The new projected data: $\check{\mathbf{q}}_k^{(0)} := \hat{\mathbf{U}}_{k,pre,(1)}$.

$$\mathbf{y}_{t,i}^{(k)} := \mathsf{mat}_k(\mathcal{X}_t - \bar{\mathcal{X}})\check{\mathbf{q}}_k^{(i-1)} \Rightarrow \widetilde{\mathbf{\Sigma}}_{y,i}^{(k)} := T^{-1} \sum_{t=1}^T \mathbf{y}_{t,i}^{(k)} \mathbf{y}_{t,i}^{(k)^{\mathrm{T}}}.$$

At the *i*-th step: For each k ∈ [K], estimate A_k by ğ⁽ⁱ⁾_k, the eigenvector corresponding to the largest eigenvalue of Σ^(k)_{y,i}. Repeat for several times (usually results in convergence).

Theorem

Under all previous assumptions, at the mth step of iteration, and

$$\begin{split} r &= O(r_e), \ \ d_k = O\left(\prod_{j=1}^K d_j^{\alpha_{j,1}}\right) = (r_e + \sqrt{T}) \sum_{j=1}^{d_{-k}} \|\Psi_j^{(k)}\|^2, \\ \max_{j \in [d_{-k}]} \|\mathbf{\Sigma}_{\epsilon,j}^{(k)}\| &= O\left(\prod_{j=1}^K d_j^{\alpha_{j,1}} \sqrt{\frac{r}{T}}\right), \ K\left(r + \max_{j \in [d_{-k}]} \|\mathbf{\Sigma}_{\epsilon,j}^{(k)}\|\right) \prod_{j=1}^K d_j^{1-\alpha_{j,1}} = o(T), \end{split}$$

we have for each $k \in [K]$, $\|\check{\mathbf{q}}_k^{(m)} - \mathbf{U}_{k,(1)}\| = O_P(\sqrt{r/T})$.

Projection: Re-estimation through iterations

Theorem

If r_k is known, we can obtain r_k eigenvectors of $\widetilde{\Sigma}_{y,m+1}^{(k)}$ as an estimator of the factor loading space of \mathbf{A}_k . Then there exists $\check{\mathbf{U}}_k \in \mathbb{R}^{d_k \times r_k}$ with $\check{\mathbf{U}}_k^{\mathrm{T}}\check{\mathbf{U}}_k = \mathbf{I}_{r_k}$ such that the r_k eigenvectors obtained above is $\check{\mathbf{U}}_k$ multiplied with some orthogonal matrix, with

$$\begin{split} \|\check{\mathbf{U}}_{k} - \mathbf{U}_{k}\| &= O_{P} \Bigg\{ g_{s}^{-1/2} d_{k}^{\alpha_{k,1} - \alpha_{k,r_{k}}} \left[\sqrt{\frac{r}{T}} \left(\sqrt{d_{k}} + K \sqrt{\frac{rd}{T}} + \sqrt{r_{e} S_{\psi}^{(k)}} \right) \right. \\ &+ g_{s}^{-1/2} \left(\max_{j \in [d_{\cdot k}]} \| \mathbf{\Sigma}_{\epsilon,j}^{(k)} \| \left[1 + \frac{K^{2} rd}{T^{2}} \right] + S_{\psi}^{(k)} \right) \right] \Bigg\}, \end{split}$$
where $g_{s} := \prod_{j=1}^{K} d_{j}^{\alpha_{j,1}}, \ S_{\psi}^{(k)} := \sum_{j=1}^{d_{\cdot k}} \| \mathbf{\Psi}_{j}^{(k)} \|^{2}.$

Consider $d_1 \asymp \cdots \asymp d_K \asymp T$, K and r_k being constants, all factors for \mathbf{A}_k are pervasive.

•
$$\|\check{\mathbf{U}}_k - \mathbf{U}_k\| = O_P(T^{-3/4})$$
 if $r_e = O(d_k^{1/2})$, $\|\Psi_j^{(k)}\| = O(1)$ and $\|\Sigma_{\epsilon,j}^{(k)}\| = O(d_{-k})$. Improves to $O_P(T^{-1})$ if $r_e \asymp d_k$ but $S_{\psi}^{(k)} = O(d_{-k}/T)$.

Define the correlation matrix for each $k \in [K]$:

$$\widetilde{\mathbf{R}}_{y,m+1}^{(k)} := \mathsf{diag}^{-1/2}(\widetilde{\boldsymbol{\Sigma}}_{y,m+1}^{(k)}) \widetilde{\boldsymbol{\Sigma}}_{y,m+1}^{(k)} \mathsf{diag}^{-1/2}(\widetilde{\boldsymbol{\Sigma}}_{y,m+1}^{(k)}).$$

 \bullet Our estimator for r_k for each $k \in [K]$ is then defined to be

 $\hat{r}_k := \max\{j: \lambda_j(\widetilde{\mathbf{R}}_{y,m+1}^{(k)}) > 1 + \eta_T, \, j \in [d_k]\},$

where $\eta_T \to 0$ as $T \to \infty$.

