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Motivation and overview lSE

v

Stochastic control problems are ubiquitous.

v

Continuous-time models well understood in this community.
» optimal trading, dynamic hedging, autonomous driving, robots.

v

Reinforcement learning (RL) methods increasingly popular.
> Analysis restricted to discrete-time models.
My research:

» systematically understand the performance of artificial agents

in a continuous-time environment.
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Challenges of RL lSE

Learning algorithm focuses on policy, i.e., a function mapping
system states to actions.

For a system with unknown parameter 6, issues in RL:
> Model identification: how to learn the parameter 67
Examples: consumer behaviour for online retailer, price impact
factor in optimal execution.

|.SE Department
of Statistics 15 June 2022 Continuous-time reinforcement learning 3



Challenges of RL |_SE

Learning algorithm focuses on policy, i.e., a function mapping
system states to actions.

For a system with unknown parameter 6, issues in RL:

> Model identification: how to learn the parameter 67
Examples: consumer behaviour for online retailer, price impact
factor in optimal execution.

» Robustness of policies w.r.t. 6.

|.SE Department
of Statistics 15 June 2022 Continuous-time reinforcement learning 4



Challenges of RL |_SE

Learning algorithm focuses on policy, i.e., a function mapping
system states to actions.

For a system with unknown parameter 6, issues in RL:

> Model identification: how to learn the parameter 67
Examples: consumer behaviour for online retailer, price impact
factor in optimal execution.

» Robustness of policies w.r.t. 6.
» Convergence rate analysis:

» critical for understanding algorithm efficiency.
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Overview of related works |_SE

Discrete-time RL (partial)

» Tabular MDPs (finite states and actions): Watkins and Dayan
1992 (Q-learning), Williams 1992 (policy gradient), Jaksch,
Ortner and Auer 2009, and many others.

» Infinite states and actions: (LQ-RL, T = c0)

» Sublinear regret: Abbasi-Yadkori and Szepesvari 2011, Dean et
al 2018, Mania, Tu and Recht 2019, Cohen, Koren and
Mansour 2019

» Logarithmic regret (for special cases): Faradonbeh, Tewari and
Michailidis 2020, Cassel, Cohen and Koren 2020, Lale,
Azizzadenesheli, Hassibi and Anandkumar 2020
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Overview of related works I_SE

Continuous-time RL

> Algorithm design: Modares and Lewis 2014, Doya 2000,
Tallec, Blier and Ollivier 2019, Jia and Zhou 2021a, 2021b
» Asymptotic convergence analysis

» LQ-RL (T=c0): Duncan, Guo and Pasik-Duncan 1999, Rizvi
and Lin 2018, Pang, Bian and Jiang 2020

— No convergence rate/regret analysis
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Overview of related works lSE

Continuous-time RL

> Algorithm design: Modares and Lewis 2014, Doya 2000,
Tallec, Blier and Ollivier 2019, Jia and Zhou 2021a, 2021b
» Asymptotic convergence analysis

» LQ-RL (T=c0): Duncan, Guo and Pasik-Duncan 1999, Rizvi
and Lin 2018, Pang, Bian and Jiang 2020

— No convergence rate/regret analysis
This talk:
> analyses regret of continuous-time RL over finite-time horizon.

» starts with linear-quadratic models and then extends to
linear-convex models.
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Linear-quadratic RL problem lSE

Fix (A*, BX) € R™" x R minimise
T * *
J(a; 0%) :EU (X7 QX! + af Ray) dt},
0
where X% satisfies the dynamics with parameter 6* = (A*, B*):

dXt = (A*Xt + B*Oét) dt + th, XO = X0,

and « is adapted to the information generated by X?"®. Here Q
and R are given positive definite matrices.
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Feedback control I_SE

» When 6* is known, the optimal control a?" is given by:
0* 0* (y0*
ap = ¢ (X{ ),
where
» X7 is the optimal state process satisfying
dX; = (A*X: 4+ B*¢?" (X,))dt + dW,

» ¢ (x) = KU x, where K?" solves a Riccati ODE associated
with 6*.
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Feedback control lSE

» When 6* is known, the optimal control a?" is given by:
o* 0% [y 0"
ar =9 (X{),

where
» X7 is the optimal state process satisfying

dX; = (A*X: 4+ B*¢?" (X,))dt + dW,

» ¢ (x) = K" x, where K" solves a Riccati ODE associated
with 0*.
» When 6* is unknown, one needs to balance exploration
(learning via interactions with the random environment) and
exploitation (optimal control).

[
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Learning via trial and error
Episodic setting

LSE

> Let H(m=1) be the estimated parameter before m-th episode.
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Learning via trial and error I_SE

Episodic setting

> Let H(m=1) be the estimated parameter before m-th episode.

