Rank and Factor Loadings Estimation in Time Series Tensor Factor Model by Pre-averaging

Clifford Lam (joint work with Weilin Chen)

LSE Department of Statistics Research Showcase, June 14-15, 2022

Outline of the Talk

- Tensor factor models - model and examples
- Basic tensor manipulations
- Pre-averaging and results
- Projection - Re-estimation
- Projection - Rank determination for core rank tensor
- Simulation studies
- Summary and Future Research
- Tensor (multi-dimensional array) time series examples:
- Genomics - Multiple gene-gene interaction network of correlations from DNA microarray.
- Neuroimaging analysis - Tensor response (e.g. MRI 3-dimensional array) and vector predictors. Decomposition of regression coefficient tensor.
- Economics - import-export volume time series of products among different countries.
- Finance -10 by 10 Fama-French return time series (e.g. 100 portfolios formed on 10 sizes and 10 Book-to-Market ratios/Operating profitability).

Can we find simplifying structures? Factors driving the dynamics of a particular category of variables?

- For a panel time series $\mathbf{x}_{t} \in \mathbb{R}^{p}$ (order- 1 tensor), a multi-factor model is

$$
\mathbf{x}_{t}=C_{t}+\epsilon_{t}=\mathbf{A f}_{t}+\epsilon_{t}, \quad t=1, \ldots, T
$$

- If $\mathbf{x}_{t} \in \mathbb{R}^{d_{1} \times d_{2}}$, an order- 2 tensor, then the Tucker decomposition of the common component C_{t} is

$$
C_{t}=\mathbf{A}_{1} \mathbf{f}_{t} \mathbf{A}_{2}^{\mathrm{T}} .
$$

- Two factor loading matrices, $\mathbf{A}_{1} \in \mathbb{R}^{d_{1} \times r_{1}}, \mathbf{A}_{2} \in \mathbb{R}^{d_{2} \times r_{2}}$.
- The factor series is $\mathbf{f}_{t} \in \mathbb{R}^{r_{1} \times r_{2}}$. \mathbf{A}_{1} is relevant to the dynamics of the row variables, as \mathbf{A}_{2} does for the columns.

Figure: Tensor factor model for order-3 tensor time series. [A. Phan and A. Cichocki (2011)]

Notations and Basic Manipulations

- For a general order-K tensor $\mathcal{X}_{t} \in \mathbb{R}^{d_{1} \times \cdots \times d_{K}}$, write $\mathcal{X}_{t}=\mathcal{C}_{t}+\mathcal{E}_{t}$. The Tucker decomposition of \mathcal{C}_{t} is

$$
\mathcal{C}_{t}=\mathcal{F}_{t} \times_{1} \mathbf{A}_{1} \times_{2} \cdots \times_{K} \mathbf{A}_{K} .
$$

- \mathcal{F}_{t} is also called the core tensor.
- The notation \times_{k} represents the k-mode product of a tensor $\mathcal{F} \in \mathbb{R}^{r_{1} \times \cdots r_{K}}$ with a matrix $\mathbf{A} \in \mathbb{R}^{d \times r_{k}}$: $\mathcal{F} \times_{k} \mathbf{A} \in \mathbb{R}^{r_{1} \times \cdots r_{k-1} \times d \times r_{k+1} \times \cdots \times r_{K}}$, where

$$
\left(\mathcal{F} \times{ }_{k} \mathbf{A}\right)_{i_{1} \cdots i_{k-1} j i_{k+1} \cdots i_{K}}=\sum_{i_{k}=1}^{r_{k}} f_{i_{1} i_{2} \cdots i_{K}} a_{j i_{k}} .
$$

Notations and Basic Manipulations

- Mode- k fibres of a tensor $\mathcal{X} \in \mathbb{R}^{d_{1} \times \cdots \times d_{K}}$ is defined by fixing all indices but the k-th.

Figure: Fibres of order-3 tensors. (Figure from Kolda and Bader (2009))

- k-mode product $\mathcal{F} \times{ }_{k} \mathbf{A}$ is to sort all mode- k fibres of \mathcal{F} in columns, pre-multiply them with \mathbf{A}, then put them back into their corresponding places.

