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Outline of the Talk

Tensor factor models - model and examples

@ Basic tensor manipulations

Pre-averaging and results
@ Projection - Re-estimation
@ Projection - Rank determination for core rank tensor

Simulation studies

@ Summary and Future Research



Tensor Time Series

@ Tensor (multi-dimensional array) time series examples:

e Genomics - Multiple gene-gene interaction network of correlations
from DNA microarray.

o Neuroimaging analysis - Tensor response (e.g. MRI 3-dimensional
array) and vector predictors. Decomposition of regression coefficient
tensor.

e Economics - import-export volume time series of products among
different countries.

o Finance - 10 by 10 Fama-French return time series (e.g. 100
portfolios formed on 10 sizes and 10 Book-to-Market
ratios/Operating profitability).

Can we find simplifying structures? Factors driving the dynamics of
a particular category of variables?



Tensor Factor Models

For a panel time series x; € RP (order-1 tensor), a multi-factor
model is

Xt:Ct+6t:Aft+€t, t:].,...,T.

If x; € RUX92 an order-2 tensor, then the Tucker decomposition of
the common component Cy is

Cr = A1£,AT.

Two factor loading matrices, A; € R%1*71 A, e R%2X72,

The factor series is f; € R™ %72 Ay is relevant to the dynamics of
the row variables, as A5 does for the columns.



Tensor Factor Models

(f ),
o8 ><I <L) U, x DU, =, <) (L x) (I, 1, x L)

Figure: Tensor factor model for order-3 tensor time series. [A. Phan and
A. Cichocki (2011)]
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Notations and Basic Manipulations

e For a general order-K tensor X; € R4 % Xdx write X, = Cy +&;.
The Tucker decomposition of C; is

Ct:]-"txlAl ><2~"><KAK.

o F; is also called the core tensor.

@ The notation xj represents the k-mode product of a tensor
F € R"1 %7K with a matrix A € R4X"k:
F X A € RT1X - Th—1 XdXTep1 X XTK \where

Tk
(F Xk A)iyig_1jigsr i = E I oot @ins

ip=1



Notations and Basic Manipulations

@ Mode-F fibres of a tensor X € R4 % X4k s defined by fixing all
indices but the k-th.

(a) Mode-1 (column) fibers: (b) Mode-2 (row) fibers: (c) Mode-3 (tube) fibers:

Xk Xizk Xij:

Figure: Fibres of order-3 tensors. (Figure from Kolda and Bader
(2009))

@ k-mode product F X A is to sort all mode-k fibres of F in
columns, pre-multiply them with A, then put them back into their
corresponding places.



Notations and Basic Manipulations

@ Mode- flattening/unfolding/matricization of X € R%1 X" XdK s to
put all mode-k fibres as columns into a matrix matg(X') of size
dp X d_j,, with d_j, := Hj#kd]"

o If Cs =F; x1 A1 Xo--- X Ak, then

mat(Ct) = Agmaty (Fi)(Ak ® - ®Ap 1 ©Ar_1®---®Ag)T
=: Akmatk(]—})A_Tk.

* We want to estimate Aq,..., Ak, and determine the ranks of the
core tensor r1,...,Ti from data Xy = Cy + & € R& > xdi
t=1,...,T.



Statistical and Econometric Factor Models

Two different types of assumptions for time series factor models:

e 'Statistical Factor Model' (Lam, Yao and Bathia (2011))

e Common factors accommodate all dynamics. White noise, but
allowing strong cross-correlations.

@ 'Econometrics Factor Model’ (Bai and Ng (2002))

e Common factors have impact on most of the series. The noise has
weak serial dependence and weak cross-correlations.

@ Recent developments are based on statistical factor model
assumptions.

% No current literature on tensor factor models under econometric
assumptions.



Pre-averaging idea

Multiply Mode-k unfolded data by a vector u:

y¢ := maty(X; — X)u

= Akmatk(}} = .F)A:%u + matg (& — 5)u.

If Ap =UrG,Vy, A =V, G, Ul = u=U, () inflates signal
most, but unknown.

Set u=1g for some set S C [d.;]. U 1g can be small = Try
random S.

Estimate Ay (or part of it) by finding the first z; (< r) eigenvectors
of the covariance matrix of y;.

