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Motivation and overview

I Stochastic control problems are ubiquitous.
I Continuous-time models well understood in this community.

I optimal trading, dynamic hedging, autonomous driving, robots.
I Reinforcement learning (RL) methods increasingly popular.
I Analysis restricted to discrete-time models.

My research:
I systematically understand the performance of artificial agents

in a continuous-time environment.
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Challenges of RL

Learning algorithm focuses on policy, i.e., a function mapping
system states to actions.

For a system with unknown parameter θ, issues in RL:
I Model identification: how to learn the parameter θ?

Examples: consumer behaviour for online retailer, price impact
factor in optimal execution.

I Robustness of policies w.r.t. θ.
I Convergence rate analysis:

I critical for understanding algorithm efficiency.
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Overview of related works
Discrete-time RL (partial)

I Tabular MDPs (finite states and actions): Watkins and Dayan
1992 (Q-learning), Williams 1992 (policy gradient), Jaksch,
Ortner and Auer 2009, and many others.

I Infinite states and actions: (LQ-RL, T =∞)
I Sublinear regret: Abbasi-Yadkori and Szepesvari 2011, Dean et

al 2018, Mania, Tu and Recht 2019, Cohen, Koren and
Mansour 2019

I Logarithmic regret (for special cases): Faradonbeh, Tewari and
Michailidis 2020, Cassel, Cohen and Koren 2020, Lale,
Azizzadenesheli, Hassibi and Anandkumar 2020
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Overview of related works
Continuous-time RL

I Algorithm design: Modares and Lewis 2014, Doya 2000,
Tallec, Blier and Ollivier 2019, Jia and Zhou 2021a, 2021b

I Asymptotic convergence analysis
I LQ-RL (T=∞): Duncan, Guo and Pasik-Duncan 1999, Rizvi

and Lin 2018, Pang, Bian and Jiang 2020

— No convergence rate/regret analysis

This talk:
I analyses regret of continuous-time RL over finite-time horizon.
I starts with linear-quadratic models and then extends to

linear-convex models.
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Linear-quadratic RL problem

Fix (A?,B?) ∈ Rn×n × Rn×k , minimise

J(α; θ?) = E
[ ∫ T

0

(
(X θ?,α

t )>QX θ?,α
t + α>t Rαt

)
dt
]
,

where X θ?,α satisfies the dynamics with parameter θ? = (A?,B?):

dXt = (A?Xt + B?αt) dt + dWt , X0 = x0,

and α is adapted to the information generated by X θ?,α. Here Q
and R are given positive definite matrices.
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Feedback control

I When θ? is known, the optimal control αθ? is given by:

αθ
?

t = φθ
?

t (X θ?

t ),

where
I X θ? is the optimal state process satisfying

dXt = (A?Xt + B?φθ
?

t (Xt))dt + dWt ,

I φθ
?

t (x) = K θ?

t x , where K θ? solves a Riccati ODE associated
with θ?.

I When θ? is unknown, one needs to balance exploration
(learning via interactions with the random environment) and
exploitation (optimal control).
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Learning via trial and error
Episodic setting

I Let θ̂(m−1) be the estimated parameter before m-th episode.

I Given θ̂(m−1), agent exercises a policy φ(m) (which may depend on
θ̂(m−1) or not) and observes a trajectory of

dX m
t = (A?X m

t + B?φ
(m)
t (X m

t ))dt + dW m
t ,

Cost for the m-th episode is

J(φ(m); θ?) = E
[∫ T

0

(
(X m

t )>QX m
t + φ

(m)
t (X m

t )>Rφ(m)
t (X m

t )
)

dt
]
.

I Agent constructs θ̂(m) using observed trajectories of (X i )m
i=1.

I Performance criteria – regret up to episode N ∈ N:

R(N) =
∑N

m=1
(
J(φ(m); θ?)− J(φθ? ; θ?)

)
.

I Take actions (φ(1), φ(2), . . .) to learn (A?,B?) and minimise R.
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Parameter identifiability
Exploration policy

Theorem
θ? is identifiable under φe iff

I if u ∈ Rd and v ∈ Rp satisfy u>x + v>φe(t, x) = 0 for all
(t, x) ∈ [0,T ]× Rd , then u and v are zero vectors.

For any given θ = (A,B), the greedy policy φθ(t, x) = K θ
t x

identifies θ? iff B is full column rank.

I Self-exploration: if B? is full column rank, the greedy policy
φθ? explores the environment, and hence explicit exploration is
not required.
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Bayesian perspective

I Given fixed policy φ, estimate θ? = (A?,B?) via

dXt = θ?Zφ
t dt + dWt , Zφ

t = (Xt , φ(t,Xt))>.

I Agent only observes the state process X (also Zφ), but not
the corresponding Brownian path.

I View unknown θ? as a hidden random variable, and observe
the log-likelihood of θ? is quadratic.
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Likelihood function

I Discrete time approximation is given by

Xk+1 − Xk = θ?Zφ
k ∆t +

√
∆tξk , and ξk ∼IID N(0, 1).

I One can compute likelihood function

`(θ? | X1, . . . ,Xn) ∝

exp
(
− 1

2θ
?
( n−1∑

k=0
Zφ

k (Zφ
k )>∆t

)
(θ?)> + θ?

n−1∑
k=0

Zφ
k (Xk+1 − Xk)

)
,

which leads to

`(θ? | X ) ∝ exp
(
−1

2θ
?
( ∫ t

0
(Zφ

s )(Zφ
s )>ds

)
(θ?)>+θ?

∫ t

0
Zφ

s dXs
)
.
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Posterior distribution

Given a prior θ? ∼ N(θ̂(m−1),V (m−1)), the posterior of θ? based on
observation Zφ is also Gaussian N(θ̂(m),V (m)).