Notations and Basic Manipulations

- Mode- k flattening/unfolding/matricization of $\mathcal{X} \in \mathbb{R}^{d_{1} \times \cdots \times d_{K}}$ is to put all mode- k fibres as columns into a matrix $\operatorname{mat}_{k}(\mathcal{X})$ of size $d_{k} \times d_{-k}$, with $d_{-k}:=\prod_{j \neq k} d_{j}$.
- If $\mathcal{C}_{t}=\mathcal{F}_{t} \times{ }_{1} \mathbf{A}_{1} \times_{2} \cdots \times_{K} \mathbf{A}_{K}$, then

$$
\begin{aligned}
\operatorname{mat}_{k}\left(\mathcal{C}_{t}\right) & =\mathbf{A}_{k} \operatorname{mat}_{k}\left(\mathcal{F}_{t}\right)\left(\mathbf{A}_{K} \otimes \cdots \otimes \mathbf{A}_{k+1} \otimes \mathbf{A}_{k-1} \otimes \cdots \otimes \mathbf{A}_{1}\right)^{\mathrm{T}} \\
& =: \mathbf{A}_{k} \operatorname{mat}_{k}\left(\mathcal{F}_{t}\right) \mathbf{A}_{-k}^{\mathrm{T}} .
\end{aligned}
$$

\star We want to estimate $\mathbf{A}_{1}, \ldots, \mathbf{A}_{K}$, and determine the ranks of the core tensor r_{1}, \ldots, r_{K} from data $\mathcal{X}_{t}=\mathcal{C}_{t}+\mathcal{E}_{t} \in \mathbb{R}^{d_{1} \times \cdots \times d_{K}}$, $t=1, \ldots, T$.

Statistical and Econometric Factor Models

Two different types of assumptions for time series factor models:

- 'Statistical Factor Model' (Lam, Yao and Bathia (2011))
- Common factors accommodate all dynamics. White noise, but allowing strong cross-correlations.
- 'Econometrics Factor Model' (Bai and Ng (2002))
- Common factors have impact on most of the series. The noise has weak serial dependence and weak cross-correlations.
- Recent developments are based on statistical factor model assumptions.
\star No current literature on tensor factor models under econometric assumptions.

Pre-averaging idea

- Multiply Mode- k unfolded data by a vector \mathbf{u} :

$$
\begin{aligned}
\mathbf{y}_{t} & :=\operatorname{mat}_{k}\left(\mathcal{X}_{t}-\overline{\mathcal{X}}\right) \mathbf{u} \\
& =\mathbf{A}_{k} \operatorname{mat}_{k}\left(\mathcal{F}_{t}-\overline{\mathcal{F}}\right) \mathbf{A}_{-k}^{\mathrm{T}} \mathbf{u}+\operatorname{mat}_{k}\left(\mathcal{E}_{t}-\overline{\mathcal{E}}\right) \mathbf{u} .
\end{aligned}
$$

- If $\mathbf{A}_{k}=\mathbf{U}_{k} \mathbf{G}_{k} \mathbf{V}_{k}^{\mathrm{T}}, \mathbf{A}_{-k}^{\mathrm{T}}=\mathbf{V}_{-k} \mathbf{G}_{-k} \mathbf{U}_{-k}^{\mathrm{T}} \Rightarrow \mathbf{u}=\mathbf{U}_{-k,(1)}$ inflates signal most, but unknown.
- Set $\mathbf{u}=\mathbf{1}_{S}$ for some set $S \subseteq\left[d_{-k}\right]$. $\mathbf{U}_{-k}^{\mathrm{T}} \mathbf{1}_{S}$ can be small \Rightarrow Try random S.
- Estimate \mathbf{A}_{k} (or part of it) by finding the first $z_{k}\left(\leq r_{k}\right)$ eigenvectors of the covariance matrix of \mathbf{y}_{t}.
- Set $z_{k}=1$ for estimating the best direction $\mathbf{U}_{k,(1)}$, which usually is the most accurately estimated.