Theory: Core Tensor Rank Estimation

Theorem

Let all previous assumptions hold, and

$$d_{k}^{-\alpha_{k,r_{k}}}(\max_{j\in[d_{\cdot,k}]}\|\boldsymbol{\Sigma}_{\epsilon,j}^{(k)}\|+S_{\psi}^{(k)})=o\bigg(\prod_{j=1;j\neq k}^{K}d_{j}^{\alpha_{k,1}}\bigg).$$

Then as $T, d_k \rightarrow \infty$, we have for each $k \in [K]$,

$$\lambda_j(\widetilde{\mathbf{R}}_{y,m+1}^{(k)}) = \begin{cases} \approx d_k^{\alpha_{k,j}} (1 + O_P\{a_T(\alpha_{k,1} - \alpha_{k,r_k})\}), & j \in [r_k]; \\ \leq 1 + O_P\{a_T(0)\}, & j \in [d_k]/[r_k]. \end{cases}$$

where for $0 \le \delta \le 1/2$,

$$a_T(\delta) := d_k^{\delta} \sqrt{\frac{r}{T}} + Kr d_k^{\alpha_{k,1}/2} \prod_{j=1}^K d_j^{(1-\alpha_{j,1})/2} \frac{1}{T} = o(1).$$

Hence \hat{r}_k is a consistent estimator for r_k if we choose $\eta_T = Ca_T(0)$ for some constant C > 0.

Tuning parameter selection: Bootstrapping fibres

- If $\alpha_{j,1} = 1$ for each $j \in [K]$, and $d_k \asymp T$, then $a_T(0) \asymp KrT^{-1/2}$. It means that our search for η_T can be in the form $CT^{-1/2}$.
- Bootstrapping mode-k fibres: choose the d_{-k} fibres randomly with replacement, and project them accordingly. That is, for b = 1, ..., B,

$$\mathbf{y}_{t,m+1,b}^{(k)} := \mathsf{mat}_k(\mathcal{X}_t - \bar{\mathcal{X}}) \mathbf{W}_b \mathbf{W}_b^{\mathrm{T}} \check{\mathbf{q}}_{-k}^{(m)},$$

The *i*-th column of W_b is 0 except at the *j*-th position (*j* randomly chosen from [d_{-k}]), it is replaced by an i.i.d. Bernoulli r.v.

Tuning parameter selection: Bootstrapping fibres

• For a constant C, we calculate

$$\hat{r}_{k}^{(b)}(C) := \max\{j : \lambda_{j}(\widetilde{\mathbf{R}}_{y,b}^{(k)}) > 1 + CT^{-1/2}, \ j \in [d_{k}]\}.$$

 $\bullet~$ We propose to choose C with

$$\hat{C} := \min_{C>0} \widehat{\mathsf{Var}}(\{\hat{r}_k^{(b)}(C)\}_{b\in[B]}),$$

since $\lambda_j(\widetilde{\mathbf{R}}_{y,b}^{(k)}), b \in [B]$ are less stable for $j > r_k$ as compared to when $j \in [r_k]$.

• Finally, our estimator for r_k is

$$\check{r}_k := \text{Mode of } \{\hat{r}_k^{(b)}(\hat{C})\}_{b \in [B]}.$$

Simulation Settings

- Generate $\mathbf{A}_k = \mathbf{B}_k \mathbf{R}_k$, where the elements in $\mathbf{B}_k \in \mathbb{R}^{d_k \times r_k}$ are i.i.d. $U(u_1, u_2)$, and $\mathbf{R}_k \in \mathbb{R}^{r_k}$ is diagonal with the *j*th element being $d_k^{-\zeta_{k,j}}$, $0 \leq \zeta_{k,j} \leq 0.5$.
- Elements in \mathcal{F}_t , $\mathbf{e}_t^{(k)}$ and $\boldsymbol{\epsilon}_{t,\ell}^{(k)}$ are independent AR(5). $\Psi^{(1)}$ with i.i.d. standard normal entries, but has an independent probability of 0.7 being set exactly to 0.

•
$$K = 2$$
, $d_1 = d_2 = 40$, $T = 100$ and $r_1 = r_2 = 2$.

