Stepping into my PhD research: network models, disclosure risk assessment and a bit of fairness

Francesca Panero

LSE Statistics Research Showcase. 14th - 15th June 2022

Oxford-Warwick Statistics Programme

High school with focus on humanities

High school with focus on humanities

- High school with focus on humanities
- Bachelor and MSc in Maths/Probability @ University of Torino

- High school with focus on humanities
- Bachelor and MSc in Maths/Probability @ University of Torino
- A bit of Economics @ Collegio Carlo Alberto

- High school with focus on humanities
- Bachelor and MSc in Maths/Probability @ University of Torino
- A bit of Economics @ Collegio Carlo Alberto
- PhD in Stats @ University of Oxford

- High school with focus on humanities
- Bachelor and MSc in Maths/Probability @ University of Torino
- A bit of Economics @ Collegio Carlo Alberto
- PhD in Stats @ University of Oxford (my viva is tomorrow)

- High school with focus on humanities
- Bachelor and MSc in Maths/Probability @ University of Torino
- A bit of Economics @ Collegio Carlo Alberto
- PhD in Stats @ University of Oxford (my viva is tomorrow)
- Visiting period @ Duke (NC)

- High school with focus on humanities
- Bachelor and MSc in Maths/Probability @ University of Torino
- A bit of Economics @ Collegio Carlo Alberto
- PhD in Stats @ University of Oxford (my viva is tomorrow)
- Visiting period @ Duke (NC)
- Intern @ Dalle Molle Institute for AI (Lugano, ulletSwitzerland) and JP Morgan (London)

- High school with focus on humanities
- Bachelor and MSc in Maths/Probability @ University of Torino
- A bit of Economics @ Collegio Carlo Alberto
- PhD in Stats @ University of Oxford (my viva is tomorrow)
- Visiting period @ Duke (NC)
- Intern @ Dalle Molle Institute for AI (Lugano, lacksquareSwitzerland) and JP Morgan (London)

- I am from Turin
- I changed 4 countries during the pandemic

- I am from Turin
- I changed 4 countries during the pandemic
- I like running and yoga (but wish I'd do more)
- I like choirs

Statistical network models and their properties

- Sparse spatial random graphs F. Panero, François Caron, Judith Rousseau (ongoing work)
- On sparsity, power-law and clustering properties of graphex processes François Caron, F. Panero, Judith Rousseau (under revision)

Statistical network models and their properties

- Sparse spatial random graphs F. Panero, François Caron, Judith Rousseau (ongoing work)
- **On sparsity, power-law and clustering properties of graphex processes** François Caron, F. Panero, Judith Rousseau (under revision)

Disclosure risk assessment

- **Bayesian nonparametric disclosure risk assessment.** \bullet
- Optimal disclosure risk assessment. Federico Camerlenghi, Stefano Favaro, Zacharie Naulet, F. Panero. The Annals of Statistics, 49(2) 723-744, April 2021

Stefano Favaro, F. Panero, Tommaso Rigon. Electron. J. Stat., 15(2), 5626-5651, 2021

Statistical network models and their properties

- Sparse spatial random graphs F. Panero, François Caron, Judith Rousseau (ongoing work)
- **On sparsity, power-law and clustering properties of graphex processes** François Caron, F. Panero, Judith Rousseau (under revision)

Disclosure risk assessment

- **Bayesian nonparametric disclosure risk assessment.** \bullet
- Optimal disclosure risk assessment. Federico Camerlenghi, Stefano Favaro, Zacharie Naulet, F. Panero. The Annals of Statistics, 49(2) 723-744, April 2021

-air N

Achieving fairness with a simple ridge penalty. Marco Scutari, F. Panero, Manuel Proissl (under revision)

Stefano Favaro, F. Panero, Tommaso Rigon. Electron. J. Stat., 15(2), 5626-5651, 2021

Sparse Spatial Random Graphs

Francesca Panero, François Caron, Judith Rousseau

Dense

Point process F. Caron, E. Fox (2017)

 $Z = \sum Z_{ij} \delta_{(\theta_i, \theta_j)}$ i,j

Point process F. Caron, E. Fox (2017)

$Z = \sum_{i,j} \overline{Z_{ij}} \delta_{(\theta_i,\theta_j)}$

Point process F. Caron, E. Fox (2017)

 $Z = \sum Z_{ij}$

i,j

 $Z = \sum_{ij} Z_{ij} \delta_{(\theta_i, \theta_j, x_i, x_j)}$ Location

On sparsity, power-law and clustering properties of graphex processes

François Caron, Francesca Panero, Judith Rousseau arXiv:1708.03120

Graphex process

$Z_{ij}|(\theta_k, \vartheta_k)_{k=1,2,...} \sim \text{Bernoulli}(W(\vartheta_i, \vartheta_j))$

Graphex process

$Z_{ij}|(\theta_k, \vartheta_k)_{k=1,2,...} \sim \text{Bernoulli}(W(\vartheta_i, \vartheta_j))$