Assumptions on the Errors

(E1) (Decomposition of error) Assume that

$$
\begin{aligned}
\operatorname{mat}_{k}\left(\mathcal{E}_{t}\right) & =\left(\boldsymbol{\xi}_{t, 1}^{(k)}, \ldots, \boldsymbol{\xi}_{t, d_{-k}}^{(k)}\right), \quad \text { where } \\
\boldsymbol{\xi}_{t, \ell}^{(k)} & :=\boldsymbol{\Psi}_{\ell}^{(k)} \mathbf{e}_{t}^{(k)}+\left(\boldsymbol{\Sigma}_{\epsilon, \ell}^{(k)}\right)^{1 / 2} \boldsymbol{\epsilon}_{t, \ell}^{(k)},
\end{aligned}
$$

with $E\left(\mathbf{e}_{t}^{(k)}\right)=\mathbf{0}, E\left(\boldsymbol{\xi}_{t, \ell}^{(k)}\right)=\mathbf{0}, \mathbf{e}_{t}^{(k)} \in \mathbb{R}^{r_{e}}$ independent of $\boldsymbol{\epsilon}_{s, \ell}^{(k)}, \boldsymbol{\epsilon}_{t, \ell}^{(k)}$ independent of $\epsilon_{t, m}^{(k)}$ for $\ell \neq m, \operatorname{var}\left(\mathbf{e}_{t}^{(k)}\right)=\mathbf{I}_{r_{e}}$ and $\operatorname{var}\left(\boldsymbol{\epsilon}_{t, \ell}^{(k)}\right)=\mathbf{I}_{d_{k}}$ for each $s, t \in[T], \ell, m \in\left[d_{-k}\right], k \in[K]$. Also, each $\boldsymbol{\Sigma}_{\epsilon, \ell}^{(k)}$ has non-vanishing diagonals with $\operatorname{tr}\left(\boldsymbol{\Sigma}_{\epsilon, \ell}^{(k)}\right)=O\left(d_{k}\right)$. Moreover, denote $\boldsymbol{\Psi}^{(k)}:=\sum_{\ell=1}^{d_{-k}} \boldsymbol{\Psi}_{l}^{(k)}$ and $\boldsymbol{\Sigma}_{\epsilon}^{(k)}:=\sum_{\ell=1}^{d_{-k}} \boldsymbol{\Sigma}_{\epsilon, \ell}^{(k)}$. Then we assume $\left\|\boldsymbol{\Psi}^{(k)} \boldsymbol{\Psi}^{(k) \mathrm{T}}\right\|=O\left(d_{-k}\right)$ and $\left\|\boldsymbol{\Sigma}_{\epsilon}^{(k)}\right\|=O\left(d_{-k}\right)$.

With (E1), each mode- k fibre of \mathcal{E}_{t} is a sum of two independent parts. The first part $\mathbf{\Psi}_{\ell}^{(k)} \mathbf{e}_{t}^{(k)}$ is similar to a common component in a factor model, but it is too weak to be detected. This promotes (weak) cross-correlations among the fibres.

Assumptions on the Errors

(E2) (Time series) The elements in $\mathbf{e}_{t}^{(k)}=\left(e_{t, j}^{(k)}\right)$ and $\epsilon_{t, \ell}^{(k)}=\left(\epsilon_{t, \ell, j}^{(k)}\right)$ are following weakly stationary general linear processes, such that with $\ell \in\left[d_{-k}\right], t \in[T]$ and $k \in[K]$,

$$
\begin{aligned}
e_{t, j}^{(k)} & =\sum_{q \geq 0} a_{e, q} z_{e, t-q, j}^{(k)}, \quad j \in\left[r_{e}\right] \\
\epsilon_{t, \ell, j}^{(k)} & =\sum_{q \geq 0} a_{\epsilon, q} z_{\epsilon, t-q, \ell, j}^{(k)}, \quad j \in\left[d_{k}\right]
\end{aligned}
$$

where the coefficients $a_{e, q}$ and $a_{\epsilon, q}$ are such that $\sum_{q \geq 0} a_{e, q}^{2}=\sum_{q \geq 0} a_{\epsilon, q}^{2}=1$ and $\sum_{q \geq 0}\left|a_{e, q}\right| \leq C, \sum_{q \geq 0}\left|a_{\epsilon, q}\right| \leq C$ for some constant C. For each $k \in[K]$, the series of random variables $\left\{z_{e, t, j}^{(k)}\right\}$ and $\left\{z_{\epsilon, t, \ell, j}^{(k)}\right\}$ are independent of each other, with i.i.d. elements having mean 0 and variance 1 .

With (E2), the error variables are serially correlated in general. Together with (E1), (weak) serial and cross-sectional dependence within and among fibres are allowed for the errors.

