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Outline of the Talk

Tensor factor models - model and examples

Basic tensor manipulations

Pre-averaging and results

Projection - Re-estimation

Projection - Rank determination for core rank tensor

Simulation studies

Summary and Future Research
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Tensor Time Series

Tensor (multi-dimensional array) time series examples:
Genomics - Multiple gene-gene interaction network of correlations
from DNA microarray.

Neuroimaging analysis - Tensor response (e.g. MRI 3-dimensional
array) and vector predictors. Decomposition of regression coefficient
tensor.

Economics - import-export volume time series of products among
different countries.

Finance - 10 by 10 Fama-French return time series (e.g. 100
portfolios formed on 10 sizes and 10 Book-to-Market
ratios/Operating profitability).

Can we find simplifying structures? Factors driving the dynamics of
a particular category of variables?
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Tensor Factor Models

For a panel time series xt ∈ Rp (order-1 tensor), a multi-factor
model is

xt = Ct+ εt = Aft+ εt, t= 1, . . . ,T.

If xt ∈ Rd1×d2 , an order-2 tensor, then the Tucker decomposition of
the common component Ct is

Ct = A1ftAT
2 .

Two factor loading matrices, A1 ∈ Rd1×r1 , A2 ∈ Rd2×r2 .
The factor series is ft ∈ Rr1×r2 . A1 is relevant to the dynamics of
the row variables, as A2 does for the columns.
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Tensor Factor Models

Figure: Tensor factor model for order-3 tensor time series. [A. Phan and
A. Cichocki (2011)]
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Notations and Basic Manipulations

For a general order-K tensor Xt ∈ Rd1×···×dK , write Xt = Ct+Et.
The Tucker decomposition of Ct is

Ct = Ft×1 A1×2 · · ·×K AK .

Ft is also called the core tensor.

The notation ×k represents the k-mode product of a tensor
F ∈ Rr1×···rK with a matrix A ∈ Rd×rk :
F ×kA ∈ Rr1×···rk−1×d×rk+1×···×rK , where

(F ×kA)i1···ik−1jik+1···iK =
rk∑
ik=1

fi1i2···iKajik .
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Notations and Basic Manipulations

Mode-k fibres of a tensor X ∈ Rd1×···×dK is defined by fixing all
indices but the k-th.

Figure: Fibres of order-3 tensors. (Figure from Kolda and Bader
(2009))

k-mode product F ×kA is to sort all mode-k fibres of F in
columns, pre-multiply them with A, then put them back into their
corresponding places.
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Notations and Basic Manipulations

Mode-k flattening/unfolding/matricization of X ∈ Rd1×···×dK is to
put all mode-k fibres as columns into a matrix matk(X ) of size
dk×d-k, with d-k :=

∏
j 6=k dj .

If Ct = Ft×1 A1×2 · · ·×K AK , then

matk(Ct) = Akmatk(Ft)(AK ⊗·· ·⊗Ak+1⊗Ak−1⊗·· ·⊗A1)T

=: Akmatk(Ft)AT
-k.

F We want to estimate A1, . . . ,AK , and determine the ranks of the
core tensor r1, . . . , rK from data Xt = Ct+Et ∈ Rd1×···×dK ,
t= 1, . . . ,T .
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Statistical and Econometric Factor Models

Two different types of assumptions for time series factor models:
’Statistical Factor Model’ (Lam, Yao and Bathia (2011))

Common factors accommodate all dynamics. White noise, but
allowing strong cross-correlations.

’Econometrics Factor Model’ (Bai and Ng (2002))
Common factors have impact on most of the series. The noise has
weak serial dependence and weak cross-correlations.

Recent developments are based on statistical factor model
assumptions.

F No current literature on tensor factor models under econometric
assumptions.
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Pre-averaging idea

Multiply Mode-k unfolded data by a vector u:

yt := matk(Xt−X̄ )u
= Akmatk(Ft−F̄)AT

-ku +matk(Et−Ē)u.