> Given G(m=1), agent exercises a policy ¢(™) (which may depend on
g(m=1) or not) and observes a trajectory of

AX" = (A*X™ + B*¢{™ (X™))dt + AW,
Cost for the m-th episode is

I 07) =B [ ((Xm)T @x + o{m (X TRA™ (X)) de]
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Learning via trial and error lSE

Episodic setting

> Let H(m=1) be the estimated parameter before m-th episode.

> Given 4(m=1), agent exercises a policy ¢(™) (which may depend on
g(m=1) or not) and observes a trajectory of

AXI = (A*X" + B*¢{™(X™))dt + dW,™,
Cost for the m-th episode is
J6™:0%) =B [ (X7 QX + ol (X TRAM (X)) d]

» Agent constructs (™ using observed trajectories of (X/)™;.

» Performance criteria — regret up to episode N € N:

R(N) = Sy (J(&17):6%) = J(05-:6%))
» Take actions (¢, ¢(®),...) to learn (A*, B*) and minimise R.
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Parameter identifiability

Exploration policy

LSE

Theorem
0* is identifiable under ¢¢ iff
» ifuc R and v € RP satisfy u'x + v ¢¢(t,x) =0 for all
(t,x) € [0, T] x RY, then u and v are zero vectors.
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Parameter identifiability I.SE

Exploration policy

Theorem
0* is identifiable under ¢¢ iff
» ifu e RY and v € RP satisfy u' x + v ¢¢(t,x) = 0 for all
(t,x) € [0, T] x RY, then u and v are zero vectors.

For any given § = (A, B), the greedy policy ¢g(t,x) = K¢x
identifies 0* iff B is full column rank.

> Self-exploration: if B* is full column rank, the greedy policy
¢y~ explores the environment, and hence explicit exploration is
not required.
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Bayesian perspective lSE

» Given fixed policy ¢, estimate 6* = (A*, B*) via
_ g7 ¢ _ T
dX, = 0*Z8dt + dW,,  Z8 = (X, (£, Xe)) T

» Agent only observes the state process X (also Z?), but not
the corresponding Brownian path.

» View unknown 6* as a hidden random variable, and observe
the log-likelihood of 6* is quadratic.
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Likelihood function |_SE

» Discrete time approximation is given by

Xir1 — Xk = 0*Z0 At + VALE, and & ~up N(0,1).
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Likelihood function I_SE

» Discrete time approximation is given by
Xir1 — Xk = 0°Z) At + VAte,, and & ~up N(0,1).
» One can compute likelihood function

0O | Xq, ..., Xn) o

1 n—1 n—1
exp (= 307 (X2 20420 8)0) +0° T Z{(Xhs = X0).
k=0 k=0
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Likelihood function lSE

» Discrete time approximation is given by
Xir1 — Xk = 0°Z) At + VAte,, and & ~up N(0,1).
» One can compute likelihood function

0O | Xq, ..., Xn) o

1 n—1 ) n—1
exp (= 50%( X0 ZAZY) T AL)(01) + 07 Y" ZY (X — X)),
k=0 k=0
which leads to

0(6* | X) o< exp (;9*(/Ot(Zf)(st’)Tds)(G*)TJrG* /Ot Z¢dx;).
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Posterior distribution |_SE

Given a prior 0% ~ N(§(m=1) v(m=1)) the posterior of 6* based on
observation Z¢ is also Gaussian N(A(™) v(m)).
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Posterior distribution |_SE

Given a prior 0% ~ N(§(m=1) v(m=1)) the posterior of 6* based on
observation Z¢ is also Gaussian N(A(™) v(m)).

Theorem

For all § > O,
H(m) * |2 1 1 v
‘9 0 ‘ = )\min((\/(’”)) '1) p0|y(|n 7|n (6))7 n>2.

> Amin((V™)~1) increases if ¢¢ is executed.

» Sub-exponential concentration: Zf’ is Gaussian, and hence
foT 72(Z8)T dt and fOT Z¢dX; are sub-exponential.
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Phased Exploration with Greedy Exploitation lSE

Algorithm 1: PEGE Algorithm

Input: m: N — N.

