Weak convergence of stochastic integrals: an application to co-integrated time series

> Andreas Søjmark London School of Economics Probability in Finance and Insurance Department of Statistics

Joint work with Fabrice Wunderlich (Oxford)

15th June 2022 LSE Dept of Stats - Research Showcase Co-integrated time series Convergence of stochastic integrals

Econometrics meets probability

Co-integrated time series

• Co-integration with infinite variance innovations u_k and v_k

Time series (Park & Phillips, 1988)

$$Y_k = AX_k + u_k \ (\operatorname{in} \mathbb{R}^p), \quad X_k = X_{k-1} + v_k \ (\operatorname{in} \mathbb{R}^q)$$

Co-integrated time series

• Co-integration with infinite variance innovations u_k and v_k

Time series (Park & Phillips, 1988)

$$Y_k = AX_k + u_k \ (\operatorname{in} \mathbb{R}^p), \quad X_k = X_{k-1} + v_k \ (\operatorname{in} \mathbb{R}^q)$$

• Regression yields an estimator \hat{A} of the true p imes q matrix A

Least squares estimator

$$\hat{A} = \mathbb{Y}^{\mathsf{T}}\mathbb{X}(\mathbb{X}^{\mathsf{T}}\mathbb{X})^{-1}, \quad \hat{A} - A = \mathbb{U}^{\mathsf{T}}\mathbb{X}(\mathbb{X}^{\mathsf{T}}\mathbb{X})^{-1}$$

Co-integrated time series

• Co-integration with infinite variance innovations u_k and v_k

Time series (Park & Phillips, 1988)

$$Y_k = AX_k + u_k \ (ext{in } \mathbb{R}^p), \quad X_k = X_{k-1} + v_k \ (ext{in } \mathbb{R}^q)$$

• Regression yields an estimator \hat{A} of the true p imes q matrix A

Least squares estimator

$$\hat{A} = \mathbb{Y}^{\intercal}\mathbb{X}(\mathbb{X}^{\intercal}\mathbb{X})^{-1}, \quad \hat{A} - A = \mathbb{U}^{\intercal}\mathbb{X}(\mathbb{X}^{\intercal}\mathbb{X})^{-1}$$

• Let
$$\mathbb{T} = \operatorname{diag}(\frac{1}{n^{1/\alpha_1}}, \dots, \frac{1}{n^{1/\alpha_p}})$$
 and $\tilde{\mathbb{T}} = \operatorname{diag}(\frac{1}{n^{1/\tilde{\alpha}_1}}, \dots, \frac{1}{n^{1/\tilde{\alpha}_q}})$

Interested in asymptotics as $n \to \infty$

$$n\mathbb{T}(\hat{A}-A)\mathbb{\tilde{T}}^{-1} = (\mathbb{TU}^{\intercal}\mathbb{X}\mathbb{\tilde{T}})(\frac{1}{n}\mathbb{\tilde{T}}\mathbb{X}^{\intercal}\mathbb{X}\mathbb{\tilde{T}})^{-1}$$

Asymptotic analysis

Time series (Park & Phillips, 1988)

$$Y_k = AX_k + u_k \text{ (in } \mathbb{R}^p), \quad X_k = X_{k-1} + v_k \text{ (in } \mathbb{R}^q),$$

Want invariance principle as $n \to \infty$

$$n\mathbb{T}(\hat{A}-A)\mathbb{\tilde{T}}^{-1} = \left(\mathbb{T}\mathbb{U}^{\mathsf{T}}\mathbb{X}\mathbb{\tilde{T}}\right)\left(\frac{1}{n}\mathbb{\tilde{T}}\mathbb{X}^{\mathsf{T}}\mathbb{X}\mathbb{\tilde{T}}\right)^{-1}$$

Asymptotic analysis

Time series (Park & Phillips, 1988)

$$Y_k = AX_k + u_k \text{ (in } \mathbb{R}^p), \quad X_k = X_{k-1} + v_k \text{ (in } \mathbb{R}^q),$$