Assumptions on the Factors

Similar to (E2), the factors in \mathcal{F}_{t} are assumed to follow general linear processes.
(F1) Let $\mathbf{f}_{t, \ell}^{(k)}=\left(f_{t, \ell, j}^{(k)}\right)$ be the ℓ-th column vector in $\operatorname{mat}_{k}\left(\mathcal{F}_{t}\right), \ell \in\left[r_{-k}\right]$, where $r_{-k}:=\prod_{\ell \neq k} r_{\ell}$. We assume that $\operatorname{var}\left(\mathbf{f}_{t, \ell}^{(k)}\right)=\mathbf{I}_{r_{k}}$ (the identity matrix with size $\left.r_{k}\right)$, and $\operatorname{cov}\left(\mathbf{f}_{t, \ell_{1}}^{(k)}, \mathbf{f}_{t, \ell_{2}}^{(k)}\right)=\mathbf{0}$ for $\ell_{1} \neq \ell_{2}$.
Then we can write

$$
f_{t, \ell, j}^{(k)}=\sum_{q \geq 0} a_{f, q} z_{f, t-q, \ell, j}^{(k)}, \quad j \in\left[r_{k}\right]
$$

where we have $\sum_{q \geq 0} a_{f, q}^{2}=1$ and $\sum_{q \geq 0}\left|a_{f, q}\right| \leq C$ for some constant C. For each $k \in[K]$, the series of random variables $\left\{z_{f, t, \ell, j}^{(k)}\right\}$ has i.i.d. elements having zero mean and variance 1.

Assumptions on the model parameters

(L1) (Factor Strength) We assume that, for $k \in[K], \mathbf{A}_{k}$ is of full rank, $r_{k}=o\left(T^{1 / 3}\right)$, and as $d_{k} \rightarrow \infty$,

$$
\mathbf{D}_{k}^{-1 / 2} \mathbf{A}_{k}^{\mathrm{T}} \mathbf{A}_{k} \mathbf{D}_{k}^{-1 / 2} \rightarrow \Sigma_{\mathbf{A}, k}
$$

where $\mathbf{D}_{k}=\operatorname{diag}\left(\mathbf{A}_{k}^{\mathrm{T}} \mathbf{A}_{k}\right)$ is a diagonal matrix, and $\Sigma_{\mathbf{A}, k}$ is positive definite with all eigenvalues bounded away from 0 and infinity. Let $\left(\mathbf{D}_{k}\right)_{j}$ be the j-th diagonal element of \mathbf{D}_{k}, then we assume $\left(\mathbf{D}_{k}\right)_{j} \asymp d_{k}^{\alpha_{k, j}}$ for $j \in\left[r_{k}\right]$, and $0<\alpha_{k, r_{k}} \leq \cdots \leq \alpha_{k, 2} \leq \alpha_{k, 1} \leq 1$.
(L1) states that the factors can have different strengths. It generalizes the assumption of Bai and Ng (2021) to tensor time series with mixed strengths of factors.
Can show also the j-th singular values in \mathbf{G}_{k} is of order $d_{k}^{\alpha_{k, j}}$.

Assumptions on the model parameters

(L2) (Signal Cancellation of maximum eigenvalue ratio sample) For $k \in[K]$, and for the m-th sample (of fibres) out of M_{0}, define
$s_{k, \text { max }}:=\max _{\left|\mathcal{S}_{k, m}\right|=n_{k}, m \in\left[M_{0}\right]}\left[\sum_{j=1}^{r_{k}}\left(\sum_{i \in \mathcal{S}_{k, m}}\left(\mathbf{A}_{k}\right)_{i j}\right)^{2}\right]$ and
$s_{-k, \max }:=\prod_{l \in[K] \backslash\{k\}} s_{l, \max }$. Then we assume
$\frac{d_{-k}}{s_{-k, \text { max }}}\left(1+\frac{d_{k}}{T}\right)=o\left(d_{k}^{\alpha_{k, z_{k}}}\right)$, for some $z_{k} \leq r_{k}$.

- $\mathcal{S}_{k, m} \subseteq\left[d_{-k}\right]$ is set by the user through choosing $n_{\ell} \asymp d_{\ell}$ for each $\ell \in[K]$.
- Consider many $\mathcal{S}_{k, m}$ and choose those that have large $s_{k, \text { max }}$, and hence large $s_{-k, \max }$.
\star If $\widetilde{\boldsymbol{\Sigma}}_{y}$ is the covariance matrix corresponding to $\mathcal{S}_{k, m}$, then

$$
\frac{\lambda_{1}\left(\widetilde{\boldsymbol{\Sigma}}_{y}\right)}{\lambda_{j}\left(\widetilde{\boldsymbol{\Sigma}}_{y}\right)} \asymp \frac{d_{k}^{\alpha_{k, 1}}}{\frac{d_{-k}}{s_{-k, m}}\left(1+\frac{d_{k}}{T}\right)}, \quad r_{k}+1 \leq j \leq\left\lfloor c \min \left(T, d_{k}\right)\right\rfloor-r_{k}
$$

for some constant $c>0$. Hence we choose $\mathcal{S}_{k, m}$ by taking those leading to largest eigenvalue ratios.