Set z = 1 for estimating the best direction Uy, (1), which usually is
the most accurately estimated.
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Assumptions on the Errors

(E1) (Decomposition of error) Assume that

maty (&) = ( i’?,,gf’j}k), where

k k) (k k k
1(‘,,[) = ‘I’é e} )+(E£,/,))1/25§,z>7

with E(egk)) 0, E(f(k)) 0, eik) € R"¢ independent ofei 71 € (k)
independent of e( ) for ¢ #m, var(e g )) =1.. and var(eg})) = Idk for
each s,t € [T], £,m € [dg], k € [K]. Also, each E(k) has non-vanishing
diagonals with tr(E(k)) O(dy,). Moreover, denote (¥ Zd’“ \Il(k)
and Z(k) Zd" Z(k). Then we assume || &F) w7 = O(d_) and

=8 = 0(dr).

With (E1), each mode-k fibre of & is a sum of two independent parts. The

first part \Ilgk)egk) is similar to a common component in a factor model, but it

is too weak to be detected. This promotes (weak) cross-correlations among the ISE
fibres.



Assumptions on the Errors

(k) _ (61(:,13‘)) (k) _ (e (k)

(E2) (Time series) The elements in e, and €, ) = (&, ]) are

following weakly stationary general linear processes, such that with
Leldy], te[T] and k € [K],

k k .
el(%j) = Zaequé,t)—q,j, J € [re],
q=0

k k :
EZ),] - Zaf’qzé,t)—q,&j’ J € ldg],

where the coefficients ae ,q and ae q are such that
2 _
Zq>0 Ge,q = Zq>0 a? ,q=1and Z <C, Zq>

some constant C. For each k € [K], the series of random variables {z

e,t ]}
and {z6 25 j} are independent of each other, with i.i.d. elements having
mean 0 and variance 1.

With (E2), the error variables are serially correlated in general. Together with
(E1), (weak) serial and cross-sectional dependence within and among fibres are
allowed for the errors. LSE



Assumptions on the Factors

Similar to (E2), the factors in F; are assumed to follow general linear processes.

(F1)

Let ft(];) = (ft Z]) be the (-th column vector in maty(Fy), £ € [r_], where
Py = Hzikw. We assume that var(f(k)) =1,, (the identity matrix with

size 1), and cov(ft(z,ft(z)) 0 for £y # £o.

Then we can write

(k) _ (k) .
ft’&j - Zaﬁqu,tfq,é,j’ J € [rel,
q20
where we have Zq>0 af q=1and Z solag,ql < C for some constant C.

For each k € [K], the series of random variables {zf £, 1 has i.id.
elements having zero mean and variance 1.



Assumptions on the model parameters

(L1) (Factor Strength) We assume that, for k € [K], Ay, is of full rank,
e = o(T'/3), and as dy, — oo,

D;l/QAEA;@D;l/Q — ZA,kv

where Dy, = diag(AJ, Ay) is a diagonal matrix, and X y, is positive
definite with all eigenvalues bounded away from 0 and infinity. Let (Dy,);
be the j-th diagonal element of Dy, then we assume (Dy,); < d:k’j for
JjErE], and 0 <oy, <+ <apa<oyq <1

(L1) states that the factors can have different strengths. It generalizes the
assumption of Bai and Ng (2021) to tensor time series with mixed
strengths of factors.

Can show also the j-th singular values in Gy, is of order di””



Assumptions on the model parameters

(L2

) (Signal Cancellation of maximum eigenvalue ratio sample) For k € [K],

and for the m-th sample (of fibres) out of My, define
2
Sk,mag = MaX|S,  |=n; ,me[Mo] {Z;k_1 (Ziesk,m (Ak)ij) } and

O oo = Hle [K)\{k} Sl,maz- Then we assume

(1+ ) =0 (d:k’z’“) , for some zp, < ry.

ST p——
Si,m C [d_g] is set by the user through choosing n, < d, for each £ € [K].

Consider many Sy, ,,, and choose those that have large sy, 44, and hence
large s_k maz-

If f]y is the covariance matrix corresponding to Sy, ,,,, then

= dak,l
M) 1< < [emin(T,dg) | -,
() s (%)

for some constant ¢ > 0. Hence we choose Sy, ,,, by taking those leading
to largest eigenvalue ratios.