Want invariance principle as $n \to \infty$

$$n\mathbb{T}(\hat{A}-A)\mathbb{\tilde{T}}^{-1} = (\mathbb{TU}^{\intercal}\mathbb{X}\mathbb{\tilde{T}}) \left(\frac{1}{n}\mathbb{\tilde{T}}\mathbb{X}^{\intercal}\mathbb{X}\mathbb{\tilde{T}}
ight)^{-1}$$

• For $t \in [0,1]$, let

$$Z_t^{n,i} := \sum_{l=1}^{[nt]} \frac{1}{n^{1/\alpha_i}} u_l^i, \quad \tilde{Z}_t^{n,j} := \sum_{l=1}^{[nt]} \frac{1}{n^{1/\tilde{\alpha}_j}} v_l^j$$

Asymptotic analysis

Time series (Park & Phillips, 1988)

$$Y_k = AX_k + u_k \text{ (in } \mathbb{R}^p), \quad X_k = X_{k-1} + v_k \text{ (in } \mathbb{R}^q),$$

Want invariance principle as $n \to \infty$

$$n\mathbb{T}(\hat{A}-A)\mathbb{\tilde{T}}^{-1} = (\mathbb{TU}^{\intercal}\mathbb{X}\mathbb{\tilde{T}}) \left(\frac{1}{n}\mathbb{\tilde{T}}\mathbb{X}^{\intercal}\mathbb{X}\mathbb{\tilde{T}}
ight)^{-1}$$

• For
$$t \in [0,1]$$
, let

$$Z_t^{n,i} := \sum_{l=1}^{[nt]} \frac{1}{n^{1/\alpha_i}} u_l^i, \quad \tilde{Z}_t^{n,j} := \sum_{l=1}^{[nt]} \frac{1}{n^{1/\tilde{\alpha}_j}} v_l^j$$

 \bullet Rewriting $\mathbb{T}\mathbb{U}^\intercal\mathbb{X}\tilde{\mathbb{T}}$ leads to the stochastic integrals

$$\int_0^1 Z_{s-}^{n,i} d\tilde{Z}_s^{n,j} \quad \text{for } i=1,\ldots,p, \ j=1,\ldots,q.$$

Weak limit theorems for stochastic integrals

Famously, stochastic integration lacks continuity

the map
$$(H_{\cdot}, X_{\cdot}) \mapsto \int_0^{\cdot} H_{s-} dX_s$$
 is *not* continuous

Weak limit theorems for stochastic integrals

Famously, stochastic integration lacks continuity

the map
$$(H_{\cdot}, X_{\cdot}) \mapsto \int_0^{\cdot} H_{s-} dX_s$$
 is *not* continuous

• Nevertheless, can ask the question: if $H^n \Rightarrow H$ and $X^n \Rightarrow X$, and $\int_0^{\cdot} H^n_{s-} dX^n_s$ makes sense, when do we then have

$$\int_0^{\cdot} H_{s-}^n dX_s^n \Rightarrow \int_0^{\cdot} H_{s-} dX_s$$

in suitable topology on the space of càdlàg paths?

Weak limit theorems for stochastic integrals

Famously, stochastic integration lacks continuity

the map
$$(H_{\cdot},X_{\cdot})\mapsto \int_0^{\cdot}H_{s-}dX_s$$
 is *not* continuous

• Nevertheless, can ask the question: if $H^n \Rightarrow H$ and $X^n \Rightarrow X$, and $\int_0^{\cdot} H^n_{s-} dX^n_s$ makes sense, when do we then have

$$\int_0^{\cdot} H_{s-}^n dX_s^n \Rightarrow \int_0^{\cdot} H_{s-} dX_s$$

in suitable topology on the space of càdlàg paths?

