Additive Gaussian Process Models for Spatial and Sptio-temporal Analysis

Sahoko Ishida

Department of Statistics London School of Economics and Political Science

June 2022

Introduction

- 2) Gaussian Process Models
- 3 Spatio-temporal analysis with GP

Application

Spatial and spatio-temporal Data

Geostatistic data Set of locations $+ \mbox{ observed values}$

- Environmental: pollutant in the air, lake, soils
- Meteorological: temperature, rainfalls

Figure 1: PM25(μ g/ m^3) - Daily Average

Spatial and spatio-temporal Data

Measured in area (regions, boroughs, counties)

- Number of crime cases per region
- Number of disease cases

Figure 2: Caption: Crime cases in London 2020-2021 - Monthly average

S.Ishida (LSE)

Spatial and spatio-temporal Data

Spatial point patterns: location and time of events (univariate / multivariate)

- Bovine Tuberculosis in Cornwall genotypes responsible for causing the disease
- Crime in Rochester crime categories

Multivariate spatial point patterns are also called "marked" spatial point patterns

Common research questions

- Describe spatial patterns of observed (pollutant level, cases, segregation)
- Changes of the pattern over the time
- Prediction at locations where samples were not taken
- Investigate the effect of covariates while controlling for spatial/time effect

Different models have been analysed by different methods / perspective

- Geo-statistics Kriging
- Areal random effect models, conditional auto-regressive model
- Point patterns Spatial point processes (Inhomogeneous Poisson, Cox etc.)

- Provide unified framework for analysing various types of spatial and spatio-temporal data using Gaussian Process
- Plexible, interpretable and scalable model
- **③** Proper treatment of spatial and temporal interaction effect

Introduction

2 Gaussian Process Models

3 Spatio-temporal analysis with GP

Application

• Consider a regression model for $i = 1, \dots n$

$$y_i = f(\mathbf{x}_i) + \epsilon_i$$

where $y_i \in \mathbb{R}$, $\mathbf{x}_i \in \mathcal{X}$ and $(\epsilon_1, \ldots, \epsilon_n)^\top \sim \mathbf{N}_n(0, \sigma \mathbb{I}_n)$.

• Bayesian Linear Regression

$$f(\mathbf{x}_i) = \mathbf{x}_i^\top \boldsymbol{\beta}$$

with a prior

$$\boldsymbol{\beta} = (\beta_1, \dots \beta_p)^\top \sim N_p(\mathbf{0}, \mathbf{B})$$

Interests:

 $\bullet\,$ the posterior distribution of the parameters $\beta\,$

$$p(eta|\mathbf{X},\mathbf{y}) = rac{p(\mathbf{y}|eta,\mathbf{X})p(eta)}{\int p(\mathbf{y}|eta,\mathbf{X})p(eta)deta}$$

 \bullet the predictive distribution for given a new data \mathbf{x}_{new}

$$p(y_{new}|\mathbf{y},\mathbf{X},\mathbf{x}_{new}) = \int p(y_{new}|eta,\mathbf{x}_{new})p(eta|\mathbf{X},\mathbf{y})deta$$

Idea: Directly put a prior on the function f. Specifically,

 $f \sim GP(0,k)$

where $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is some covariance (kernel) function. This allows

- Flexible relationship with covariates and response
- Auto-correlation

Gaussian Process

 $f(\cdot)$ is called Gaussian Process(GP), if

$$(f(x_1),...,f(x_n)) \sim MVN(\mathbf{f}_0,\mathbf{K})$$

where $\mathbf{f}_0 = (f_0(x_1), ..., f_0(x_n))^\top$ and **K** is $n \times n$ matrix with (i,j)-th element $k(x_i, x_j) = \operatorname{cov}(f(\mathbf{x}_i), f(\mathbf{x}_j))$

A GP is completely specified by its mean function f_0 and covariance function k.