- (Ia) All strong factors $\zeta_{k,j} = 0$ for all k, j. $u_1 = -2$, $u_2 = 2$ so that columns of \mathbf{A}_k sum to normal magnitude (small s_k).
- (IIa) One strong factor with $\zeta_{k,1} = 0$ and $\zeta_{k,2} = 0.2$ for all k. $u_1 = -2$, $u_2 = 2$.
- (IIIa) Two weak factors with $\zeta_{k,1}=0.1$ and $\zeta_{k,2}=0.2$ for all $k.~u_1=-2$, $u_2=2.$
 - Setting (lb)(Ilb)(Ilb) are the same as (la)(Ila)(Illa), except that $u_1 = 0$, $u_2 = 2$ so that column sums of \mathbf{A}_k have large magnitude (large s_k).

Estimation of Factor Loading Spaces

Competitors to compare are TOPUP/TIPUP from Chen et al (2021), iTOPUP/iTIPUP from Han et al (2022), and HOSVD/HOOI.

Initial Step	Iterative Step	
PRE	PROJ	
1.157	0.126	
TOPUP	iTOPUP	
5.810	1.922	
TIPUP	iTIPUP	
0.082	1.798	
HOSVD	HOOI	
0.073	1.783	

Table: Average Computational Time (in sec) for Factor Loading Figure: Box-plot of L_2 Estimation Error (log-scale) of Factor Loading Spaces of A_1 for Setting (II).

Setting	Method	\check{r}_1	\check{r}_2	CorrectProp1	CorrectProp2
la	Bootstrap	2.00	2.00	1	1
la	iTIP-ER	2.00	2.00	1	1
lb	Bootstrap	2.00	2.00	1	1
	iTIP-ER	1.79	1.86	0.79	0.86
lla	Bootstrap	2.00	2.00	1	1
	iTIP-ER	1.89	1.83	0.89	0.83
IIb	Bootstrap	1.95	1.97	0.95	0.97
	iTIP-ER	1.16	1.18	0.16	0.18
Illa	Bootstrap	1.92	1.99	0.92	0.95
	iTIP-ER	1.92	1.92	0.92	0.92
IIIb	Bootstrap	1.52	1.71	0.52	0.71
	iTIP-ER	1.09	1.09	0.09	0.09

Table: Comparison of the Bootstrapped Rank Estimator with iTIP-ER from Han et al (2022).

Analysis of Matrix-valued Financial Return Data

- Fama-French portfolio returns data on Size and Operating Profitability (OP). 100 returns categorized into 10 different Sizes and 10 different OP levels. Either value-weighted or equal-weighted.
- Monthly data July 1973 to June 2021 (T = 576). Market effects (NYSE composite) removed using CAPM.
- Both our bootstrap method and the iTIP-ER gives $\hat{r}_1 = \hat{r}_2 = 2$ for both Size and OP.
- HOOI, iTIPUP and our method all show similar grouping patterns (after varimax rotations).

	Value Weighted	Equal Weight
PROJ	677.3	737.3
iTIPUP	662.1	804.2
HOOI	626.4	683.8

Table: Average Sum of Squared of Residuals.

- With econometric assumptions, a pre-averaging estimator for the factor loading matrices is proved to be consistent with rate of convergence spelt out.
- Re-estimation by iterating the projection step allows for a potentially better rate of convergence.
- Core rank tensor can be estimated by eigenanalyses of correlation matrices from suitably projected data. Bootstrapping tensor fibres help with the search for the optimal tuning parameter.
- Inference of tensor factor models using fibres Bootstrapping?

References

- Fan, J., Guo, J. and Zheng, S. (2020). Estimating Number of Factors by Adjusted Eigenvalues Thresholding, *JASA*, 0(0):1–10.
- Kolda, T. G. and Bader, B. W. (2009). Tensor decompositions and applications. SIAM Review, 51(3):455–500.
- Bai, J. and Ng, S. (2002). Determining the number of factors in approximate factor models. *Econometrica*, 70(1):191–221.
- Bai, J. and Ng, S. (2021). Approximate Factor Models with Weaker Loadings. Papers 2109.03773, arXiv.org.
- Chen, R., Yang, D., and Zhang, C.-H. (2021). Factor models for high-dimensional tensor time series. JASA, 0(0):1–23.
- Han, Y., Zhang, C. H., and Chen, R. (2022). Rank determination in tensor factor model. *Electron. J. Statist.*, 16(1): 1726–1803.
- Lam, C., Yao, Q., and Bathia, N. (2011). Estimation of latent factors for high-dimensional time series. *Biometrika*, 98(4):901–918.
- Wang, D., Liu, X., and Chen, R. (2019). Factor models for matrix-valued high-dimensional time series. *Journal of Econometrics*, 208(1):231–248.