Pre-Averaging Estimator

- With different $\mathcal{S}_{k, m}$ for different samples (only retain those with large $s_{-k, \max }$), we can construct different covariance matrices for each such $\mathcal{S}_{k, m}$.
- The pre-averaging estimator is the z_{k} eigenvectors corresponding to the largest z_{k} eigenvalues of the sum of all the covariance matrices above.

Theorem

Under Assumptions (E1), (E2), (F1), (L1), (L2), (R1), (R2), with $n_{l} \asymp d_{l}$ for $l \neq k$, let $c_{k, \text { max }}:=\min \left\{1+\frac{d_{k}}{T}, \frac{r_{k} d_{k}}{T}\right\} \frac{d_{-k}}{s_{-k, \max }}+d_{k}^{\alpha_{k, 1}}\left(1+\frac{d_{k}^{2}}{T^{2}}\right) \frac{d_{-k}^{2}}{s_{-k, \max }^{2}}$, then

$$
\left\|\hat{\mathbf{U}}_{k, p r e,\left(z_{k}\right)}-\mathbf{U}_{k,\left(z_{k}\right)}\right\|^{2}=O_{p}\left(d_{k}^{-2 \alpha_{k, z_{k}}}\left[d_{k}^{2 \alpha_{k, 1}} \frac{r_{k}}{T}+c_{k, \max }\right]\right)
$$

$\star \hat{\mathbf{U}}_{k, p r e,(1)}$ serves as a good projection direction, i.e., take $\mathbf{c}=\hat{\mathbf{U}}_{k, p r e,(1)}$.

Projection: Re-estimation through iterations

- The new projected data: $\check{\mathbf{q}}_{k}^{(0)}:=\hat{\mathbf{U}}_{k, p r e,(1)}$.

$$
\mathbf{y}_{t, i}^{(k)}:=\operatorname{mat}_{k}\left(\mathcal{X}_{t}-\overline{\mathcal{X}}\right) \check{\mathbf{q}}_{k}^{(i-1)} \Rightarrow \widetilde{\boldsymbol{\Sigma}}_{y, i}^{(k)}:=T^{-1} \sum_{t=1}^{T} \mathbf{y}_{t, i}^{(k)} \mathbf{y}_{t, i}^{(k) \mathrm{T}}
$$

- At the i-th step: For each $k \in[K]$, estimate \mathbf{A}_{k} by $\check{\mathbf{q}}_{k}^{(i)}$, the eigenvector corresponding to the largest eigenvalue of $\widetilde{\boldsymbol{\Sigma}}_{y, i}^{(k)}$. Repeat for several times (usually results in convergence).

Theorem

Under all previous assumptions, at the mth step of iteration, and

$$
\begin{aligned}
& r=O\left(r_{e}\right), \quad d_{k}=O\left(\prod_{j=1}^{K} d_{j}^{\alpha_{j, 1}}\right)=\left(r_{e}+\sqrt{T}\right) \sum_{j=1}^{d_{-k}}\left\|\Psi_{j}^{(k)}\right\|^{2} \\
& \max _{j \in[d-k]}\left\|\boldsymbol{\Sigma}_{\epsilon, j}^{(k)}\right\|=O\left(\prod_{j=1}^{K} d_{j}^{\alpha_{j, 1}} \sqrt{\frac{r}{T}}\right), K\left(r+\max _{j \in[d-k]}\left\|\boldsymbol{\Sigma}_{\epsilon, j}^{(k)}\right\|\right) \prod_{j=1}^{K} d_{j}^{1-\alpha_{j, 1}}=o(T),
\end{aligned}
$$

we have for each $k \in[K],\left\|\check{\mathbf{q}}_{k}^{(m)}-\mathbf{U}_{k,(1)}\right\|=O_{P}(\sqrt{r / T})$.