A covariance function is a positive definite function satisfying for all $a_1, \ldots a_n \in \mathbb{R}, \mathbf{x}_1, \ldots \mathbf{x}_n \in \mathcal{X}$

$$\sum_{i,j=1}^n a_i a_j k(\mathbf{x}_i,\mathbf{x}_j) \geq 0$$

lt

- Measures similarity, can be defined in many types of data (strings, graphs, functions)
- Defines a space of function from ${\mathcal X}$ to ${\mathbb R}$ (reproducing kernel Hilbert space)

Example : 🕨 link

Revisiting the regression model

$$y_i = f(\mathbf{x}_i) + \epsilon_i$$

with a GP prior $f \sim GP(m, k)$. Alternative representation of the prior:

$$\begin{aligned} \mathbf{f} &= (f(x_1), ..., f(x_n))^\top &\sim & \mathbf{N}_n(\mathbf{m}, \mathbf{K}) \\ \mathbf{y} &= (y_1, ..., y_n)^\top &\sim & \mathbf{N}_n(\mathbf{m}, \mathbf{K} + \sigma^2 \mathbf{I}_n) \end{aligned}$$

Given a new data \mathbf{x}_{new} , we have

$$f_{new}|\mathbf{x}_{new} \sim \mathbf{N}(m(\mathbf{x}_{new}), k(\mathbf{x}_{new}, \mathbf{x}_{new})).$$

and

$$\begin{bmatrix} \mathbf{y} \\ f_{new} \end{bmatrix} \sim \mathbf{N}_{n+1} \left(\begin{bmatrix} \mathbf{m} \\ m_{new} \end{bmatrix}, \begin{bmatrix} \mathbf{K} + \sigma^2 \mathbf{I}_n & \mathbf{k}_{new} \\ \mathbf{k}_{new}^\top & k(\mathbf{x}_{new}, \mathbf{x}_{new}) \end{bmatrix} \right).$$

where $f_{new} = f(\mathbf{x}_{new})$ and $\mathbf{k}_{new} = (k(\mathbf{x}_1, \mathbf{x}_{new}), \dots, k(\mathbf{x}_n, \mathbf{x}_{new}))^\top$.

Predictive distribution is also Gaussian Using conditional distribution of multivatiate normal

$$f_{new}|\mathbf{X}, \mathbf{x}_{new}, \mathbf{y} \sim N\Big(m_{new} + \mathbf{k}_{new}^{\top}(\mathbf{K} + \sigma^{2}\mathbf{I}_{n})^{-1}(\mathbf{y}\cdot\mathbf{m}), \\ k(\mathbf{x}_{new}, \mathbf{x}_{new}) - \mathbf{k}_{new}^{\top}(\mathbf{K} + \sigma^{2}\mathbf{I}_{n})^{-1}\mathbf{k}_{new}\Big).$$

▶ posterior

Given a positive constant, and valid kernels k_1 and k_2 on \mathcal{X} all of the below $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ are valid kernel

• Adding a positive constant:

$$k(\mathbf{x}, \mathbf{x}') = \alpha + k_1(\mathbf{x}, \mathbf{x}')$$

• Sum:

$$k(\mathbf{x},\mathbf{x}) = k_1(\mathbf{x},\mathbf{x}') + k_2(\mathbf{x},\mathbf{x}')$$

• Product:

$$k(\mathbf{x},\mathbf{x}')=k_1(\mathbf{x},\mathbf{x}')k_2(\mathbf{x},\mathbf{x}')$$

Constructing a new kernel from existing ones

It is not necessary that k_1 and k_2 are defined on the same set. E.g. we have $k_1 : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ and $k_2 : \mathcal{S} \times \mathcal{S} \to \mathbb{R}$ then

$$k((\mathbf{x},\mathbf{s}),(\mathbf{x}',\mathbf{s}')) = 1 + k_1(\mathbf{x},\mathbf{x}') + k_2(\mathbf{s},\mathbf{s}') + k_1(\mathbf{x},\mathbf{x}')k_2(\mathbf{s},\mathbf{s}')$$

is a kernel.

