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Regression with linear functions
Example (Salary explained by age, gender, ethnicity)

Saturated model:

yi = α+ x1iβ1 + x2iβ2 + x3iβ3 + x1ix2iβ12 + . . .+ x1ix2ix3iβ123 + εi

Two-way interaction effect of gender and age: salary growth different
between men and women.
Three way interaction effect of gender, age and ethnicity: effect of gender on
salary growth depends on ethnicity.

Hierarchical model: if an effect is omitted, so are the corresponding
higher order effects, e.g., yi = α+ x1iβ1 + x2iβ2 + x3iβ3 + x2ix3iβ23 + εi

Which hierarchical model best fits the data?

Common selection methods:

Stepwise selection using ML estimation
Lasso
Spike and slab priors on βs
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Regression with nonlinear functions

Saturated model with 3 arbitrary covariates:

yi = α+ f1(x1i) + f2(x2i) + f3(x3i) + f12(x1i , x2i) + . . .+ f123(x1i , x2i , x3i) + εi

Common estimation methods: Tikhonov regularization, Gaussian process
regression. Model selection not straightforward.

Example (cow growth)

Sample of 8 (out of 60) growth curves of cows, two treatments:

0 14 28 42 56 70 84 98 112 126133
Time (days)

250

300

350

Weight (kg)

Response: weight; covariates: time, treatment, cow index
(alternatively: response: growth curve; covariates treatment and cow index).
Does treatment affect growth? If so, does treatment affect cows differentially?
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Outline definition

Model: p(x |θ) ∝ eθ(x), θ ∈ Θ, Θ RKKS (defined below).

Observations x1, . . . , xn ∼iid p(·|θ0).

Fisher information for θ evaluated at a fixed θ∗ is positive definite and
hence defines RKHS (Θn, ∥·∥Θn) on (at most n-dimensional)
subspace of Θ.

I-prior for θ: prior maximizing entropy subject to ∥θ∥Θn = constant.

The I-prior can be shown to be proper (with probability 1, realizations
are in Θ).
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I-prior for regression function

With F the RKKS (defined below) with reproducing kernel h on a
set X , suppose

yi = f0(xi) + εi = ⟨f0,h(xi , ·)⟩F + εi , i = 1, . . . ,n,

where (ε1, . . . , εn) ∼ MVN(0,Ψ−1).

The I-prior for f0 is then given by:

f (x) =
∑

h(x , xi)wi , (w1, . . . ,wn) ∼ MVN(0,Ψ)

Loosely: the more difficult an f would be to estimate, the lower
its prior mass. Or, the more information on a linear functional of
f , the larger its prior variance, and the smaller the influence of
the prior mean on the posterior mean (and vice versa).
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Why I-priors?

I-prior is proper, hence posterior mean admissible by Wald’s complete
class theorem.
I-prior function of likelihood, no further user choices needed.
EM algorithm with simple E and M steps available, because normalizing
constant cancels in complete data likelihood.

Main competitors:

Tikhonov regularizer: inadmissible in infinite dimensions (Chakraborty &

Panaretos, 2019). E.g., cubic spline smoother,

f̂n = argmin
n∑

i=1

(yi − f (xi))
2 + λn

∫
f̈ (x)2dx ,

has suboptimal convergence rate to every true f with
∫

f̈ (x)2dx < ∞.

Gaussian process regression:
Requires user to choose (i) space in which regression
function lives, and (ii) a prior over that space.
Complex M step in EM algorithm.
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Reproducing kernel Krein spaces
Definition (Krein space)

A vector space F equipped with the inner product ⟨·, ·, ⟩F is called a Krein
space if there are two Hilbert spaces H+ and H− spanning F such that

All f ∈ F can be decomposed as f = f+ + f− where f+ ∈ H+ and
f− ∈ H−.

For all f , f ′ ∈ F , ⟨f , f ′⟩F = ⟨f+, f ′+⟩H+ − ⟨f−, f ′−⟩H− .

Definition (RKKS)

A Krein space of functions is called a reproducing kernel Krein space (RKKS)
if the point evaluator is continuous.