Projection: Re-estimation through iterations

Theorem

If r_{k} is known, we can obtain r_{k} eigenvectors of $\widetilde{\boldsymbol{\Sigma}}_{y, m+1}^{(k)}$ as an estimator of the factor loading space of \mathbf{A}_{k}. Then there exists $\check{\mathbf{U}}_{k} \in \mathbb{R}^{d_{k} \times r_{k}}$ with $\check{\mathbf{U}}_{k}^{\mathrm{T}} \check{\mathbf{U}}_{k}=\mathbf{I}_{r_{k}}$ such that the r_{k} eigenvectors obtained above is $\check{\mathbf{U}}_{k}$ multiplied with some orthogonal matrix, with

$$
\begin{aligned}
&\left\|\check{\mathbf{U}}_{k}-\mathbf{U}_{k}\right\|=O_{P}\left\{g _ { s } ^ { - 1 / 2 } d _ { k } ^ { \alpha _ { k , 1 } - \alpha _ { k , r _ { k } } } \left[\sqrt{\frac{r}{T}}\left(\sqrt{d_{k}}+K \sqrt{\frac{r d}{T}}+\sqrt{r_{e} S_{\psi}^{(k)}}\right)\right.\right. \\
&\left.\left.+g_{s}^{-1 / 2}\left(\max _{j \in[d-k]}\left\|\boldsymbol{\Sigma}_{\epsilon, j}^{(k)}\right\|\left[1+\frac{K^{2} r d}{T^{2}}\right]+S_{\psi}^{(k)}\right)\right]\right\}
\end{aligned}
$$

where $g_{s}:=\prod_{j=1}^{K} d_{j}^{\alpha_{j, 1}}, S_{\psi}^{(k)}:=\sum_{j=1}^{d_{-k}}\left\|\Psi_{j}^{(k)}\right\|^{2}$.

Consider $d_{1} \asymp \cdots \asymp d_{K} \asymp T, K$ and r_{k} being constants, all factors for \mathbf{A}_{k} are pervasive.

- $\left\|\check{\mathbf{U}}_{k}-\mathbf{U}_{k}\right\|=O_{P}\left(T^{-3 / 4}\right)$ if $r_{e}=O\left(d_{k}^{1 / 2}\right),\left\|\boldsymbol{\Psi}_{j}^{(k)}\right\|=O(1)$ and

$$
\left\|\boldsymbol{\Sigma}_{\epsilon, j}^{(k)}\right\|=O\left(d_{-k}\right) . \text { Improves to } O_{P}\left(T^{-1}\right) \text { if } r_{e} \asymp d_{k} \text { but } S_{\psi}^{(k)}=O\left(d_{-k} / T\right) \text {. }
$$

Projection: Core tensor rank estimation

Define the correlation matrix for each $k \in[K]$:

$$
\widetilde{\mathbf{R}}_{y, m+1}^{(k)}:=\operatorname{diag}^{-1 / 2}\left(\widetilde{\boldsymbol{\Sigma}}_{y, m+1}^{(k)}\right) \widetilde{\boldsymbol{\Sigma}}_{y, m+1}^{(k)} \operatorname{diag}^{-1 / 2}\left(\widetilde{\boldsymbol{\Sigma}}_{y, m+1}^{(k)}\right) .
$$

- Our estimator for r_{k} for each $k \in[K]$ is then defined to be

$$
\hat{r}_{k}:=\max \left\{j: \lambda_{j}\left(\widetilde{\mathbf{R}}_{y, m+1}^{(k)}\right)>1+\eta_{T}, j \in\left[d_{k}\right]\right\},
$$

where $\eta_{T} \rightarrow 0$ as $T \rightarrow \infty$.

Theory: Core Tensor Rank Estimation

Theorem

Let all previous assumptions hold, and

$$
d_{k}^{-\alpha_{k, r_{k}}}\left(\max _{j \in\left[d_{-k}\right]}\left\|\boldsymbol{\Sigma}_{\epsilon, j}^{(k)}\right\|+S_{\psi}^{(k)}\right)=o\left(\prod_{j=1 ; j \neq k}^{K} d_{j}^{\alpha_{k, 1}}\right)
$$

