Some recent progress in continuous-time reinforcement learning

YUFEI ZHANG

Statistics Research Showcase Day

based on joint works with Matteo Basei (EDF R&D), Xin Guo (UC Berkeley), Anran Hu (UC Berkeley), Lukasz Szpruch (U of Edinburgh, Turing) and Tanut Treetanthiploet (Turing).

15 June 2022

- Stochastic control problems are ubiquitous.
- Continuous-time models well understood in this community.
 - optimal trading, dynamic hedging, autonomous driving, robots.
- ▶ Reinforcement learning (RL) methods increasingly popular.
- Analysis restricted to discrete-time models.
- My research:
 - systematically understand the performance of artificial agents in a continuous-time environment.

Learning algorithm focuses on policy, i.e., a function mapping system states to actions.

For a system with unknown parameter θ , issues in RL:

Model identification: how to learn the parameter θ?
 Examples: consumer behaviour for online retailer, price impact factor in optimal execution.

Learning algorithm focuses on policy, i.e., a function mapping system states to actions.

For a system with unknown parameter θ , issues in RL:

- Model identification: how to learn the parameter θ?
 Examples: consumer behaviour for online retailer, price impact factor in optimal execution.
- Robustness of policies w.r.t. θ .

Learning algorithm focuses on policy, i.e., a function mapping system states to actions.

For a system with unknown parameter θ , issues in RL:

- Model identification: how to learn the parameter θ?
 Examples: consumer behaviour for online retailer, price impact factor in optimal execution.
- Robustness of policies w.r.t. θ .
- Convergence rate analysis:
 - critical for understanding algorithm efficiency.

Discrete-time RL (partial)

- Tabular MDPs (finite states and actions): Watkins and Dayan 1992 (Q-learning), Williams 1992 (policy gradient), Jaksch, Ortner and Auer 2009, and many others.
- Infinite states and actions: (LQ-RL, $T = \infty$)
 - Sublinear regret: Abbasi-Yadkori and Szepesvari 2011, Dean et al 2018, Mania, Tu and Recht 2019, Cohen, Koren and Mansour 2019
 - Logarithmic regret (for special cases): Faradonbeh, Tewari and Michailidis 2020, Cassel, Cohen and Koren 2020, Lale, Azizzadenesheli, Hassibi and Anandkumar 2020

- Continuous-time RL
 - Algorithm design: Modares and Lewis 2014, Doya 2000, Tallec, Blier and Ollivier 2019, Jia and Zhou 2021a, 2021b
 - Asymptotic convergence analysis
 - ► LQ-RL (T=∞): Duncan, Guo and Pasik-Duncan 1999, Rizvi and Lin 2018, Pang, Bian and Jiang 2020
 - No convergence rate/regret analysis

- Continuous-time RL
 - Algorithm design: Modares and Lewis 2014, Doya 2000, Tallec, Blier and Ollivier 2019, Jia and Zhou 2021a, 2021b
 - Asymptotic convergence analysis
 - ► LQ-RL (T=∞): Duncan, Guo and Pasik-Duncan 1999, Rizvi and Lin 2018, Pang, Bian and Jiang 2020
 - No convergence rate/regret analysis

This talk:

- analyses regret of continuous-time RL over finite-time horizon.
- starts with linear-quadratic models and then extends to linear-convex models.

Fix $(A^{\star}, B^{\star}) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times k}$, minimise

$$J(\alpha; \theta^{\star}) = \mathbb{E}\bigg[\int_0^T \big((X_t^{\theta^{\star}, \alpha})^\top Q X_t^{\theta^{\star}, \alpha} + \alpha_t^\top R \alpha_t \big) \, \mathrm{d}t \bigg],$$

where $X^{\theta^{\star},\alpha}$ satisfies the dynamics with parameter $\theta^{\star} = (A^{\star}, B^{\star})$:

$$\mathrm{d}X_t = (A^*X_t + B^*\alpha_t)\,\mathrm{d}t + \,\mathrm{d}W_t, \quad X_0 = x_0,$$

and α is adapted to the information generated by $X^{\theta^{\star},\alpha}$. Here Q and R are given positive definite matrices.