1 Initialize m = 0.
2 for k=1,2,...do
3 Execute the exploration policy ¢€ for one episode, and m + m + 1.
4 Update the estimate 6(m and set 6 = H(m).
5 for 1=1,2,...,m(k) do
6 ‘ Execute the greedy policy ¢ for one episode, and m < m + 1.
7 end
8 end
» m: N — N determines the exploration and exploitation
trade-off.
ISE Department
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Regret analysis

Let £ = {m € N | ¢(™ = ¢} and consider

N

R(N) =Y (J(@'™;0%) = J(¢o-:0))

m=1

= > (o) - d@a0)) - Y (U, 07) — S(60r107))

me[1,N]NE® me[1,N\EP
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Regret analysis lSE

Let £ = {m € N | ¢(™ = ¢} and consider

N
R(N) =Y (J(@'™;0%) = J(¢o-:0))
= > ) = I@n0)) - Y (Hbann,0) = S(601607))
me[l,NNEP me[L,N\E®

Theorem (Performance gap)

For all ¢ > 0, 3C. > 0,

|J(0g; 0%) — J(g~; 0%)| < Co|6 — 0%, VO € B.(6%).
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Regret analysis lSE

Let £ = {m € N | ¢(™ = ¢} and consider

N
R(N) =Y (J(@'™;0%) = J(¢o-:0))
= > ) = I@n0)) - Y (Hbann,0) = S(601607))
me[l,NNEP me[L,N\E®

Theorem (Performance gap)

For all ¢ > 0, 3C. > 0,

|J(0g; 0%) — J(g~; 0%)| < Co|6 — 0%, VO € B.(6%).

This gives R(N) < ‘[1, Nl N E®

+ Zme[l,N]\S“’ |é(m—1) _ 0*|2.
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Optimal regret for LQ-RL

Theorem
For m(k) = k, k € N, with high probability,

R(N) < CNz(log N)2, VN > 2.
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Optimal regret for LQ-RL

Theorem
For m(k) = k, k € N, with high probability,

R(N) < CNz(log N)2, VN > 2.

If self-exploration property holds, then by setting m(k) = 2K,
k € N, with high probability,

R(N) < C(log N)?, VN > 2.
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Optimal regret for LQ-RL I_SE

Theorem
For m(k) = k, k € N, with high probability,

R(N) < CNz(log N)2, VN > 2.

If self-exploration property holds, then by setting m(k) = 2K,
k € N, with high probability,

R(N) < C(log N)?, VN > 2.

» Discrete time observations and actions have the same regret
order, with an additional discretization error.
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Linear-convex RL problem with jumps lSE

Let 6% = (A*, B*) € R™" x R™k be fixed but unknown, minimise

;
J(a:9*)=EV f(X 7, o) dt + g(X7 )
0

over stochastic processes a, where X% satisfies the dynamics
with 6*:

dX, = (A*X, + B*a) dt + o dW; + / ~v(u) N(dt, du),
RP\{0}
f and g are convex in state and strongly convex in control.

» f can be nonsmooth, and includes action constraints, #1-norm
or entropy regularisers.
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LQ-RL vs LC-RL

LQ-RL LC-RL
Greedy policy Linear Nonlinear
Policy characterisation Riccati ODE BSDE
Performance gap Quadratic Linear/quadratic
Parameter estimation Bayesian Least-squares

Estimation error

Sub-exponential r.v.

Sub-Weibull r.v.
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Numerical experiment I_SE

LQ RL

» Consider the 3d controlled SDE:
dX; = (AX; + Bag) dt + dW;, t € [0,1.5].

with unknowns A, B from Dean et al. 2018, and a given cost

J(@)=E l/OT(o.quF + |oe|?) dt| .
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Numerical experiment lSE
LQ RL

» Consider the 3d controlled SDE:
dX; = (AX; + Bag) dt + dW;, t € [0,1.5].

with unknowns A, B from Dean et al. 2018, and a given cost
T
J(a)=E l/ (0.1|X%2 + |ae?) dt| .
0
» Run PEGE algorithm with m(k) = 2%, k € N.

> Perform 100 independent executions to estimate statistical
properties of the algorithm.
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Numerical experiment

Numerical results
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Figure: Numerical results from 100 repeated experiments; solid lines are
sample means and shallow areas are 95% confidence intervals.
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S

Two complimentary aspects on model-based RL:

» Finite-sample analysis of parameter estimation (statistical
learning theory) and performance gap analysis of greedy policy
(control theory).

> A phase-based learning algorithm with optimal regrets for
linear-convex models.
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Two complimentary aspects on model-based RL:

» Finite-sample analysis of parameter estimation (statistical
learning theory) and performance gap analysis of greedy policy
(control theory).

> A phase-based learning algorithm with optimal regrets for
linear-convex models.

(1) Basei, Guo, Hu, Zhang, Logarithmic regret for episodic continuous-time
linear-quadratic reinforcement learning over a finite-time horizon, JMLR,
to appear, 2020.
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continuous-time episodic reinforcement learning with linear-convex models,
arXiv preprint, 2021.
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