
LSE Statistics Research Showcase. 14th - 15th June 2022 

Stepping into my PhD research: 
network models, 
disclosure risk assessment 
and a bit of fairness
Francesca Panero



Hello!



My “professional” life

• High school with focus on humanities


• Bachelor and MSc in Maths/Probability @ 
University of Torino


• A bit of Economics @ Collegio Carlo Alberto


• PhD in Stats @ University of Oxford  
(my viva is tomorrow)


• Visiting period @ Duke (NC)


• Intern @ Dalle Molle Institute for AI (Lugano, 
Switzerland) and JP Morgan (London)



My “professional” life

• High school with focus on humanities


• Bachelor and MSc in Maths/Probability @ 
University of Torino


• A bit of Economics @ Collegio Carlo Alberto


• PhD in Stats @ University of Oxford  
(my viva is tomorrow)


• Visiting period @ Duke (NC)


• Intern @ Dalle Molle Institute for AI (Lugano, 
Switzerland) and JP Morgan (London)



My “professional” life

• High school with focus on humanities


• Bachelor and MSc in Maths/Probability @ 
University of Torino


• A bit of Economics @ Collegio Carlo Alberto


• PhD in Stats @ University of Oxford  
(my viva is tomorrow)


• Visiting period @ Duke (NC)


• Intern @ Dalle Molle Institute for AI (Lugano, 
Switzerland) and JP Morgan (London)



My “professional” life

• High school with focus on humanities


• Bachelor and MSc in Maths/Probability @ 
University of Torino


• A bit of Economics @ Collegio Carlo Alberto


• PhD in Stats @ University of Oxford  
(my viva is tomorrow)


• Visiting period @ Duke (NC)


• Intern @ Dalle Molle Institute for AI (Lugano, 
Switzerland) and JP Morgan (London)



My “professional” life

• High school with focus on humanities


• Bachelor and MSc in Maths/Probability @ 
University of Torino


• A bit of Economics @ Collegio Carlo Alberto


• PhD in Stats @ University of Oxford  
   


• Visiting period @ Duke (NC)


• Intern @ Dalle Molle Institute for AI (Lugano, 
Switzerland) and JP Morgan (London)



My “professional” life

• High school with focus on humanities


• Bachelor and MSc in Maths/Probability @ 
University of Torino


• A bit of Economics @ Collegio Carlo Alberto


• PhD in Stats @ University of Oxford  
(my viva is tomorrow)


• Visiting period @ Duke (NC)


• Intern @ Dalle Molle Institute for AI (Lugano, 
Switzerland) and JP Morgan (London)



My “professional” life

• High school with focus on humanities


• Bachelor and MSc in Maths/Probability @ 
University of Torino


• A bit of Economics @ Collegio Carlo Alberto


• PhD in Stats @ University of Oxford  
(my viva is tomorrow)


• Visiting period @ Duke (NC)


• Intern @ Dalle Molle Institute for AI (Lugano, 
Switzerland) and JP Morgan (London)



My “professional” life

• High school with focus on humanities


• Bachelor and MSc in Maths/Probability @ 
University of Torino


• A bit of Economics @ Collegio Carlo Alberto


• PhD in Stats @ University of Oxford  
(my viva is tomorrow)


• Visiting period @ Duke (NC)


• Intern @ Dalle Molle Institute for AI (Lugano, 
Switzerland) and JP Morgan (London)



My “professional” life

• High school with focus on humanities


• Bachelor and MSc in Maths/Probability @ 
University of Torino


• A bit of Economics @ Collegio Carlo Alberto


• PhD in Stats @ University of Oxford  
(my viva is tomorrow)


• Visiting period @ Duke (NC)


• Intern @ Dalle Molle Institute for AI (Lugano, 
Switzerland) and JP Morgan (London)



Other random facts
• I am from Turin



Other random facts
• I am from Turin



Other random facts
• I am from Turin



Other random facts
• I am from Turin



Other random facts
• I am from Turin


• I changed 4 countries during the 
pandemic



Other random facts
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• I changed 4 countries during the 
pandemic


• I like running and yoga  
(but wish I’d do more)


• I like choirs
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Sparse  
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The spatial model

Z = ∑
ij

Zijδ(θi,θj,xi,xj)

Location

Zij | (θk, wk, xk)k≥1 ∼ Bernoulli (1 − e
−

2wiwj
(1 + |xi − xj | )β )

Sociability > 0

BNP prior inducing…



On sparsity, power-law  
and clustering properties  
of graphex processes
François Caron, Francesca Panero, Judith Rousseau 
arXiv:1708.03120