• When θ^{\star} is known, the optimal control $\alpha^{\theta^{\star}}$ is given by:

$$\alpha_t^{\theta^\star} = \phi_t^{\theta^\star}(X_t^{\theta^\star}),$$

where

• $X^{\theta^{\star}}$ is the optimal state process satisfying

$$\mathrm{d}X_t = (A^*X_t + B^*\phi_t^{\theta^*}(X_t))\mathrm{d}t + \mathrm{d}W_t,$$

• $\phi_t^{\theta^*}(x) = K_t^{\theta^*}x$, where K^{θ^*} solves a Riccati ODE associated with θ^* .

• When θ^* is known, the optimal control α^{θ^*} is given by:

$$\alpha_t^{\theta^\star} = \phi_t^{\theta^\star}(X_t^{\theta^\star}),$$

where

• X^{θ^*} is the optimal state process satisfying

$$\mathrm{d}X_t = (A^*X_t + B^*\phi_t^{\theta^*}(X_t))\mathrm{d}t + \mathrm{d}W_t,$$

- $\phi_t^{\theta^*}(x) = K_t^{\theta^*}x$, where K^{θ^*} solves a Riccati ODE associated with θ^* .
- When θ^* is unknown, one needs to balance exploration (learning via interactions with the random environment) and exploitation (optimal control).

Episodic setting

• Let $\hat{\theta}^{(m-1)}$ be the estimated parameter before *m*-th episode.

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Episodic setting

- Let $\hat{\theta}^{(m-1)}$ be the estimated parameter before *m*-th episode.
- Given $\hat{\theta}^{(m-1)}$, agent exercises a policy $\phi^{(m)}$ (which may depend on $\hat{\theta}^{(m-1)}$ or not) and observes a trajectory of

$$\mathrm{d}X_t^m = (A^* X_t^m + B^* \phi_t^{(m)}(X_t^m)) \mathrm{d}t + \mathrm{d}W_t^m,$$

Cost for the *m*-th episode is

$$J(\phi^{(m)};\theta^{\star}) = \mathbb{E}\left[\int_0^T \left((X_t^m)^\top Q X_t^m + \phi_t^{(m)} (X_t^m)^\top R \phi_t^{(m)} (X_t^m) \right) \, \mathrm{d}t \right].$$

Episodic setting

- Let $\hat{\theta}^{(m-1)}$ be the estimated parameter before *m*-th episode.
- Given $\hat{\theta}^{(m-1)}$, agent exercises a policy $\phi^{(m)}$ (which may depend on $\hat{\theta}^{(m-1)}$ or not) and observes a trajectory of

$$\mathrm{d}X_t^m = (A^* X_t^m + B^* \phi_t^{(m)}(X_t^m)) \mathrm{d}t + \mathrm{d}W_t^m,$$

Cost for the *m*-th episode is

$$J(\phi^{(m)};\theta^{\star}) = \mathbb{E}\left[\int_0^T \left((X_t^m)^\top Q X_t^m + \phi_t^{(m)} (X_t^m)^\top R \phi_t^{(m)} (X_t^m) \right) \, \mathrm{d}t \right].$$

• Agent constructs $\hat{\theta}^{(m)}$ using observed trajectories of $(X^i)_{i=1}^m$.