Consider the following regression model for i = 1, ..., n:

$$y_i = f(\mathbf{x}_i, \mathbf{s}_i) + \epsilon_i$$

$$f(\mathbf{x}_i, \mathbf{s}_i) = a + f_x(\mathbf{x}_i) + f_s(\mathbf{s}_i) + f_{xs}(\mathbf{x}_i, \mathbf{s}_i)$$

with $a \sim N(0, 1)$ and zero-mean GP priors on each function

$$\begin{array}{rcl} f_x & \sim & GP(0, k_1) \\ f_s & \sim & GP(0, k_2) \\ f_{xs} & \sim & GP(0, k_1 k_2) \end{array}$$

Overall function f follows zero-mean GP with kernel defined by

$$k((\mathbf{x},\mathbf{s}),(\mathbf{x}',\mathbf{s}')) = 1 + k_1(\mathbf{x},\mathbf{x}') + k_2(\mathbf{s},\mathbf{s}') + k_1(\mathbf{x},\mathbf{x}')k_2(\mathbf{s},\mathbf{s}')$$

Alternatively, we can write $\mathbf{f} \sim \mathbf{N}_n(\mathbf{0}, \mathbf{K})$ where

$$\mathbf{K} = \mathbf{1}_n \mathbf{1}_n^\top + \mathbf{K}_x + \mathbf{K}_s + \mathbf{K}_x \odot \mathbf{K}_s$$

where \odot is an element-wise product operator.

GLM with Gaussian Process Priors

Regression with GP priors can be extended to model various types of responses including (ordered or un-ordered) categorical and counts. Given a sample (y_i, \mathbf{x}_i) for i = 1, ..., n, we consider a model

$$g(\mathbb{E}[y_i]) = f(\mathbf{x}_i)$$

where g(y) is a link function and we put GP prior on f, $f \sim GP(0, k)$.

Example - Counts and Poisson likelihood

Suppose that the response variable is counts, $y_i \in \{0, 1, 2, ...\}$ with likelihood

 $y_i \sim \mathsf{Poisson}(\lambda_i)$

Our model is

$$\log(\mathbb{E}(y_i)) = \log(\lambda_i) = f(x_i)$$

where $f \sim GP(0, k)$.

GLM with Gaussian Process Priors

Obtaining predictive distribution p(y_{new}|y, X, x_{new}) is three fold.
the posterior distribution of f

$$p(\mathbf{f}|\mathbf{X}, \mathbf{y}) = \frac{p(\mathbf{y}|\mathbf{f})p(\mathbf{f}|\mathbf{X})}{\int p(\mathbf{y}|\mathbf{f})p(\mathbf{f}|\mathbf{X})d\mathbf{f}}$$

2 the conditional distribution for $f(x_{new})$

$$p(f_{new}|\mathbf{y}, \mathbf{X}, \mathbf{x}_{new}) = \int p(f_{new}|\mathbf{f}, \mathbf{x}_{new}) p(\mathbf{f}|\mathbf{X}, \mathbf{y}) d\mathbf{f}$$

(3) the predictive distribution for the response y_{new}

$$p(y_{new}|\mathbf{X},\mathbf{y},\mathbf{x}_{new}) = \int p(y^*|f^*) p(f_{new}|\mathbf{X},\mathbf{x}_{new},\mathbf{y}) df_{new}.$$

Due to non-Gaussian likelihood, integrals are no longer analytically tractable.

- Approximate the posterior $p(\mathbf{f}|\mathbf{X}, \mathbf{y})$ with multivariate Gaussian $\mathbf{N}_p(\boldsymbol{\mu}, \mathbf{V})$
 - Numerical Approximation: MCMC
 - Analytical approximation:
 - Laplace Approximation >> LA
 - Variational Inference •• VI
- With Gaussian approximation to the posterior, step 2 now has closed form expression
- Simple Monte Carlo simulation works for step 3

Estimating parameters in kernel is also challenging.