- This works beautifully in Skorokhod's J1 topology, when:
 - (i) the Xⁿ are semimartingales and have so-called 'uniformly controlled variations' (also Hⁿ adapted)
 - (ii) the pairs (H^n, X^n) converge jointly in Skorokhod's J1 topology and do so 'sufficiently together'

Time series (Park & Phillips, 1988)

$$Y_k = AX_k + u_k \text{ (in } \mathbb{R}^p), \quad X_k = X_{k-1} + v_k \text{ (in } \mathbb{R}^q)$$

• i.i.d. innovations $(u_k, v_k)_{k \ge 1}$ (Paulaskas–Rachev, AAP '98)

Time series (Park & Phillips, 1988)

$$Y_k = AX_k + u_k \text{ (in } \mathbb{R}^p), \quad X_k = X_{k-1} + v_k \text{ (in } \mathbb{R}^q).$$

- i.i.d. innovations $(u_k, v_k)_{k \ge 1}$ (Paulaskas–Rachev, AAP '98)
- May want to consider linear processes for the innovations:

Time series (Park & Phillips, 1988)

$$Y_k = AX_k + u_k \text{ (in } \mathbb{R}^p), \quad X_k = X_{k-1} + v_k \text{ (in } \mathbb{R}^q).$$

- i.i.d. innovations $(u_k, v_k)_{k \ge 1}$ (Paulaskas–Rachev, AAP '98)
- May want to consider **linear processes** for the **innovations**: ~> That is, instead of i.i.d., allow 'lagged' dependence

$$u_k = \sum_{h=0}^{K} c_h \varepsilon_{k-h}, \quad v_k = \sum_{h=0}^{N} \tilde{c}_h \tilde{\varepsilon}_{k-h}$$

Time series (Park & Phillips, 1988)

$$Y_k = AX_k + u_k \text{ (in } \mathbb{R}^p), \quad X_k = X_{k-1} + v_k \text{ (in } \mathbb{R}^q).$$

- i.i.d. innovations $(u_k, v_k)_{k \ge 1}$ (Paulaskas–Rachev, AAP '98)
- May want to consider **linear processes** for the **innovations**: ~> That is, instead of i.i.d., allow 'lagged' dependence

$$u_k = \sum_{h=0}^{K} c_h \varepsilon_{k-h}, \quad v_k = \sum_{h=0}^{N} \tilde{c}_h \tilde{\varepsilon}_{k-h}$$

 \rightsquigarrow Leads to much more complicated moving averages

$$Z_t^{n,i} := \sum_{l=1}^{[nt]} rac{1}{n^{1/lpha_i}} u_l^i, \quad ilde{Z}_t^{n,j} := \sum_{l=1}^{[nt]} rac{1}{n^{1/ ilde{lpha_j}}} v_l^j \quad (lpha_i, ilde{lpha}_j > 1)$$

Time series (Park & Phillips, 1988)

$$Y_k = AX_k + u_k \text{ (in } \mathbb{R}^p), \quad X_k = X_{k-1} + v_k \text{ (in } \mathbb{R}^q).$$

- i.i.d. innovations $(u_k, v_k)_{k \ge 1}$ (Paulaskas–Rachev, AAP '98)
- May want to consider **linear processes** for the **innovations**: ~> That is, instead of i.i.d., allow 'lagged' dependence

$$u_k = \sum_{h=0}^{K} c_h \varepsilon_{k-h}, \quad v_k = \sum_{h=0}^{N} \tilde{c}_h \tilde{\varepsilon}_{k-h}$$

 \rightsquigarrow Leads to much more complicated moving averages

$$Z_t^{n,i} := \sum_{l=1}^{[nt]} rac{1}{n^{1/lpha_i}} u_l^i, \quad ilde{Z}_t^{n,j} := \sum_{l=1}^{[nt]} rac{1}{n^{1/ ilde{lpha_j}}} v_l^j \quad (lpha_i, ilde{lpha}_j > 1)$$

 \rightsquigarrow No longer convergence in J1! And UCV also problematic!