If Ak = UkGkVT
k , AT

-k = V-kG-kUT
-k⇒ u = U-k,(1) inflates signal

most, but unknown.

Set u = 1S for some set S ⊆ [d-k]. UT
-k1S can be small ⇒ Try

random S.

Estimate Ak (or part of it) by finding the first zk(≤ rk) eigenvectors
of the covariance matrix of yt.

Set zk = 1 for estimating the best direction Uk,(1), which usually is
the most accurately estimated.
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Assumptions on the Errors

(E1) (Decomposition of error) Assume that

matk(Et) = (ξ(k)
t,1 , . . . ,ξ

(k)
t,d-k

), where

ξ
(k)
t,` := Ψ(k)

` e(k)
t + (Σ(k)

ε,` )1/2ε
(k)
t,` ,

with E(e(k)
t ) = 0, E(ξ(k)

t,` ) = 0, e(k)
t ∈ Rre independent of ε

(k)
s,` , ε

(k)
t,`

independent of ε
(k)
t,m for ` 6=m, var(e(k)

t ) = Ire and var(ε(k)
t,` ) = Idk

for

each s, t ∈ [T ], `,m ∈ [d-k], k ∈ [K]. Also, each Σ(k)
ε,` has non-vanishing

diagonals with tr(Σ(k)
ε,` ) =O(dk). Moreover, denote Ψ(k) :=

∑d-k
`=1 Ψ(k)

l

and Σ(k)
ε :=

∑d-k
`=1 Σ(k)

ε,` . Then we assume ‖Ψ(k)Ψ(k)T‖=O(d-k) and

‖Σ(k)
ε ‖=O(d-k).

With (E1), each mode-k fibre of Et is a sum of two independent parts. The
first part Ψ(k)

` e(k)
t is similar to a common component in a factor model, but it

is too weak to be detected. This promotes (weak) cross-correlations among the
fibres.
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Assumptions on the Errors

(E2) (Time series)The elements in e(k)
t = (e(k)

t,j ) and ε
(k)
t,` = (ε(k)

t,`,j) are
following weakly stationary general linear processes, such that with
` ∈ [d-k], t ∈ [T ] and k ∈ [K],

e
(k)
t,j =

∑
q≥0

ae,qz
(k)
e,t−q,j , j ∈ [re],

ε
(k)
t,`,j =

∑
q≥0

aε,qz
(k)
ε,t−q,`,j , j ∈ [dk],

where the coefficients ae,q and aε,q are such that∑
q≥0 a

2
e,q =

∑
q≥0 a

2
ε,q = 1 and

∑
q≥0 |ae,q| ≤ C,

∑
q≥0 |aε,q| ≤ C for

some constant C. For each k ∈ [K], the series of random variables {z(k)
e,t,j}

and {z(k)
ε,t,`,j} are independent of each other, with i.i.d. elements having

mean 0 and variance 1.

With (E2), the error variables are serially correlated in general. Together with
(E1), (weak) serial and cross-sectional dependence within and among fibres are
allowed for the errors.
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Assumptions on the Factors

Similar to (E2), the factors in Ft are assumed to follow general linear processes.

(F1) Let f (k)
t,` = (f (k)

t,`,j) be the `-th column vector in matk(Ft), ` ∈ [r-k], where

r-k :=
∏
` 6=k r`. We assume that var(f (k)

t,` ) = Irk (the identity matrix with

size rk), and cov(f (k)
t,`1

, f (k)
t,`2

) = 0 for `1 6= `2.
Then we can write

f
(k)
t,`,j =

∑
q≥0

af,qz
(k)
f,t−q,`,j , j ∈ [rk],

where we have
∑
q≥0 a

2
f,q = 1 and

∑
q≥0 |af,q| ≤ C for some constant C.