- Hierarchical Bayes (Full Bayes): put priors on hyper-parameters
- Naive Bayes: Hyper-parameters are estimated by maximising (approximated) log marginal likelihood
 - Gaussian likelihood 💌

$$\log p(\mathbf{y}|\mathbf{f}) = -\frac{1}{2}\mathbf{y}^{\top}(\mathbf{K}^{-1} + \sigma^2 \mathbf{I}_n)^{-1} - \frac{1}{2}\log|\mathbf{K}^{-1} + \sigma^2 \mathbf{I}_n| - \frac{n}{2}\log 2\pi$$

- Non-Gaussian likelihood: log-marginal likelihood needs approximation
 - LA marginal likelihood under Laplace approximation
 - VB ELBO itself is lower bound for log-marginal likelihood

1 Introduction

2 Gaussian Process Models

3 Spatio-temporal analysis with GP

Application

When location information is available in the form of geographical coordinate, e.g. $\mathbf{s}_i = (longitude_i, latitude_i)$, we have

$$y_i = f(\mathbf{s}_i) + \epsilon_i$$

where $f \sim GP(0, k)$ and kernel $k : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ is given by

$$k(\mathbf{s}, \mathbf{s}') = \alpha^2 \exp\left(-\frac{1}{2\rho^2}|\mathbf{s} - \mathbf{s}'|^2\right)$$

Spatial Models - Areal Data

Location information is more commonly available as areal data Example:

Figure 3: Mean monthly crime cases (2020-2021) per borough

- Using centroids (one set of coordinates to represent the location of the area)
- Using weighted adjacency matrix (W) / Graph Laplacian (L) based kernel.
 - Katz kernel

$$\mathbf{K}^{katz} = \sum_{m=0}^{\infty} (\alpha \mathbf{W})^k = [\mathbf{I} - \alpha \mathbf{W}]^{-1}$$

with $0 \le \alpha \le (\rho(\mathbf{W}))^{-1}$ where $\rho(\mathbf{W})$ is the spectral radius of \mathbf{W} . Regression with katz kernel is similar to conditional auto-regressive (CAR) model.

• Heat kernel

$$\mathbf{K}^{heat} = \exp\left(-\alpha \mathbf{L}\right) = \sum_{m=0}^{\infty} \frac{(-\alpha)^m}{m!} \mathbf{L}^m$$

Spatial Models - Areal Data

Spatio-temporal Models

Consider the following regression model for i = 1, ..., n:

$$y_i = f(\mathbf{s}_i, t_i) + \epsilon_i$$

where $s_i = (longitude_i, latitude_i)$, $t_i = time_i$ and with a prior

 $f \sim GP(0, k_{st}).$

Commonly in the literature, k_{st} is constructed as

Additive kernel

$$k_{st}((\mathbf{s},t),(\mathbf{s}',t')) = k_s(\mathbf{s},\mathbf{s}') + k_t(t,t')$$

• Multiplicative kernel

$$k_{st}((\mathbf{s},t),(\mathbf{s}',t'))=k_s(\mathbf{s},\mathbf{s}')k_t(t,t')$$

- Additive kernel: limited when an interaction effect between space and time is present.
- Multiplicative kernel: fail to incorporate main effects

ANOVA decomposition kernel

We have $\mathbf{x} = (x_1, ..., x_d)^\top \in D$ and kernels k_l for l = 1, ..., d each defined on $D_1, ..., D_d$. For $D = D_1 \times ... \times D_d$ the ANOVA kernel $k_{ANOVA} : D \times D \to \mathbb{R}$ can be constructed as a product of univariate kernels:

$$k_{ANOVA}(\mathbf{x}, \mathbf{x}') = \prod_{l=1}^{d} \left(1 + k_l(x_d, x_d') \right)$$

ANOVA kernel includes a constant term, the d-th order interaction term and any lower order interaction terms.