Then as $T, d_{k} \rightarrow \infty$, we have for each $k \in[K]$,

$$
\lambda_{j}\left(\widetilde{\mathbf{R}}_{y, m+1}^{(k)}\right)= \begin{cases}\asymp d_{k}^{\alpha_{k, j}}\left(1+O_{P}\left\{a_{T}\left(\alpha_{k, 1}-\alpha_{k, r_{k}}\right)\right\}\right), & j \in\left[r_{k}\right] \\ \leq 1+O_{P}\left\{a_{T}(0)\right\}, & j \in\left[d_{k}\right] /\left[r_{k}\right]\end{cases}
$$

where for $0 \leq \delta \leq 1 / 2$,

$$
a_{T}(\delta):=d_{k}^{\delta} \sqrt{\frac{r}{T}}+K r d_{k}^{\alpha_{k, 1} / 2} \prod_{j=1}^{K} d_{j}^{\left(1-\alpha_{j, 1}\right) / 2} \frac{1}{T}=o(1)
$$

Hence \hat{r}_{k} is a consistent estimator for r_{k} if we choose $\eta_{T}=C a_{T}(0)$ for some constant $C>0$.

Tuning parameter selection: Bootstrapping fibres

- If $\alpha_{j, 1}=1$ for each $j \in[K]$, and $d_{k} \asymp T$, then $a_{T}(0) \asymp K r T^{-1 / 2}$. It means that our search for η_{T} can be in the form $C T^{-1 / 2}$.
- Bootstrapping mode- k fibres: choose the d_{-k} fibres randomly with replacement, and project them accordingly. That is, for $b=1, \ldots, B$,

$$
\mathbf{y}_{t, m+1, b}^{(k)}:=\operatorname{mat}_{k}\left(\mathcal{X}_{t}-\overline{\mathcal{X}}\right) \mathbf{W}_{b} \mathbf{W}_{b}^{\mathrm{T}} \check{\mathbf{q}}_{k}^{(m)}
$$

- The i-th column of \mathbf{W}_{b} is $\mathbf{0}$ except at the j-th position (j randomly chosen from $\left[d_{-k}\right]$), it is replaced by an i.i.d. Bernoulli r.v.

Tuning parameter selection: Bootstrapping fibres

- For a constant C, we calculate

$$
\hat{r}_{k}^{(b)}(C):=\max \left\{j: \lambda_{j}\left(\widetilde{\mathbf{R}}_{y, b}^{(k)}\right)>1+C T^{-1 / 2}, j \in\left[d_{k}\right]\right\}
$$

- We propose to choose C with

$$
\hat{C}:=\min _{C>0} \widehat{\operatorname{Var}}\left(\left\{\hat{r}_{k}^{(b)}(C)\right\}_{b \in[B]}\right),
$$

since $\lambda_{j}\left(\widetilde{\mathbf{R}}_{y, b}^{(k)}\right), b \in[B]$ are less stable for $j>r_{k}$ as compared to when $j \in\left[r_{k}\right]$.

- Finally, our estimator for r_{k} is

$$
\check{r}_{k}:=\text { Mode of }\left\{\hat{r}_{k}^{(b)}(\hat{C})\right\}_{b \in[B]}
$$

Simulation Settings

- Generate $\mathbf{A}_{k}=\mathbf{B}_{k} \mathbf{R}_{k}$, where the elements in $\mathbf{B}_{k} \in \mathbb{R}^{d_{k} \times r_{k}}$ are i.i.d. $U\left(u_{1}, u_{2}\right)$, and $\mathbf{R}_{k} \in \mathbb{R}^{r_{k}}$ is diagonal with the j th element being $d_{k}^{-\zeta_{k, j}}$, $0 \leq \zeta_{k, j} \leq 0.5$.
- Elements in $\mathcal{F}_{t}, \mathbf{e}_{t}^{(k)}$ and $\boldsymbol{\epsilon}_{t, \ell}^{(k)}$ are independent $\operatorname{AR}(5) . \Psi^{(1)}$ with i.i.d. standard normal entries, but has an independent probability of 0.7 being set exactly to 0 .
- $K=2, d_{1}=d_{2}=40, T=100$ and $r_{1}=r_{2}=2$.
(Ia) All strong factors $\zeta_{k, j}=0$ for all $k, j . u_{1}=-2, u_{2}=2$ so that columns of \mathbf{A}_{k} sum to normal magnitude (small s_{k}).
(IIa) One strong factor with $\zeta_{k, 1}=0$ and $\zeta_{k, 2}=0.2$ for all k. $u_{1}=-2, u_{2}=2$.
(IIIa) Two weak factors with $\zeta_{k, 1}=0.1$ and $\zeta_{k, 2}=0.2$ for all k. $u_{1}=-2$, $u_{2}=2$.
- Setting (Ib)(IIb)(IIIb) are the same as (Ia)(IIa)(IIIa), except that $u_{1}=0$, $u_{2}=2$ so that column sums of \mathbf{A}_{k} have large magnitude (large s_{k}).