• Moving averages converge in Skorokhod's M1 topology:

$$ilde{Z}^{n,j}_{\cdot} \Rightarrow ilde{Z}^{j}_{\cdot}, \qquad ilde{Z}^{n,j}_{t} := \sum_{l=1}^{[nt]} rac{1}{n^{1/ ilde{lpha}_{j}}} v^{j}_{l}$$

• Moving averages converge in Skorokhod's M1 topology:

$$ilde{Z}^{n,j}_{\cdot} \Rightarrow ilde{Z}^{j}_{\cdot}, \qquad ilde{Z}^{n,j}_{t} := \sum_{l=1}^{[nt]} \frac{1}{n^{1/ ilde{lpha}_{j}}} v^{j}_{l}$$

• If $H^n_{\cdot} \Rightarrow H_{\cdot}$, what can then be said about

$$\int_0^{\cdot} H_{s-}^n d\tilde{Z}_s^{n,j} \stackrel{?}{\Longrightarrow} \int_0^{\cdot} H_{s-} d\tilde{Z}_s^j$$

• Moving averages converge in Skorokhod's M1 topology:

$$ilde{Z}^{n,j}_{\cdot} \Rightarrow ilde{Z}^{j}_{\cdot}, \qquad ilde{Z}^{n,j}_{t} := \sum_{l=1}^{[nt]} rac{1}{n^{1/ ilde{lpha}_{j}}} v^{j}_{l}$$

• If $H^n_{\cdot} \Rightarrow H_{\cdot}$, what can then be said about

$$\int_0^{\cdot} H_{s-}^n d\tilde{Z}_s^{n,j} \stackrel{?}{\Longrightarrow} \int_0^{\cdot} H_{s-} d\tilde{Z}_s^j$$

→ Can find $H^n_. \Rightarrow H := 0$ in the **uniform norm** on [0, 1] so that the **integrals diverge** as $n \to \infty$!

• Moving averages converge in Skorokhod's M1 topology:

$$ilde{Z}^{n,j}_{\cdot} \Rightarrow ilde{Z}^{j}_{\cdot}, \qquad ilde{Z}^{n,j}_{t} := \sum_{l=1}^{[nt]} rac{1}{n^{1/ ilde{lpha}_{j}}} v^{j}_{l}$$

• If $H^n_{\cdot} \Rightarrow H_{\cdot}$, what can then be said about

$$\int_0^{\cdot} H_{s-}^n d\tilde{Z}_s^{n,j} \stackrel{?}{\Longrightarrow} \int_0^{\cdot} H_{s-} d\tilde{Z}_s^j$$

→ Can find $H^n_: \Rightarrow H := 0$ in the **uniform norm** on [0, 1] so that the **integrals diverge** as $n \to \infty$!

• For our regression problem, we are faced with the integrands

$$H_t^n := Z_t^{n,i} = \sum_{l=1}^{[nt]} \frac{1}{n^{1/\alpha_i}} u_l^i \quad (Y_k = AX_k + u_k, \ X_k = X_{k-1} + v_k),$$

• Moving averages converge in Skorokhod's M1 topology:

$$ilde{Z}^{n,j}_{\cdot} \Rightarrow ilde{Z}^{j}_{\cdot}, \qquad ilde{Z}^{n,j}_{t} := \sum_{l=1}^{[nt]} rac{1}{n^{1/ ilde{lpha}_{j}}} v^{j}_{l}$$

• If $H^n_{\cdot} \Rightarrow H_{\cdot}$, what can then be said about

$$\int_0^{\cdot} H_{s-}^n d\tilde{Z}_s^{n,j} \stackrel{?}{\Longrightarrow} \int_0^{\cdot} H_{s-} d\tilde{Z}_s^j$$

→ Can find $H^n_. \Rightarrow H := 0$ in the **uniform norm** on [0, 1] so that the **integrals diverge** as $n \to \infty$!

• For our regression problem, we are faced with the integrands

$$H_t^n := Z_t^{n,i} = \sum_{l=1}^{[nt]} \frac{1}{n^{1/\alpha_i}} u_l^i \quad (Y_k = AX_k + u_k, \ X_k = X_{k-1} + v_k),$$

→ Assuming independence of u and v, then the stochastic integrals do indeed converge in the M1 topology!