Assumption

$$\mu(\vartheta) := \int_0^{+\infty} W(\vartheta, \vartheta') d\vartheta' \quad \text{Marginal sparse}$$

e graphon function
$Z_{ij}|(\theta_k, \vartheta_k)_{k=1,2,...} \sim \text{Bernoulli}(W(\vartheta_i, \vartheta_j))$

Assumption

$$\mu(\vartheta) := \int_0^{+\infty} W(\vartheta, \vartheta') d\vartheta' \quad \text{Marginal sparse}$$

 $\mu^{-1}(\vartheta) \sim \ell(1/\vartheta)\vartheta^{-\sigma} \operatorname{as} \vartheta \to 0$

e graphon function

$Z_{ij}|(\theta_k, \vartheta_k)_{k=1,2,...} \sim \text{Bernoulli}(W(\vartheta_i, \vartheta_j))$

Assumption

$$\mu(\vartheta) := \int_{0}^{+\infty} W(\vartheta, \vartheta') d\vartheta' \quad \text{Marginal sparse}$$
$$\mu^{-1}(\vartheta) \sim \ell(1/\vartheta) \vartheta^{-\sigma} \text{ as } \vartheta \to 0$$

e graphon function

$Z_{ij}|(\theta_k, \vartheta_k)_{k=1,2,...} \sim \text{Bernoulli}(W(\vartheta_i, \vartheta_j))$

Assumption

$$\mu(\vartheta) := \int_{0}^{+\infty} W(\vartheta, \vartheta') d\vartheta' \quad \text{Marginal sparse}$$
$$\mu^{-1}(\vartheta) \sim \ell(1/\vartheta) \vartheta^{-\sigma} \text{as } \vartheta \to 0$$

e graphon function

$Z_{ij}|(\theta_k, \vartheta_k)_{k=1,2,...} \sim \text{Bernoulli}(W(\vartheta_i, \vartheta_j))$

Assumption

$$\mu(\vartheta) := \int_{0}^{+\infty} W(\vartheta, \vartheta') d\vartheta' \quad \text{Marginal sparse}$$
$$\mu^{-1}(\vartheta) \sim \ell(1/\vartheta) \vartheta^{-\sigma} \text{as } \vartheta \to 0$$

e graphon function

Regular variation at zero, $\sigma \in [0,1]$

- $\sigma = 0$ Dense graph
- $\sigma \in (0,1)$ Sparse graph + power-law degree distribution

- $\sigma = 0$ Dense graph
- $\sigma \in (0,1)$ Sparse graph + power-law degree distribution

- $\sigma = 0$ Dense graph
- $\sigma \in (0,1)$ Sparse graph + power-law degree distribution
- Strictly positive global clustering coefficient

- $\sigma = 0$ Dense graph
- $\sigma \in (0,1)$ Sparse graph + power-law degree distribution
- Strictly positive global clustering coefficient

- $\sigma = 0$ Dense graph
- $\sigma \in (0,1)$ Sparse graph + power-law degree distribution
- Strictly positive global clustering coefficient
- Central limit theorems for number of nodes and subgraphs

Optimal disclosure risk assessment

Federico Camerlenghi, Stefano Fav The Annals of Statistics (2021)

Federico Camerlenghi, Stefano Favaro, Zacharie Naulet, Francesca Panero

S	Education	Residence
	Degree	Oxford
	PhD	Birmingham
	Degree	Oxford
	Degree	Oxford
	Diploma	Manchester

S	Education	Residence
	Degree	Oxford
	PhD	Birmingham
	Degree	Oxford
	Degree	Oxford
	Diploma	Manchester

5	Education	Residence
	Degree	Oxford
	PhD	Birmingham
	Degree	Oxford
	Degree	Oxford
	Diploma	Manchester

Ħ

5	Education	Residence	
	Degree	Oxford	
	PhD	Birmingham	Popula
	Degree	Oxford	
	Degree	Oxford	
	Diploma	Manchester	

5	Education	Residence	
	Degree	Oxford	
	PhD	Birmingham	Popula
	Degree	Oxford	
	Degree	Oxford	
	Diploma	Manchester	

τ_1 : sample uniques that are also population uniques

S	Education	Residence	
	Degree	Oxford	
	PhD	Birmingham	Popula
	Degree	Oxford	
	Degree	Oxford	
	Diploma	Manchester	

Size of rest of the population: $M = \lambda n$

Size of rest of the population: $M = \lambda n$

$\lambda = 1/2 \rightarrow M = n/2$

Sample

Rest of population

Size of rest of the population: $M = \lambda n$

 $\lambda = 1 \rightarrow M = n$

Sample

Rest of population

Size of rest of the population: $M = \lambda n$

 $\lambda = 2 \rightarrow M = 2n$

Sample

Rest of population

Size of rest of the population: $M = \lambda n$

i > 0

 $\hat{\tau}_1^L = \sum (-1)^i (i+1) \lambda^i Z_{i+1}(X_1, \dots, X_n) \mathbb{P}(L \ge i)$