Theorem (reproducing kernel)

Every RKKS F of real-valued functions on a set X possesses a unique
symmetric reproducing kernel h : X × X → R such that for all f ∈ F , x ∈ X ,

h(x , ·) ∈ F (basis functions)

f (x) = ⟨h(x , ·), f ⟩F (reproducing property)
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Illustration hierarchical interaction spaces

yi = α+ f1(x1i) + f2(x2i) + f12(x1i , x2i)︸ ︷︷ ︸
f (x1i ,x2i )

+εi

x1i , x2i in arbitrary sets X1, X2, resp.
C1, C2 set of constant functions on X1, X2, resp.
F1, F2 vector spaces of functions on X1, X2, e.g.,

F1 = {f : R → R | f (x) = xβ}

F2 = {f : R → R |
∫

ḟ (x)2dx < ∞}
Hierarchical interaction space defined as

F = (C1 ⊗ C2)⊕ (F1 ⊗ C2)⊕ (C1 ×F2)⊕ (F1 ⊗F2)

Hierarchical interaction model: f ∈ F .

Theorem (kernel for hierarchical interaction space)

Suppose F1 and F2 are RKKSs with r.k.s h1 and h2, and C1 and C2 are
RKHSs of constant functions with r.k.s equal to 1 everywhere. Then F is the
RKKS with r.k. given by

h((x1, x2), (x ′
1, x

′
2)) = 1 + h1(x1, x ′

1) + h2(x2, x ′
2) + h1(x1, x ′

1)h2(x2, x ′
2)
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Proposed estimation method

Model
yi = f (xi) + εi f ∈ F

where F is a hierarchical interaction space.

f can be estimated in closed form by its posterior mean
under the (Gaussian) I-prior.

Any hyperparameters can be estimated by maximizing the
marginal likelihood of f under the I-prior.
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Parsimonious use of scale (hyper)parameters

Kernels can be multiplied by ‘scale parameters’ to potentially achieve (i)
invariance to measurement units (e.g., fractional Brownian motion kernels),
(ii) optimal convergence rates (van der Vaart and van Zanten, 2007, EJS).

Example (interaction kernel with scale parameters)

Suppose F1 and F2 are RKKSs with r.k. λ1h1 and λ2h2, λk ∈ R and h1 and h2

positive definite kernels. Then the hierarchical interaction space F is the
RKKS with r.k. given by

h((x1, x2), (x ′
1, x

′
2)) = 1 + λ1h1(x1, x ′

1) + λ2h2(x2, x ′
2) + λ1λ2h1(x1, x ′

1)h2(x2, x ′
2)

Parsimony achieved because only one scale parameter is needed per
covariate. Usual approach in literature: separate scale parameter for each
interaction term.
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Parsimonious use of scale (hyper)parameters

h((x1, x2), (x ′
1, x

′
2)) = 1 + λ1h1(x1, x ′

1) + λ2h2(x2, x ′
2) + λ1λ2h1(x1, x ′

1)h2(x2, x ′
2)

Advantage of parsimony: different interaction models have the same number
of fixed hyperparameters making model comparison simple: choose model
with highest maximized marginal likelihood.

NB: interaction spaces inherit properties of main effect spaces; encodes that
size of interactions are related to sizes of main effects (e.g., Andrew Gelman
blog).
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Why RKKSs rather than RKHSs?

Interaction kernel with h1, h2 positive definite:

h((x1, x2), (x ′
1, x

′
2)) = λ1h1(x1, x ′

1) + λ2h2(x2, x ′
2) + λ1λ2h1(x1, x ′

1)h2(x2, x ′
2)

If at least one λ < 0, h defines an RKKS.

The scale parameters (kernel weights λk ) determine the
curvature of the likelihood: no reason these should be
restricted to be positive.

Abitrarily restricting scale parameters to be positive potentially
leads to lower maximum of marginal likelihood, typically
reducing prediction quality.

NB: RKKS needed if and only if there are at least two
covariates.

(Note for Tikhonov regularization the RKHS suffices.)
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Why not fully Bayes?

Scale parameters tend to converge to zero or infinity.

Hence no prior belief about them can be coherent.

Frequentist estimation equally impossible (NB maximum
likelihood not frequentist in this case!)
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Simulation results: linear regressions
x1i , x2i , x3i standard normal with correlation 0.5, εi ∼iid N(0, 32).