Episodic setting

epartment

- Let $\hat{\theta}^{(m-1)}$ be the estimated parameter before *m*-th episode.
- Given $\hat{\theta}^{(m-1)}$, agent exercises a policy $\phi^{(m)}$ (which may depend on $\hat{\theta}^{(m-1)}$ or not) and observes a trajectory of

$$\mathrm{d}X_t^m = (A^*X_t^m + B^*\phi_t^{(m)}(X_t^m))\mathrm{d}t + \mathrm{d}W_t^m,$$

Cost for the *m*-th episode is

$$J(\phi^{(m)};\theta^{\star}) = \mathbb{E}\left[\int_0^T \left((X_t^m)^\top Q X_t^m + \phi_t^{(m)} (X_t^m)^\top R \phi_t^{(m)} (X_t^m) \right) \, \mathrm{d}t \right].$$

- Agent constructs $\hat{\theta}^{(m)}$ using observed trajectories of $(X^i)_{i=1}^m$.
- Performance criteria regret up to episode $N \in \mathbb{N}$:

$$\mathcal{R}(N) = \sum_{m=1}^{N} \left(J(\phi^{(m)}; \theta^{\star}) - J(\phi_{\theta^{\star}}; \theta^{\star}) \right).$$

► Take actions $(\phi^{(1)}, \phi^{(2)}, ...)$ to learn (A^*, B^*) and minimise \mathcal{R} .

Exploration policy

Theorem

- θ^{\star} is identifiable under $\phi^{\rm e}$ iff
 - if u ∈ ℝ^d and v ∈ ℝ^p satisfy u^Tx + v^Tφ^e(t,x) = 0 for all (t,x) ∈ [0, T] × ℝ^d, then u and v are zero vectors.

Exploration policy

Theorem

- θ^{\star} is identifiable under $\phi^{\rm e}$ iff
 - if u ∈ ℝ^d and v ∈ ℝ^p satisfy u^Tx + v^Tφ^e(t,x) = 0 for all (t,x) ∈ [0, T] × ℝ^d, then u and v are zero vectors.

For any given $\theta = (A, B)$, the greedy policy $\phi_{\theta}(t, x) = K_t^{\theta} x$ identifies θ^* iff B is full column rank.

Self-exploration: if B^{*} is full column rank, the greedy policy φ_{θ^{*}} explores the environment, and hence explicit exploration is not required.

• Given fixed policy ϕ , estimate $\theta^{\star} = (A^{\star}, B^{\star})$ via

$$\mathrm{d}X_t = \theta^* Z_t^\phi \mathrm{d}t + \mathrm{d}W_t, \quad Z_t^\phi = (X_t, \phi(t, X_t))^\top.$$

- ► Agent only observes the state process X (also Z^φ), but not the corresponding Brownian path.
- View unknown θ^{*} as a hidden random variable, and observe the log-likelihood of θ^{*} is quadratic.

Discrete time approximation is given by

$$X_{k+1} - X_k = heta^\star Z_k^\phi \Delta t + \sqrt{\Delta t} \xi_k$$
, and $\xi_k \sim_{IID} N(0,1).$

Discrete time approximation is given by

$$X_{k+1} - X_k = heta^\star Z_k^\phi \Delta t + \sqrt{\Delta t} \xi_k$$
, and $\xi_k \sim_{IID} N(0,1).$

One can compute likelihood function

$$\ell(\theta^{\star} \mid X_{1}, \dots, X_{n}) \propto \\ \exp\Big(-\frac{1}{2}\theta^{\star}\Big(\sum_{k=0}^{n-1} Z_{k}^{\phi}(Z_{k}^{\phi})^{\top} \Delta t\Big)(\theta^{\star})^{\top} + \theta^{\star} \sum_{k=0}^{n-1} Z_{k}^{\phi}(X_{k+1} - X_{k})\Big),$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Discrete time approximation is given by

$$X_{k+1} - X_k = heta^\star Z_k^\phi \Delta t + \sqrt{\Delta t} \xi_k$$
, and $\xi_k \sim_{IID} N(0,1)$.