ANOVA kernel for Spatio-temporal models

$$\begin{aligned} k_{st}((\mathbf{s},t),(\mathbf{s}',t')) &= (1+k_s(\mathbf{s},\mathbf{s}'))(1+k_t(t,t')) \\ &= 1+k_s(\mathbf{s},\mathbf{s}')+k_t(t,t')+k_s(\mathbf{s},\mathbf{s}')k_t(t,t') \end{aligned}$$

The function $f(\mathbf{s}_i, \mathbf{t}_i)$ can be decomposed as

$$f(\mathbf{s}_i, \mathbf{t}_i) = a + f_s(\mathbf{s}_i) + f_t(\mathbf{t}_i) + f_{st}(\mathbf{s}_i, \mathbf{t}_i).$$

The priors over a constant a and each function can be specified in the same manner as the previous example $\xrightarrow{\text{where}}$.

The same idea applies to models with covariates (other than spatial or temporal information). For example, with additional covariates $\mathbf{x}_i \in \mathcal{X}$, we can consider a model

 $y_i = f(\mathbf{s}_i, t_i \mathbf{x}_i) + \epsilon_i$

with GP prior $f \sim GP(0, k_{stx})$.

A few possibilities for the structure of the kernel k_{stx} :

$$k_{x}(\mathbf{x}, \mathbf{x}') + (1 + k_{s}(\mathbf{s}, \mathbf{s}'))(1 + k_{t}(t, t'))$$
$$(1 + k_{x}(\mathbf{x}, \mathbf{x}'))(1 + k_{s}(\mathbf{s}, \mathbf{s}'))(1 + k_{t}(t, t'))$$

The downside of flexibility of regression with GP is the difficulty of interpretability

- Hyper-parameters:
 - does not always have straight-forward interpretation, works more as tuning parameter / controls for flexibility of GP sample path.
 - some cases where parameters in kernel can be understood intuitively e.g., period parameters in periodic kernel
- Combining linear regression and a regression with GP Consider for $\mathbf{x} \in \mathbb{R}^p$

$$f(\mathbf{x}_i, \mathbf{s}_i) = \mathbf{x}_i^\top \boldsymbol{\beta} + f_s(\mathbf{s}_i)$$

where we spcifies the priors as $f_s \sim GP(0, k_s)$ and $\beta \sim N_p(0, \mathbf{B})$.

Combining linear regression and a regression with GP - continued We can write our prior on f as $GP(0, k_{xs})$ where

$$k_{\mathsf{xs}}((\mathsf{x},\mathsf{s}),(\mathsf{x}',\mathsf{s}')) = \mathsf{x}^{\top}\mathsf{B}\mathsf{x}' + k_{\mathsf{s}}(\mathsf{s},\mathsf{s}')$$

then we have

$$\bar{\beta} = (B^{-1} + \mathbf{X}(\mathbf{K}_s + \sigma^2 \mathbf{I}_n)^{-1} \mathbf{X}^{\top})^{-1} (\mathbf{X}(\mathbf{K}_s + \sigma^2 \mathbf{I}_n)^{-1} \mathbf{y})$$

Computational complexity $0(n^3)$ associated with inversion of matrix $(\mathbf{K} + \sigma^2 \mathbf{I}_n)$ for Gaussian likelihood, or **K** for non-Gaussian likelihood.

- Low-rank approximation to K
- Kronecker algebra applies to special cases in spatio-temporal data

If the data is collected from a set of fixed n_s locations over a period of n_t time stamps (repeated measurement / panel data) then $nm \times nm$ Gram/kernel matrix can be expressed as a kronecker product of a $n_s \times n_s$ matrix and a $n_t \times n_t$ matrix:

$$\mathsf{K} = (ilde{\mathsf{K}}_s) \otimes (ilde{\mathsf{K}}_t)$$

where \otimes is a kronecker product operator, $\tilde{K}_s = (\mathbf{1}_{n_s}\mathbf{1}_{n_s}^\top + K_s)$ and $\tilde{K}_t = (\mathbf{1}_{n_t}\mathbf{1}_{n_t}^\top + K_t)$.