For each k ∈ [K], the series of random variables {z(k)
f,t,`,j} has i.i.d.

elements having zero mean and variance 1.
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Assumptions on the model parameters

(L1) (Factor Strength) We assume that, for k ∈ [K], Ak is of full rank,
rk = o(T 1/3), and as dk→∞,

D−1/2
k AT

kAkD
−1/2
k → ΣA,k,

where Dk = diag(AT
kAk) is a diagonal matrix, and ΣA,k is positive

definite with all eigenvalues bounded away from 0 and infinity. Let (Dk)j
be the j-th diagonal element of Dk, then we assume (Dk)j � d

αk,j

k for
j ∈ [rk], and 0< αk,rk

≤ ·· · ≤ αk,2 ≤ αk,1 ≤ 1.

(L1) states that the factors can have different strengths. It generalizes the
assumption of Bai and Ng (2021) to tensor time series with mixed
strengths of factors.

Can show also the j-th singular values in Gk is of order dαk,j

k .
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Assumptions on the model parameters

(L2) (Signal Cancellation of maximum eigenvalue ratio sample) For k ∈ [K],
and for the m-th sample (of fibres) out of M0, define

sk,max := max|Sk,m|=nk,m∈[M0]

[∑rk

j=1

(∑
i∈Sk,m

(Ak)ij
)2
]
and

s-k,max :=
∏
l∈[K]\{k} sl,max. Then we assume

d-k
s-k,max

(
1 + dk

T

)
= o
(
d
αk,zk

k

)
, for some zk ≤ rk.

Sk,m ⊆ [d-k] is set by the user through choosing n` � d` for each ` ∈ [K].

Consider many Sk,m and choose those that have large sk,max, and hence
large s-k,max.

F If Σ̃y is the covariance matrix corresponding to Sk,m, then

λ1(Σ̃y)
λj(Σ̃y)

�
d
αk,1
k

d-k
s-k,m

(
1 + dk

T

) , rk+ 1≤ j ≤ bcmin(T,dk)c− rk,

for some constant c > 0. Hence we choose Sk,m by taking those leading
to largest eigenvalue ratios.
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Pre-Averaging Estimator

With different Sk,m for different samples (only retain those with large
s-k,max), we can construct different covariance matrices for each such
Sk,m.

The pre-averaging estimator is the zk eigenvectors corresponding to the
largest zk eigenvalues of the sum of all the covariance matrices above.

Theorem

Under Assumptions (E1), (E2), (F1), (L1), (L2), (R1), (R2), with nl � dl for
l 6= k, let ck,max := min

{
1 + dk

T ,
rkdk
T

}
d-k

s-k,max
+d

αk,1
k

(
1 + d2

k

T 2

)
d2

-k,

s2
-k,max

, then

‖Ûk,pre,(zk)−Uk,(zk)‖
2 =Op

(
d
−2αk,zk

k

[
d

2αk,1
k

rk
T

+ ck,max

])
.

F Ûk,pre,(1) serves as a good projection direction, i.e., take c = Ûk,pre,(1).
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Projection: Re-estimation through iterations
The new projected data: q̌(0)

k := Ûk,pre,(1).

y(k)
t,i := matk(Xt−X̄ )q̌(i−1)

k ⇒ Σ̃
(k)
y,i := T−1

T∑
t=1

y(k)
t,i y(k)T

t,i .

At the i-th step: For each k ∈ [K], estimate Ak by q̌(i)
k , the eigenvector

corresponding to the largest eigenvalue of Σ̃
(k)
y,i . Repeat for several times

(usually results in convergence).

Theorem
Under all previous assumptions, at the mth step of iteration, and

r =O(re), dk =O

( K∏
j=1

d
αj,1
j

)
= (re+

√
T )

d-k∑
j=1
‖Ψ(k)

j ‖
2,

max
j∈[d-k]

‖Σ(k)
ε,j ‖=O

( K∏
j=1

d
αj,1
j

√
r

T

)
, K

(
r+ max

j∈[d-k]
‖Σ(k)

ε,j ‖
) K∏
j=1

d
1−αj,1
j = o(T ),

we have for each k ∈ [K], ‖q̌(m)
k −Uk,(1)‖=OP (

√
r/T ).
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Projection: Re-estimation through iterations