One can compute likelihood function

$$\ell(\theta^{\star} \mid X_{1}, \dots, X_{n}) \propto \exp\left(-\frac{1}{2}\theta^{\star}\left(\sum_{k=0}^{n-1} Z_{k}^{\phi}(Z_{k}^{\phi})^{\top} \Delta t\right)(\theta^{\star})^{\top} + \theta^{\star} \sum_{k=0}^{n-1} Z_{k}^{\phi}(X_{k+1} - X_{k})\right),$$

which leads to
$$\ell(\theta^{\star} \mid X) \approx \exp\left(-\frac{1}{2}\theta^{\star}\left(\int_{0}^{t} (Z^{\phi})(Z^{\phi})^{\top} dz\right)(\theta^{\star})^{\top} + \theta^{\star} \int_{0}^{t} Z^{\phi} dX\right).$$

$$\ell(\theta^{\star} \mid X) \propto \exp\left(-\frac{1}{2}\theta^{\star}\left(\int_{0}^{t} (Z_{s}^{\phi})(Z_{s}^{\phi})^{\top} \mathrm{d}s\right)(\theta^{\star})^{\top} + \theta^{\star}\int_{0}^{t} Z_{s}^{\phi} \mathrm{d}X_{s}\right).$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Given a prior $\theta^* \sim N(\hat{\theta}^{(m-1)}, V^{(m-1)})$, the posterior of θ^* based on observation Z^{ϕ} is also Gaussian $N(\hat{\theta}^{(m)}, V^{(m)})$.

Given a prior $\theta^* \sim N(\hat{\theta}^{(m-1)}, V^{(m-1)})$, the posterior of θ^* based on observation Z^{ϕ} is also Gaussian $N(\hat{\theta}^{(m)}, V^{(m)})$.

Theorem

For all $\delta > 0$,

$$\left|\hat{ heta}^{(m)}- heta^{\star}
ight|^{2}\leqrac{1}{\lambda_{\min}((V^{(m)})^{-1})}\operatorname{poly}(\ln m,\ln\left(rac{1}{\delta}
ight)),\quad orall m\geq 2.$$

• $\lambda_{\min}((V^{(m)})^{-1})$ increases if ϕ^e is executed.

▶ Sub-exponential concentration: Z_t^{ϕ} is Gaussian, and hence $\int_0^T Z_t^{\phi} (Z_t^{\phi})^\top dt$ and $\int_0^T Z_t^{\phi} dX_t$ are sub-exponential.

Algorithm 1: PEGE Algorithm

```
\begin{array}{c|c} \text{Input: } \mathfrak{m}:\mathbb{N}\to\mathbb{N}.\\ 1 \ \text{Initialize } m=0.\\ 2 \ \text{for } k=1,2,\ldots \ \text{do}\\ 3 \ & \text{Execute the exploration policy } \phi^e \ \text{for one episode, and } m\leftarrow m+1.\\ 4 \ & \text{Update the estimate } \hat{\theta}^{(m)} \ \text{and set } \overline{\theta}=\hat{\theta}^{(m)}.\\ 5 \ & \text{for } l=1,2,\ldots,\mathfrak{m}(k) \ \text{do}\\ 6 \ & \text{Execute the greedy policy } \phi_{\overline{\theta}} \ \text{for one episode, and } m\leftarrow m+1.\\ 7 \ & \text{end}\\ 8 \ \text{end} \end{array}
```

▶ $\mathfrak{m} : \mathbb{N} \to \mathbb{N}$ determines the exploration and exploitation trade-off.

Regret analysis

Let
$$\mathcal{E}^{\Phi} = \{m \in \mathbb{N} \mid \phi^{(m)} = \phi^{e}\}$$
 and consider
 $\mathcal{R}(N) = \sum_{m=1}^{N} \left(J(\phi^{(m)}; \theta^{\star}) - J(\phi_{\theta^{\star}}; \theta^{\star}) \right)$
 $= \sum_{m \in [1,N] \cap \mathcal{E}^{\Phi}} \left(J(\phi^{e}, \theta^{\star}) - J(\phi_{\theta}; \theta^{\star}) \right) + \sum_{m \in [1,N] \setminus \mathcal{E}^{\Phi}} \left(J(\phi_{\hat{\theta}^{(m-1)}}, \theta^{\star}) - J(\phi_{\theta^{\star}}; \theta^{\star}) \right)$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Regret analysis