• Inverting K (for Non-Gaussian Likelihood) using Cholesky decomposition $K^{-1} = L^{-1\top}L^{-1}$

$$L = L_s \otimes L_t$$

• Inverting a (symmetric) $\mathbf{K} + \sigma^2 \mathbf{I}_n$ (for Gaussian Likelihood) using eigen decomposition $\mathbf{K}^{-1} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\top}$

$$(\mathbf{K} + \sigma^2 \mathbf{I}_n)^{-1} = (\mathbf{Q}_s \otimes \mathbf{Q}_t)(\mathbf{\Lambda}_s \otimes \mathbf{\Lambda}_t + \sigma^2 \mathbf{I}_n))^{-1}(\mathbf{Q}_s^\top \otimes \mathbf{Q}_t^\top)$$

The middle matrix is diagonal matrix, hence inversion only requires O(n) operation. Except for kronecker product computation $O((n_s \times n_t)^2) = O(n^2)$ matrix multiplication is not required. Preserved

Introduction

- 2 Gaussian Process Models
- 3 Spatio-temporal analysis with GP

Dataset

Diggle *et al*.(2013): 919 cases of BTB outbreak from 1989 to 2002 in Cornwall, UK.

- Location(2 dimensional spatial coordinates) and year of outbreak
- A mycrobacterium bovis genotype which was responsible for the outbreak

Genotypes	Frequency	
9	494	
12	109	
15	166	
20	104	
total	873	

Table 1: Frequency by Genotype

S.Ishida	(LSE
----------	------

Table 2: 5-fold CV classification error for GP models

Model	kernel	Error
Spatial	SE	0.1408
Spatial	Matérn(1.5)	0.183
Spatial	Matérn(2.5)	0.177
Spatio-temporal	SE+ SE	0.1351
Spatio-temporal	SE*SE	0.4339
Spatio-temporal	(1+SE)(1+SE)	0.1203
Covariates	SE+ SE	0.2130
Covariates	(1+SE)(1+SE)	0.2005

Introduction

- 2 Gaussian Process Models
- 3 Spatio-temporal analysis with GP

Application

- Advantages of the proposed method:
 - flexible
 - scalable using kronecker algebra
 - proper treatment of spatial and temporal interaction effect

Needs further investigation

- More efficient computation (estimation, approximation of kernel matrix)
- Providing tools for easy implementation
- Extension to more types of data e.g., multivariate response, intensity estimation for univariate spatial/spatio-temporal point patterns
- comparison with related methods (e.g., i-prior)

• squared exponential (S.E.)

$$k(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{||\mathbf{x} - \mathbf{x}||^2}{2\rho^2}\right)$$

periodic

$$k(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{2\sin^2(\frac{\pi||\mathbf{x}-\mathbf{x}'||}{p})}{\rho^2}\right)$$

Posterior

Goal: to approximate posterior $p(\mathbf{f}|\mathbf{y}, \mathbf{X})$ with $q(\mathbf{f}) \stackrel{D}{=} \mathbf{N}_n(\boldsymbol{\mu}, \mathbf{V})$ The mean vector $\boldsymbol{\mu}$ is the mode of log-posterior given by

$$\Psi(\mathbf{f}) = -\frac{1}{2}\mathbf{f}^{\top}\mathbf{K}^{-1}\mathbf{f} - \frac{1}{2}\log|\mathbf{K}| - \frac{n}{2}\log 2\pi + \log p(\mathbf{y}|\mathbf{f}).$$

And the covariance matrix \mathbf{V} is the inverse of negative Hessian evaluated at the mode. More specifically, we have

$$\nabla \Psi(\mathbf{f}) = \nabla \log p(\mathbf{y}|\mathbf{f}) - \mathbf{K}^{-1}\mathbf{f}$$

$$\nabla \nabla \Psi(\mathbf{f}) = \nabla \nabla \log p(\mathbf{y}|\mathbf{f}) - \mathbf{K}^{-1}$$