Pre-Averaging Estimator

@ With different Sy, ,,, for different samples (only retain those with large
5.k, maz), We can construct different covariance matrices for each such
k,m-

@ The pre-averaging estimator is the z;, eigenvectors corresponding to the
largest zj, eigenvalues of the sum of all the covariance matrices above.

Theorem

Under Assumptions (E1), (E2), (F1), (L1), (L2), (R1), (R2), with n; =< d; for
2 2
L#k, let cpymaq = min {1+ % T} _db 4 gkt (1+ %) SQd’k* , then

S-k,maz -k,max

A 2 —20ak, 2 20,1 Tk
Uk pre,(zr) = Uk, (z) I” = Op (dk oo [dkak 1?+Ck,mazD-

* ﬂk,pm,u) serves as a good projection direction, i.e., take c = ﬂk’pm’(l).
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Projection: Re-estimation through iterations

@ The new projected data: (]](CO) E= ﬁk’p,,.e’(l).

T
ygkl) = matg (X — /f)(j](f_l) = flgfl) =71 yg?ygﬁ)T.

t=1
@ At the i-th step: For each k € [K], estimate Ay by 51](:), the eigenvector
~(k
corresponding to the largest eigenvalue of 2;2 Repeat for several times
(usually results in convergence).

Theorem

Under all previous assumptions, at the mth step of iteration, and

d.
r=0(re), di=0 (Hda”)—(re+\/T)Z||\IJ§»k)I|27
j=1
K
max =) =0 <Hd“ﬂ[> (r+ e ||z<)||)H —l g

Jj=1

we have for each k € [K],

U )ll=0p(\/7/T).




Projection: Re-estimation through iterations

Theorem

. . . Sk .
If r, is known, we can obtain r}, eigenvectors of 2y,7)n+1 as an estimator of the
factor loading space of Aj. Then there exists Uj, € R%* X" with f]gf]k =1,

such that the ry, eigenvectors obtained above is Ijk multiplied with some
orthogonal matrix, with

_ - “d
”UkUk”—OP{g R e k{\/;<\/dk+K\/7T+\/reSff)>
+g5 '/ max HE(’“ I 1+K s [
jeld v

K k d. k
where gs =[]/ Lo, s( ). Zj:’clu\pg |2,

Consider d; < --- <dg < T, K and r; being constants, all factors for Ay are
pervasive.

o Uy~ Ukll = 0p(T3/1) if re = O(d,/?), | ®{”) = 0(1) and
HEWH* O(d.;). Improves to Op(T 1) if re < dj, but S(k) O(d. k/T)




Projection: Core tensor rank estimation

Define the correlation matrix for each k € [K]:

® =k 125"

k = .
Réﬂ)n.:,_l :=diag 1/2( 2y m+1) 2y, my1diag” 3y m+1)-

@ Our estimator for 7 for each k € [K] is then defined to be

" . = (k .
f = max{j : /\j(Réﬂ),H_l) > 1407, j € [di]},

where np — 0 as 7' — oo.
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Theory: Core Tensor Rank Estimation

Theorem

Let all previous assumptions hold, and

K
e Cmae 120114 847) = ( I1 d?k’l)

J=1#k

d

Then as T,dy, — oo, we have for each k € [K],

k) _ | =& (1 +0plar(ony —on)}), 5 € il
Ai (R >—{ <1%0p{ar(O)}, j € [dx)/ral.

where for 0 < § < 1/2,

K
5 [T 2 1-ajq1)/2 1
8) 1= di/ -+ Krd P T df =2 = = o).
j=1

Hence 7, is a consistent estimator for ry, if we choose np = Cap(0) for some
constant C' > 0.




Tuning parameter selection: Bootstrapping fibres

o If aj; =1 for each j € [K], and dy, < T, then ap(0) < KrT~ /2 It
means that our search for nr can be in the form cT~1/2.

@ Bootstrapping mode-k fibres: choose the d_; fibres randomly with
replacement, and project them accordingly. That is, for b=1,..., B,

k ¥ v
y1(67721,+1.,b ‘= maty, (Xt B X)wa;l;q—(l;n)’

@ The i-th column of Wy, is O except at the j-th position (5 randomly
chosen from [d_]), it is replaced by an i.i.d. Bernoulli r.v.