Estimation of Factor Loading Spaces

Competitors to compare are TOPUP/TIPUP from Chen et al (2021), iTOPUP/iTIPUP from Han et al (2022), and HOSVD/HOOI.

Initial Step	Iterative Step
PRE	PROJ
1.157	0.126
TOPUP	iTOPUP
5.810	1.922
TIPUP	iTIPUP
0.082	1.798
HOSVD	HOOI
0.073	1.783

Table: Average
Computational Time (in sec) for Factor Loading

Small s_k

Figure: Box-plot of L_{2} Estimation Error (log-scale) of Factor Loading Spaces of \mathbf{A}_{1} for Setting (II).

Estimation of the Rank of Core Tensor

Setting	Method	\check{r}_{1}	\check{r}_{2}	CorrectProp1	CorrectProp2
I a	Bootstrap	2.00	2.00	1	1
	iTIP-ER	2.00	2.00	1	1
Ib	Bootstrap	2.00	2.00	1	1
	iTIP-ER	1.79	1.86	0.79	0.86
II a	Bootstrap	2.00	2.00	1	1
	iTIP-ER	1.89	1.83	0.89	0.83
II b	Bootstrap	1.95	1.97	0.95	0.97
	iTIP-ER	1.16	1.18	0.16	0.18
IIIa	Bootstrap	1.92	1.99	0.92	0.95
	iTIP-ER	1.92	1.92	0.92	0.92
III l	Bootstrap	1.52	1.71	0.52	0.71
	iTIP-ER	1.09	1.09	0.09	0.09

Table: Comparison of the Bootstrapped Rank Estimator with iTIP-ER from Han et al (2022).

Analysis of Matrix-valued Financial Return Data

- Fama-French portfolio returns data on Size and Operating Profitability (OP). 100 returns categorized into 10 different Sizes and 10 different OP levels. Either value-weighted or equal-weighted.
- Monthly data July 1973 to June $2021(T=576)$. Market effects (NYSE composite) removed using CAPM.
- Both our bootstrap method and the iTIP-ER gives $\hat{r}_{1}=\hat{r}_{2}=2$ for both Size and OP.
- HOOI, iTIPUP and our method all show similar grouping patterns (after varimax rotations).

	Value Weighted	Equal Weight
PROJ	677.3	737.3
iTIPUP	662.1	804.2
HOOI	626.4	683.8

Table: Average Sum of Squared of Residuals.

Summary and Future Research

- With econometric assumptions, a pre-averaging estimator for the factor loading matrices is proved to be consistent with rate of convergence spelt out.
- Re-estimation by iterating the projection step allows for a potentially better rate of convergence.
- Core rank tensor can be estimated by eigenanalyses of correlation matrices from suitably projected data. Bootstrapping tensor fibres help with the search for the optimal tuning parameter.
- Inference of tensor factor models using fibres Bootstrapping?

References

- Fan, J., Guo, J. and Zheng, S. (2020). Estimating Number of Factors by Adjusted Eigenvalues Thresholding, JASA, 0(0):1-10.
- Kolda, T. G. and Bader, B. W. (2009). Tensor decompositions and applications. SIAM Review, 51(3):455-500.
- Bai, J. and Ng, S. (2002). Determining the number of factors in approximate factor models. Econometrica, 70(1):191-221.
- Bai, J. and Ng, S. (2021). Approximate Factor Models with Weaker Loadings. Papers 2109.03773, arXiv.org.
- Chen, R., Yang, D., and Zhang, C.-H. (2021). Factor models for high-dimensional tensor time series. JASA, 0(0):1-23.
- Han, Y., Zhang, C. H., and Chen, R. (2022). Rank determination in tensor factor model. Electron. J. Statist., 16(1): 1726-1803.
- Lam, C., Yao, Q., and Bathia, N. (2011). Estimation of latent factors for high-dimensional time series. Biometrika, 98(4):901-918.
- Wang, D., Liu, X., and Chen, R. (2019). Factor models for matrix-valued high-dimensional time series. Journal of Econometrics, 208(1):231-248.