Let
$$\mathcal{E}^{\Phi} = \{m \in \mathbb{N} \mid \phi^{(m)} = \phi^{e}\}$$
 and consider
 $\mathcal{R}(N) = \sum_{m=1}^{N} \left(J(\phi^{(m)}; \theta^{\star}) - J(\phi_{\theta^{\star}}; \theta^{\star}) \right)$
 $= \sum_{m \in [1,N] \cap \mathcal{E}^{\Phi}} \left(J(\phi^{e}, \theta^{\star}) - J(\phi_{\theta}; \theta^{\star}) \right) + \sum_{m \in [1,N] \setminus \mathcal{E}^{\Phi}} \left(J(\phi_{\hat{\theta}^{(m-1)}}, \theta^{\star}) - J(\phi_{\theta^{\star}}; \theta^{\star}) \right)$

Theorem (Performance gap)

For all $\varepsilon > 0$, $\exists C_{\varepsilon} \ge 0$,

$$|J(\phi_ heta; heta^\star) - J(\phi_{ heta^\star}; heta^\star)| \leq C_arepsilon | heta - heta^\star|^2, \hspace{1em} orall heta \in \mathbb{B}_arepsilon(heta^\star).$$

Regret analysis

Let
$$\mathcal{E}^{\Phi} = \{m \in \mathbb{N} \mid \phi^{(m)} = \phi^{e}\}$$
 and consider
 $\mathcal{R}(N) = \sum_{m=1}^{N} \left(J(\phi^{(m)}; \theta^{\star}) - J(\phi_{\theta^{\star}}; \theta^{\star}) \right)$
 $= \sum_{m \in [1,N] \cap \mathcal{E}^{\Phi}} \left(J(\phi^{e}, \theta^{\star}) - J(\phi_{\theta}; \theta^{\star}) \right) + \sum_{m \in [1,N] \setminus \mathcal{E}^{\Phi}} \left(J(\phi_{\hat{\theta}^{(m-1)}}, \theta^{\star}) - J(\phi_{\theta^{\star}}; \theta^{\star}) \right)$

Theorem (Performance gap)

For all $\varepsilon > 0$, $\exists C_{\varepsilon} \ge 0$,

Department of Statistics

$$|J(\phi_ heta; heta^\star) - J(\phi_{ heta^\star}; heta^\star)| \leq \mathcal{C}_arepsilon | heta - heta^\star|^2, \hspace{1em} orall heta \in \mathbb{B}_arepsilon(heta^\star).$$

This gives
$$\mathcal{R}(N) \lesssim \left| [1, N] \cap \mathcal{E}^{\Phi} \right| + \sum_{m \in [1, N] \setminus \mathcal{E}^{\Phi}} |\hat{\theta}^{(m-1)} - \theta^{\star}|^2.$$

15 June 2022

Continuous-time reinforcement learning

Theorem

For $\mathfrak{m}(k) = k$, $k \in \mathbb{N}$, with high probability,

$$\mathcal{R}(N) \leq CN^{\frac{1}{2}}(\log N)^2, \quad \forall N \geq 2.$$

Theorem

For $\mathfrak{m}(k) = k$, $k \in \mathbb{N}$, with high probability,

$$\mathcal{R}(N) \leq CN^{\frac{1}{2}}(\log N)^2, \quad \forall N \geq 2.$$

If self-exploration property holds, then by setting $\mathfrak{m}(k) = 2^k$, $k \in \mathbb{N}$, with high probability,

$$\mathcal{R}(N) \leq C(\log N)^2, \quad \forall N \geq 2.$$

Theorem

For $\mathfrak{m}(k) = k, k \in \mathbb{N}$, with high probability,

$$\mathcal{R}(N) \leq CN^{\frac{1}{2}}(\log N)^2, \quad \forall N \geq 2.$$

If self-exploration property holds, then by setting $\mathfrak{m}(k) = 2^k$, $k \in \mathbb{N}$, with high probability,

$$\mathcal{R}(N) \leq C(\log N)^2, \quad \forall N \geq 2.$$

Discrete time observations and actions have the same regret order, with an additional discretization error.