Tuning parameter selection: Bootstrapping fibres

@ For a constant C, we calculate

#P(C) = max{j: 3R > 1407712, j € [dy]}.

@ We propose to choose C' with

e~ (b
Q= rg};r(l)Var({T,(C )(C)}be[B])7

since \; (ﬁl(}kg),b € [B] are less stable for j > 7 as compared to when
j € [ril-

@ Finally, our estimator for r, is

7, := Mode of {f,gb)(é)}be[B]-



Simulation Settings

Generate A, = B R, where the elements in By, € RUXTE are i.id.
U(ui,uz), and Ry, € R"* is diagonal with the jth element being dj °*,
0< ¢k, <05

Elements in F, egk) and eg}) are independent AR(5). v with i.id.

standard normal entries, but has an independent probability of 0.7 being
set exactly to 0.

K=2,d;=dy=40, T=100 and r{ =r9 = 2.

All strong factors (i, ; =0 for all k,j. u; = —2, ug = 2 so that columns of
A}, sum to normal magnitude (small sy).

One strong factor with (3 1 =0 and (32 =0.2 for all k. uy = —2, ug =2.

Two weak factors with (1 = 0.1 and (3, 2 = 0.2 for all k. u; = -2,
ug = 2.

Setting (Ib)(1Ib)(I1lb) are the same as (la)(lla)(Illa), except that u; =0,
ug = 2 so that column sums of Ay have large magnitude (large sg).



Estimation of Factor Loading Spaces

Competitors to compare are
TOPUP/TIPUP from Chen

et al (2021),

iTOPUP/iTIPUP from Han

et al (2022), and
HOSVD/HOOI.

l Initial Step [ Iterative Step ‘

PRE PROJ
1.157 0.126
TOPUP iTOPUP
5.810 1.922
TIPUP iTIPUP
0.082 1.798
HOSVD HOOI
0.073 1.783

Table: Average

Computational Time (in
sec) for Factor Loading
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Figure: Box-plot of Ly Estimation Error

(log-scale) of Factor Loading Spaces of A for

Setting (I1).



Estimation of the Rank of Core Tensor

[ Setting [ Method [ 71 [ 72 [ CorrectPropl | CorrectProp2 |

la Bootstrap || 2.00 | 2.00 1 1
iTIP-ER 2.00 | 2.00 1 1

b Bootstrap || 2.00 | 2.00 1 1
iTIP-ER 1.79 [ 1.86 0.79 0.86

la Bootstrap || 2.00 | 2.00 1 1
iTIP-ER 1.89 [ 1.83 0.89 0.83

b Bootstrap || 1.95 | 1.97 0.95 0.97
iTIP-ER 1.16 | 1.18 0.16 0.18

i Bootstrap || 1.92 | 1.99 0.92 0.95
2 iTIP-ER || 1.92 | 1.92 0.92 0.92
b Bootstrap || 1.52 | 1.71 0.52 0.71
iTIP-ER 1.09 [ 1.09 0.09 0.09

Table: Comparison of the Bootstrapped Rank Estimator with iTIP-ER from
Han et al (2022).



Analysis of Matrix-valued Financial Return Data

@ Fama-French portfolio returns data on Size and Operating Profitability
(OP). 100 returns categorized into 10 different Sizes and 10 different OP
levels. Either value-weighted or equal-weighted.

@ Monthly data July 1973 to June 2021 (7" = 576). Market effects (NYSE
composite) removed using CAPM.

@ Both our bootstrap method and the iTIP-ER gives 71 = fo = 2 for both
Size and OP.

@ HOOI, iTIPUP and our method all show similar grouping patterns (after
varimax rotations).

[ | Value Weighted | Equal Weight |

PROJ 677.3 737.3
iTIPUP 662.1 804.2
HOOI 626.4 683.8

Table: Average Sum of Squared of Residuals.



Summary and Future Research

o With econometric assumptions, a pre-averaging estimator for the
factor loading matrices is proved to be consistent with rate of
convergence spelt out.

@ Re-estimation by iterating the projection step allows for a potentially
better rate of convergence.

@ Core rank tensor can be estimated by eigenanalyses of correlation
matrices from suitably projected data. Bootstrapping tensor fibres
help with the search for the optimal tuning parameter.

@ Inference of tensor factor models using fibres Bootstrapping?
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