Size of rest of the population: $M = \lambda n$

i > 0

- # symbols with frequency i + 1 $\hat{\tau}_{1}^{L} = \sum (-1)^{i} (i+1) \lambda^{i} Z_{i+1}(X_{1}, \dots, X_{n}) \mathbb{P}(L \ge i)$

Size of rest of the population: $M = \lambda n$

-# symbols with frequency i + 1 $\hat{\tau}_{1}^{L} = \sum_{i \ge 0} (-1)^{i} (i+1) \lambda^{i} Z_{i+1}(X_{1}, \dots, X_{n}) \mathbb{P}(L \ge i)$

Truncation random variable

• Upper bound for worst-case normalised MSE of $\hat{\tau}_1^L$ goes to 0 for $\lambda < \log(n)$

Results

- Lower bound for best worst-case normalised MSE of any nonparametric estimator vanishes for $\lambda < \log(n)$

• Upper bound for worst-case normalised MSE of $\hat{\tau}_1^L$ goes to 0 for $\lambda < \log(n)$

Results

- Lower bound for best worst-case normalised MSE of any nonparametric estimator vanishes for $\lambda < \log(n)$
- For $\lambda > \log(n)$ it is impossible to find a nonparametric estimator with vanishing lower bound

• Upper bound for worst-case normalised MSE of $\hat{\tau}_1^L$ goes to 0 for $\lambda < \log(n)$

Up until $\lambda \propto \log(n)$ the lower and upper bound match for $\hat{\tau}_1^L$ + impossible to find nonparametric estimator with guarantees after $\log(n)$: $\hat{\tau}_1^L$ is optimal!

Up until $\lambda \propto \log(n)$ the lower and upper bound match for $\hat{\tau}_1^L$ + impossible to find nonparametric estimator with guarantees after $\log(n)$: $\hat{\tau}_1^L$ is optimal!

Dedicated to the memory of Chris Skinner

Bayesian nonparametric disclosure risk assessment Stefano Favaro, Francesca Panero and Tommaso Rigon

Electronic Journal of Statistics (2021)

 $p_1 = \mathbb{P}(\blackslash), p_2 = \mathbb{P}(\blackslash), p_3 = \mathbb{P}(\blackslash)...$

 $p_1 = \mathbb{P}(\blackslash), p_2 = \mathbb{P}(\blackslash), p_3 = \mathbb{P}(\blackslash)...$

Pitman-Yor process prior $P_{\alpha,\theta}$ $P_{\alpha,\theta} = \sum p_i \delta_{z_i} \longrightarrow p_{(1)}, p_{(2)}, p_{(3)} \dots$ decreasing order

 $p_{(j)}$ as $j \to \infty$ have power-law behaviour with exponent α^{-1} exponential decay for $\alpha = 0$

Dirichlet process $\alpha = 0$

Posterior characterisation

$$\frac{\frac{n}{\alpha}-1}{\frac{x}{m_1-x}}\binom{u}{m_1-x}\mathbb{P}(U_{1-\alpha,\frac{\theta+n}{1-\alpha},N-n}=u)$$
$$\mathbb{P}(U_{1-\alpha,\frac{\theta+n}{1-\alpha},N-n}=u)$$

Posterior characterisation

$$\mathbb{P}(\tau_1 = x \,|\, X_1, \dots, X_n) = \sum_{u=1}^{N-n} \frac{\binom{\theta+1}{1-u}}{\binom{\theta}{1-u}}$$

General hypergeometric distribution

Posterior characterisation

$$\mathbb{P}(\tau_1 = x \,|\, X_1, \dots, X_n) = \sum_{u=1}^{N-n} \frac{\binom{\theta+1}{1-u}}{\binom{\theta}{1-u}}$$

General hypergeometric distribution

Works well in the case of power-law or exponential decaying probabilities

Achieving fairness with a simple ridge penalty Marco Scutari, Francesca Panero, Manuel Proissl (2021) arXiv:2105.13817

Disclosure risk assessment

Fair ML

What's next?

- Brain networks
- Other extension of Caron-Fox ullet

Disclosure risk assessment

Fair ML

- Brain networks ullet
- Other extension of Caron-Fox lacksquare

Disclosure risk assessment

• Finding motivation to work on disclosure risk. Possibly different measures?

Fair ML

- Brain networks ullet
- Other extension of Caron-Fox lacksquare

Disclosure risk assessment

• Finding motivation to work on disclosure risk. Possibly different measures?

Fair ML

• Waiting...

- Brain networks lacksquare
- Other extension of Caron-Fox

Disclosure risk assessment

• Finding motivation to work on disclosure risk. Possibly different measures?

Fair ML

• Waiting...

Else

- More applied \bullet
- ED&I

Thank you!

francesca.panero@stats.ox.ac.uk https://francescapanero.github.io