Let $\theta^{\star} = (A^{\star}, B^{\star}) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times k}$ be fixed but unknown, minimise

$$J(\alpha;\theta^{\star}) = \mathbb{E}\left[\int_{0}^{T} f_{t}(X_{t}^{\theta^{\star},\alpha},\alpha_{t}) dt + g(X_{T}^{\theta^{\star},\alpha})\right],$$

over stochastic processes α , where $X^{\theta^{\star},\alpha}$ satisfies the dynamics with θ^{\star} :

$$\mathrm{d}X_t = (A^*X_t + B^*\alpha_t)\,\mathrm{d}t + \sigma\,\mathrm{d}W_t + \int_{\mathbb{R}^p\setminus\{0\}}\gamma(u)\,\widetilde{N}(\mathrm{d}t,\mathrm{d}u),$$

f and g are convex in state and strongly convex in control.

► f can be nonsmooth, and includes action constraints, l¹-norm or entropy regularisers.

	LQ-RL	LC-RL
Greedy policy	Linear	Nonlinear
Policy characterisation	Riccati ODE	BSDE
Performance gap	Quadratic	Linear/quadratic
Parameter estimation	Bayesian	Least-squares
Estimation error	Sub-exponential r.v.	Sub-Weibull r.v.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Consider the 3d controlled SDE:

$$\mathrm{d}X_t = (AX_t + B\alpha_t) \,\mathrm{d}t + \mathrm{d}W_t, \ t \in [0, 1.5].$$

with unknowns A, B from Dean et al. 2018, and a given cost

$$J(\alpha) = \mathbb{E}\left[\int_0^T (0.1|X_t^{\alpha}|^2 + |\alpha_t|^2) \,\mathrm{d}t\right]$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Consider the 3d controlled SDE:

$$\mathrm{d}X_t = (AX_t + B\alpha_t) \,\mathrm{d}t + \mathrm{d}W_t, \ t \in [0, 1.5].$$

with unknowns A, B from Dean et al. 2018, and a given cost

$$J(\alpha) = \mathbb{E}\left[\int_0^T (0.1|X_t^{\alpha}|^2 + |\alpha_t|^2) \,\mathrm{d}t\right]$$

- Run PEGE algorithm with $\mathfrak{m}(k) = 2^k$, $k \in \mathbb{N}$.
- Perform 100 independent executions to estimate statistical properties of the algorithm.

Numerical experiment

Numerical results

Figure: Numerical results from 100 repeated experiments; solid lines are sample means and shallow areas are 95% confidence intervals.

Two complimentary aspects on model-based RL:

- Finite-sample analysis of parameter estimation (statistical learning theory) and performance gap analysis of greedy policy (control theory).
- A phase-based learning algorithm with optimal regrets for linear-convex models.

3

・ ロ ト ・ 西 ト ・ 日 ト ・ 日 ト

Two complimentary aspects on model-based RL:

- Finite-sample analysis of parameter estimation (statistical learning theory) and performance gap analysis of greedy policy (control theory).
- A phase-based learning algorithm with optimal regrets for linear-convex models.
- (1) Basei, Guo, Hu, Zhang, *Logarithmic regret for episodic continuous-time linear-quadratic reinforcement learning over a finite-time horizon*, JMLR, to appear, 2020.
- (2) Szpruch, Treetanthiploet and Zhang, *Exploration-exploitation trade-off for continuous-time episodic reinforcement learning with linear-convex models*, arXiv preprint, 2021.