Theorem

If rk is known, we can obtain rk eigenvectors of Σ̃
(k)
y,m+1 as an estimator of the

factor loading space of Ak. Then there exists Ǔk ∈ Rdk×rk with ǓT
kǓk = Irk

such that the rk eigenvectors obtained above is Ǔk multiplied with some
orthogonal matrix, with

‖Ǔk−Uk‖=OP

{
g
−1/2
s d

αk,1−αk,rk

k

[√
r

T

(√
dk+K

√
rd

T
+
√
reS

(k)
ψ

)

+g−1/2
s

(
max
j∈[d-k]

‖Σ(k)
ε,j ‖
[

1 + K2rd

T 2

]
+S

(k)
ψ

)]}
,

where gs :=
∏K
j=1 d

αj,1
j , S(k)

ψ :=
∑d-k
j=1 ‖Ψ

(k)
j ‖

2.

Consider d1 � ·· · � dK � T , K and rk being constants, all factors for Ak are
pervasive.

‖Ǔk−Uk‖=OP (T−3/4) if re =O(d1/2
k ), ‖Ψ(k)

j ‖=O(1) and
‖Σ(k)

ε,j ‖=O(d-k). Improves to OP (T−1) if re � dk but S(k)
ψ =O(d-k/T ).

18 / 28



Projection: Core tensor rank estimation

Define the correlation matrix for each k ∈ [K]:

R̃(k)
y,m+1 := diag−1/2(Σ̃

(k)
y,m+1)Σ̃

(k)
y,m+1diag−1/2(Σ̃

(k)
y,m+1).

Our estimator for rk for each k ∈ [K] is then defined to be

r̂k := max{j : λj(R̃
(k)
y,m+1)> 1 +ηT , j ∈ [dk]},

where ηT → 0 as T →∞.
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Theory: Core Tensor Rank Estimation

Theorem

Let all previous assumptions hold, and

d
−αk,rk

k ( max
j∈[d-k]

‖Σ(k)
ε,j ‖+S

(k)
ψ ) = o

( K∏
j=1;j 6=k

d
αk,1
j

)
.

Then as T,dk→∞, we have for each k ∈ [K],

λj(R̃
(k)
y,m+1) =

{
� dαk,j

k (1 +OP {aT (αk,1−αk,rk
)}), j ∈ [rk];

≤ 1 +OP {aT (0)}, j ∈ [dk]/[rk],

where for 0≤ δ ≤ 1/2,

aT (δ) := dδk

√
r

T
+Krd

αk,1/2
k

K∏
j=1

d
(1−αj,1)/2
j

1
T

= o(1).

Hence r̂k is a consistent estimator for rk if we choose ηT = CaT (0) for some
constant C > 0.
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Tuning parameter selection: Bootstrapping fibres

If αj,1 = 1 for each j ∈ [K], and dk � T , then aT (0)�KrT−1/2. It
means that our search for ηT can be in the form CT−1/2.

Bootstrapping mode-k fibres: choose the d-k fibres randomly with
replacement, and project them accordingly. That is, for b= 1, . . . ,B,

y(k)
t,m+1,b := matk(Xt−X̄ )WbWT

b q̌(m)
-k ,

The i-th column of Wb is 0 except at the j-th position (j randomly
chosen from [d-k]), it is replaced by an i.i.d. Bernoulli r.v.
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Tuning parameter selection: Bootstrapping fibres

For a constant C, we calculate

r̂
(b)
k (C) := max{j : λj(R̃

(k)
y,b )> 1 +CT−1/2, j ∈ [dk]}.

We propose to choose C with

Ĉ := min
C>0

V̂ar({r̂(b)
k (C)}b∈[B]),

since λj(R̃
(k)
y,b ), b ∈ [B] are less stable for j > rk as compared to when

j ∈ [rk].