Zij | (θk, ϑk)k=1,2,… ∼ Bernoulli(W(ϑi, ϑj))

Graphex process
Sparse graphon function



Zij | (θk, ϑk)k=1,2,… ∼ Bernoulli(W(ϑi, ϑj))

Graphex process

Marginal sparse graphon function

Assumption

Sparse graphon function

μ(ϑ) := ∫
+∞

0
W(ϑ, ϑ′ )dϑ′ 



Zij | (θk, ϑk)k=1,2,… ∼ Bernoulli(W(ϑi, ϑj))

μ(ϑ) := ∫
+∞

0
W(ϑ, ϑ′ )dϑ′ 

Graphex process

Marginal sparse graphon function

Assumption

    μ−1(ϑ) ∼ ℓ(1/ϑ)ϑ−σ as ϑ → 0

Sparse graphon function



Zij | (θk, ϑk)k=1,2,… ∼ Bernoulli(W(ϑi, ϑj))

μ(ϑ) := ∫
+∞

0
W(ϑ, ϑ′ )dϑ′ 

Graphex process

Marginal sparse graphon function

Assumption

    μ−1(ϑ) ∼ ℓ(1/ϑ)ϑ−σ as ϑ → 0

Sparse graphon function



Zij | (θk, ϑk)k=1,2,… ∼ Bernoulli(W(ϑi, ϑj))

μ(ϑ) := ∫
+∞

0
W(ϑ, ϑ′ )dϑ′ 

Graphex process

Marginal sparse graphon function

Assumption

    μ−1(ϑ) ∼ ℓ(1/ϑ)ϑ−σ as ϑ → 0

Sparse graphon function



Zij | (θk, ϑk)k=1,2,… ∼ Bernoulli(W(ϑi, ϑj))

μ(ϑ) := ∫
+∞

0
W(ϑ, ϑ′ )dϑ′ 

Graphex process

Marginal sparse graphon function

Assumption

    μ−1(ϑ) ∼ ℓ(1/ϑ)ϑ−σ as ϑ → 0

Sparse graphon function

Regular variation at zero, σ ∈ [0,1]
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Results

•  Dense graph


•  Sparse graph + power-law degree distribution


• Strictly positive global clustering coefficient


• Central limit theorems for number of nodes and subgraphs

σ = 0

σ ∈ (0,1)



Optimal disclosure risk 
assessment
Federico Camerlenghi, Stefano Favaro, Zacharie Naulet, Francesca Panero 
The Annals of Statistics (2021)
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Gender # Kids Education Residence

F 1 Degree Oxford

M 7 PhD Birmingham

F 1 Degree Oxford

F 1 Degree Oxford

F 3 Diploma Manchester

Sample
Population

Disclosure risk

: sample uniques that are also population uniquesτ1
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̂τL
1 = ∑

i≥0

(−1)i(i + 1)λiZi+1(X1, …, Xn)ℙ(L ≥ i)

Model and estimator
Sample

Size of rest of the population: M = λn

Truncation random variable

# symbols with frequency i + 1
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Results

• Upper bound for worst-case normalised MSE of  goes to 0 for ̂τL
1 λ < log(n)

• Lower bound for best worst-case normalised MSE of any nonparametric 
estimator vanishes for  λ < log(n)

• For  it is impossible to find a nonparametric estimator with 
vanishing lower bound

λ > log(n)
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Dedicated to the memory of Chris Skinner



Bayesian nonparametric 
disclosure risk assessment
Stefano Favaro, Francesca Panero and Tommaso Rigon 
Electronic Journal of Statistics (2021)
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(X1, …, Xn)

Model and estimator
Sample

Pitman-Yor process prior Pα,θ

Pα,θ = ∑ piδzi
→ p(1), p(2), p(3) . . . decreasing order

 as  have power-law behaviour with exponent p( j) j → ∞ α−1

exponential decay for α = 0

Dirichlet 
process 

α = 0
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Generalised factorial distribution

Posterior characterisation

General hypergeometric distribution

Works well in the case of power-law or exponential decaying probabilities

MIXTURE!



Achieving fairness with a simple 
ridge penalty
Marco Scutari, Francesca Panero, Manuel Proissl (2021)  
arXiv:2105.13817
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Networks

• Finding motivation to work on disclosure risk. Possibly different measures?

Disclosure risk assessment

Fair ML
• Waiting…

• Brain networks 

• Other extension of Caron-Fox

What’s next?

Else
• More applied 

• ED&I



Thank you!
francesca.panero@stats.ox.ac.uk 
https://francescapanero.github.io
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