Theorem
For all δ > 0,∣∣θ̂(m) − θ?

∣∣2 ≤ 1
λmin((V (m))−1)

poly(ln m, ln
( 1
δ

)
), ∀m ≥ 2.

I λmin((V (m))−1) increases if φe is executed.
I Sub-exponential concentration: Zφ

t is Gaussian, and hence∫ T
0 Zφ

t (Zφ
t )> dt and

∫ T
0 Zφ

t dXt are sub-exponential.
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Phased Exploration with Greedy Exploitation

Algorithm 1: PEGE Algorithm
Input: m : N→ N.

1 Initialize m = 0.
2 for k = 1, 2, . . . do
3 Execute the exploration policy φe for one episode, and m← m + 1.
4 Update the estimate θ̂(m) and set θ = θ̂(m).
5 for l = 1, 2, . . . ,m(k) do
6 Execute the greedy policy φθ for one episode, and m← m + 1.
7 end
8 end

I m : N→ N determines the exploration and exploitation
trade-off.
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Regret analysis

Let EΦ = {m ∈ N | φ(m) = φe} and consider

R(N) =
N∑

m=1

(
J(φ(m); θ?)− J(φθ? ; θ?)

)
=

∑
m∈[1,N]∩EΦ

(
J(φe , θ?)− J(φθ; θ?)

)
+

∑
m∈[1,N]\EΦ

(
J(φθ̂(m−1) , θ

?)− J(φθ? ; θ?)
)

Theorem (Performance gap)
For all ε > 0, ∃Cε ≥ 0,

|J(φθ; θ?)− J(φθ? ; θ?)| ≤ Cε|θ − θ?|2, ∀θ ∈ Bε(θ?).

This gives R(N) .
∣∣∣[1,N] ∩ EΦ

∣∣∣+
∑

m∈[1,N]\EΦ |θ̂(m−1) − θ?|2.
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Optimal regret for LQ-RL

Theorem
For m(k) = k, k ∈ N, with high probability,

R(N) ≤ CN
1
2 (log N)2, ∀N ≥ 2.

If self-exploration property holds, then by setting m(k) = 2k ,
k ∈ N, with high probability,

R(N) ≤ C
(

log N
)2
, ∀N ≥ 2.

I Discrete time observations and actions have the same regret
order, with an additional discretization error.
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Linear-convex RL problem with jumps

Let θ? = (A?,B?) ∈ Rn×n × Rn×k be fixed but unknown, minimise

J(α; θ?) = E

[∫ T

0
ft(X θ?,α

t , αt) dt + g(X θ?,α
T )

]
,

over stochastic processes α, where X θ?,α satisfies the dynamics
with θ?:

dXt = (A?Xt + B?αt) dt + σ dWt +
∫
Rp\{0}

γ(u) Ñ(dt,du),

f and g are convex in state and strongly convex in control.
I f can be nonsmooth, and includes action constraints, `1-norm

or entropy regularisers.
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LQ-RL vs LC-RL

LQ-RL LC-RL
Greedy policy Linear Nonlinear

Policy characterisation Riccati ODE BSDE
Performance gap Quadratic Linear/quadratic

Parameter estimation Bayesian Least-squares
Estimation error Sub-exponential r.v. Sub-Weibull r.v.
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Numerical experiment
LQ RL

I Consider the 3d controlled SDE:

dXt = (AXt + Bαt) dt + dWt , t ∈ [0, 1.5].

with unknowns A,B from Dean et al. 2018, and a given cost

J(α) = E
[∫ T

0
(0.1|Xα

t |2 + |αt |2) dt
]
.

I Run PEGE algorithm with m(k) = 2k , k ∈ N.
I Perform 100 independent executions to estimate statistical

properties of the algorithm.

15 June 2022 Continuous-time reinforcement learning 33



Numerical experiment
LQ RL

I Consider the 3d controlled SDE:

dXt = (AXt + Bαt) dt + dWt , t ∈ [0, 1.5].

with unknowns A,B from Dean et al. 2018, and a given cost

J(α) = E
[∫ T

0
(0.1|Xα

t |2 + |αt |2) dt
]
.

I Run PEGE algorithm with m(k) = 2k , k ∈ N.
I Perform 100 independent executions to estimate statistical

properties of the algorithm.

15 June 2022 Continuous-time reinforcement learning 34



Numerical experiment
Numerical results

0 2 4 6 8 10

Cycle k

10−1

100

101

102

103

L
o

g
re

la
ti

v
e

e
rr

o
r

coefficient

A

B

(a) Relative param. error

2 4 6 8 10

Cycle k

10−2

10−1

100

R
e
la

ti
v
e

su
b

o
p

ti
m

a
li
ty

(b) Relative cost error

0 1000 2000 3000 4000 5000 6000 7000 8000

Episode N

0

50

100

150

200

250

R
e
g

re
t

(c) Regret

Figure: Numerical results from 100 repeated experiments; solid lines are
sample means and shallow areas are 95% confidence intervals.
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Summary

Two complimentary aspects on model-based RL:

I Finite-sample analysis of parameter estimation (statistical
learning theory) and performance gap analysis of greedy policy
(control theory).

I A phase-based learning algorithm with optimal regrets for
linear-convex models.

(1) Basei, Guo, Hu, Zhang, Logarithmic regret for episodic continuous-time
linear-quadratic reinforcement learning over a finite-time horizon, JMLR,
to appear, 2020.

(2) Szpruch, Treetanthiploet and Zhang, Exploration-exploitation trade-off for
continuous-time episodic reinforcement learning with linear-convex models,
arXiv preprint, 2021.
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