The posterior mode can be found by for example, Newton-Raphson Method.
Dack

Variational Inference aims to find maximizer of Evidence Lower Bound (ELBO)

$$\mathcal{L}(oldsymbol{\phi}) := -\mathbb{E}_q\left[\lograc{q(\mathbf{f}|oldsymbol{\phi})}{p(\mathbf{f})}
ight] + \mathbb{E}_q\left[\log p(\mathbf{y}|\mathbf{f})
ight].$$

where $\phi = (\mu, \mathbf{V})$ represents variational parameters. The first term has closed form expression

$$-\mathbb{E}_{q}\left[\log\frac{q(\mathbf{f}|\phi)}{p(\mathbf{f})}\right] = \frac{1}{2}\log\left[|\mathbf{V}\mathbf{K}^{-1}| - tr|\mathbf{V}\mathbf{K}^{-1}| - \mathbf{m}^{\top}\mathbf{K}^{-1}\mathbf{m} + n\right]$$

The name evidence (log marginal likelihood) lower bound comes from the fact that

$$\log p(\mathbf{y}) = \log \int p_{\mathbf{y}}(\mathbf{y}|\mathbf{f})p(\mathbf{f})d\mathbf{f}$$

$$= \log \int \frac{p(\mathbf{y}|\mathbf{f})p(\mathbf{f})}{q(\mathbf{f}|\phi)}q(\mathbf{f}|\phi)d\mathbf{f}$$

$$\geq \int \log \frac{p(\mathbf{y}|\mathbf{f})p(\mathbf{f})}{q(\mathbf{f}|\phi)}q(\mathbf{f}|\phi)d\mathbf{f}$$

$$= -\int \log \frac{q(\mathbf{f}|\phi)}{p(\mathbf{f})}q(\mathbf{f}|\phi)d\mathbf{f} + \int \log p(\mathbf{y}|\mathbf{f})q(\mathbf{f}|\phi)d\mathbf{f}$$

$$= -\mathbb{E}_{f\sim q}[\log \frac{q(\mathbf{f}|\phi)}{p(\mathbf{f})}] + \mathbb{E}_{f\sim q}[\log p(\mathbf{y}|\mathbf{f})]$$

Jensen's inequality applies as logarithm is concave.

For C class categorical response y we have C class latent function for each observation,

$$\mathbf{f}_i = (f^{(1)}(\mathbf{x}_i), ..., f^{(C)}(\mathbf{x}_i))^\top$$

Model

$$\pi_i^{(c)} = p(y_i = c | x_i) = \frac{\exp f^{(c)}(\mathbf{x}_i)}{\sum_{c'=1}^{C} \exp f^{(c')}(\mathbf{x}_i)}.$$

• Prior: $f^{(c)} \sim GP(0, k^{(c)})$,

$$k^{(c)}(\mathbf{x}, \mathbf{x}') = \lambda_c^2 \exp\left(-\frac{1}{2\rho_c^2} \|\mathbf{x} - \mathbf{x}'\|^2\right)$$

• C latent processes are uncorrelated

Gaussian Process for Categorical Response

• Given training points $\mathbf{X} = (\mathbf{x}_1, ..., \mathbf{x}_n)^\top$ prior over $\mathbf{f} = (\mathbf{f}_1^\top, ..., \mathbf{f}_n^\top)^\top$ has a form $\mathbf{f} | \mathbf{X} \sim \mathsf{MVN}(\mathbf{0}, \mathbf{K})$ where

$$\mathbf{K} = \begin{bmatrix} \mathbf{K}^{(1)} & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{0} & \mathbf{K}^{(2)} & \dots & \mathbf{0} \\ \vdots & & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \dots & \mathbf{K}^{(C)} \end{bmatrix}$$

K^(c) is a n × n matrix with i, j -th element equals k^c(x_i, x_j)
Re-coding response variable:

$$\mathbf{y} = (y_1^{(1)}, \dots, y_n^{(1)}, \dots, y_1^{(C)}, \dots, y_n^{(C)})^{\top}$$

where $y_i^{(c)} = I(y_i = c)$

Figure 4: Conditional Probability (LGCP model): genotype 9, 12, 15 and 20

S.Ishida (LSE)

June 2022

Figure 6: Conditional Probability (GP model): genotype 9, 12, 15 and 20

S.Ishida (LSE)