Saturated model: yi = α + x1iβ1 + x2iβ2 + x3iβ3 + x1i x2iβ12 + . . . + x1i x2i x3iβ123 + εi

Two 2-way interactions: yi = α + x1iβ1 + x2iβ2 + x3iβ3 + x1i x2iβ12 + x2i x3iβ23 + εi

All main effects: yi = α + x1iβ1 + x2iβ2 + x3iβ3 + εi

One main effect: yi = α + x1iβ1 + εi

Saturated model

Two 2-var. inter.

All main effects

One main effect

Saturated model

Two 2-var. inter.

All main effects

One main effect

Saturated model

Two 2-var. inter.

All main effects

One main effect

Saturated model

Two 2-var. inter.

All main effects

One main effect

g-prior

Spike & Slab

Lasso

I-prior

0.0 0.2 0.4 0.6 0.8 1.0

Proportion correct ->
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Simulation results: smooth regressions
To illustrate: as n → ∞, correct model is chosen with probability going to 1.

F1 = F2 = {f : R → R|
∫

f̈ (x)2dx < ∞}

f1, f2, f12 random functions in F1, F2, F1 ⊗F2.

Interaction model: yi = f1(x1i) + f2(x2i) + f12(x1i , x2i) + εi

Main effects model: yi = f1(x1i) + f2(x2i) + εi

Main effects model

Interaction model

Main effects model

Interaction model

n = 400

n = 100

0.0 0.2 0.4 0.6 0.8 1.0

Proportion correct ->
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Functional response model / longitudinal data

0 14 28 42 56 70 84 98 112 126133
Time (days)

250

300

350

Weight (kg)

Figure: Cow growth under two treatments

Does treatment affect growth?

Permutation test for treatment effect based on Baringhaus-Franz
2-sample test statistic

T 2 =
∑∑(

2∥yi − yj∥F − ∥yi − yj∥F − ∥yi − yj∥F
)

where yi and yj are growth curves for two treatments, and here ∥·∥F
is norm of fractional Brownian motion RKHS with (empirically
determined) Hurst coefficient 0.3.

p < .001
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Is there an interaction effect cow x treatment?

Response: growth curve

Covariates: C is cow index, X is treatment

RKHS for growth curve: fractional Brownian motion with Hurst coefficient 0.3.

Interpretation Model Log-likelihood Error standard Number of scale
deviation parameters

Identical growth all cows {} −2792.8 16.3 1
Treatment effect {X} −2792.7 16.3 2
Cow effect {C} −2266.4 2.7 2
Cow + treatment effects {C,X} −2242.3 2.5 3
Interaction effect {CX} −2251.3 3.3 3

No evidence treatment affects cows differentially! (Model {CX}.)
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Conclusion

I-prior methodology for estimating parametric and
nonparametric interaction models

Proper prior, hence admissible estimator

Parsimonious use of scale parameters allows simple
model comparison

Simple EM algorithm

Good comparative simulation performance

Methodology generalizable to other estimation problems



Classifying cancers using gene expressions

1 5000 10000 16063

1
50

100
144

1 5000 10000 16063
1
50
100
144

Gene

Pa
tie

nt

xi ∈ R16,063: vector of gene expressions for patient i

yij =

{
1 patient i has cancer j (14 cancers)
0 patient i does not have cancer j

Linear model: yij = αj +
∑16,063

k=1 xikβjk + εij

I-prior for yij = f (xi , j) + εij where

xi has linear or smooth effect

j has nominal effect

interaction effect present



Cancer classification: I-prior versus other
methods

Method Training errors Test errors
Out of 144 Out of 54

Nearest neighbors 41 26
L2-penalized discriminant analysis 25 12
Support vector classifier 26 14
Lasso 30.7 12.5
L1 penalized multinomial 17 13
Elastic net penalized multinomial 22 11.8
SCRDA (Guo, Hastie, Tibsh 2007) 24 8
Scout (Witten, Tibshirani, 2011) 21 8

I-prior (linear) 0 12
I-prior (smooth, γ̂ = 0.8) 0 10
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I-priors for density estimation

Model p(x) ∝ ef (x), f has L2 derivative.
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