Finally, our estimator for rk is

řk := Mode of {r̂(b)
k (Ĉ)}b∈[B].
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Simulation Settings

Generate Ak = BkRk, where the elements in Bk ∈ Rdk×rk are i.i.d.
U(u1,u2), and Rk ∈ Rrk is diagonal with the jth element being d−ζk,j

k ,
0≤ ζk,j ≤ 0.5.

Elements in Ft, e(k)
t and ε

(k)
t,` are independent AR(5). Ψ(1) with i.i.d.

standard normal entries, but has an independent probability of 0.7 being
set exactly to 0.
K = 2, d1 = d2 = 40, T = 100 and r1 = r2 = 2.

(Ia) All strong factors ζk,j = 0 for all k,j. u1 =−2, u2 = 2 so that columns of
Ak sum to normal magnitude (small sk).

(IIa) One strong factor with ζk,1 = 0 and ζk,2 = 0.2 for all k. u1 =−2, u2 = 2.
(IIIa) Two weak factors with ζk,1 = 0.1 and ζk,2 = 0.2 for all k. u1 =−2,

u2 = 2.

Setting (Ib)(IIb)(IIIb) are the same as (Ia)(IIa)(IIIa), except that u1 = 0,
u2 = 2 so that column sums of Ak have large magnitude (large sk).
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Estimation of Factor Loading Spaces
Competitors to compare are
TOPUP/TIPUP from Chen
et al (2021),
iTOPUP/iTIPUP from Han
et al (2022), and
HOSVD/HOOI.

Initial Step Iterative Step
PRE PROJ
1.157 0.126

TOPUP iTOPUP
5.810 1.922
TIPUP iTIPUP
0.082 1.798

HOSVD HOOI
0.073 1.783

Table: Average
Computational Time (in
sec) for Factor Loading
Estimators.

Figure: Box-plot of L2 Estimation Error
(log-scale) of Factor Loading Spaces of A1 for
Setting (II).

Our Iterative Projection method has good estimation accuracy and fast
computational speed among all competitors.
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Estimation of the Rank of Core Tensor

Setting Method ř1 ř2 CorrectProp1 CorrectProp2

Ia Bootstrap 2.00 2.00 1 1
iTIP-ER 2.00 2.00 1 1

Ib Bootstrap 2.00 2.00 1 1
iTIP-ER 1.79 1.86 0.79 0.86

IIa Bootstrap 2.00 2.00 1 1
iTIP-ER 1.89 1.83 0.89 0.83

IIb Bootstrap 1.95 1.97 0.95 0.97
iTIP-ER 1.16 1.18 0.16 0.18

IIIa Bootstrap 1.92 1.99 0.92 0.95
iTIP-ER 1.92 1.92 0.92 0.92

IIIb Bootstrap 1.52 1.71 0.52 0.71
iTIP-ER 1.09 1.09 0.09 0.09

Table: Comparison of the Bootstrapped Rank Estimator with iTIP-ER from
Han et al (2022).

25 / 28



Analysis of Matrix-valued Financial Return Data

Fama-French portfolio returns data on Size and Operating Profitability
(OP). 100 returns categorized into 10 different Sizes and 10 different OP
levels. Either value-weighted or equal-weighted.

Monthly data July 1973 to June 2021 (T = 576). Market effects (NYSE
composite) removed using CAPM.

Both our bootstrap method and the iTIP-ER gives r̂1 = r̂2 = 2 for both
Size and OP.

HOOI, iTIPUP and our method all show similar grouping patterns (after
varimax rotations).

Value Weighted Equal Weight
PROJ 677.3 737.3
iTIPUP 662.1 804.2
HOOI 626.4 683.8

Table: Average Sum of Squared of Residuals.
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Summary and Future Research

With econometric assumptions, a pre-averaging estimator for the
factor loading matrices is proved to be consistent with rate of
convergence spelt out.

Re-estimation by iterating the projection step allows for a potentially
better rate of convergence.

Core rank tensor can be estimated by eigenanalyses of correlation
matrices from suitably projected data. Bootstrapping tensor fibres
help with the search for the optimal tuning parameter.

Inference of tensor factor models using fibres Bootstrapping?
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