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@ Introduction
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Spatial and spatio-temporal Data

Geostatistic data Set of locations + observed values
@ Environmental: pollutant in the air, lake, soils
@ Meteorological: temperature, rainfalls

Figure 1: PM25(ug/m?) - Daily Average

S.Ishida (LSE) Additive GP June 2022 3/54



Spatial and spatio-temporal Data

Measured in area (regions, boroughs, counties)
@ Number of crime cases per region
@ Number of disease cases

5,000 to 6,000

Figure 2: Caption: Crime cases in London 2020-2021 - Monthly average
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Spatial and spatio-temporal Data

Spatial point patterns: location and time of events (univariate /
multivariate)
@ Bovine Tuberculosis in Cornwall - genotypes responsible for causing
the disease
@ Crime in Rochester - crime categories
Multivariate spatial point patterns are also called "marked” spatial point
patterns

Genotype 9
Genotype 12
= Genotype 15

Genotype 20
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Spatial and spatio-temporal Data

Common research questions
@ Describe spatial patterns of observed (pollutant level, cases,
segregation)
@ Changes of the pattern over the time
@ Prediction at locations where samples were not taken

@ Investigate the effect of covariates while controlling for spatial /time
effect

Different models have been analysed by different methods / perspective
@ Geo-statistics - Kriging
@ Areal - random effect models, conditional auto-regressive model

e Point patterns - Spatial point processes (Inhomogeneous Poisson, Cox
etc.)
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Research Interest

@ Provide unified framework for analysing various types of spatial and
spatio-temporal data using Gaussian Process

@ Flexible, interpretable and scalable model

© Proper treatment of spatial and temporal interaction effect
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Outline

© Gaussian Process Models
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Bayesian Linear Regression

o Consider a regression model for i =1,...n
yi=f(x;) +e

where y; € R, x; € X and (e1,...,€n) " ~ Np(0,01,).

o Bayesian Linear Regression

with a prior
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Bayesian Linear Regression

Interests:

@ the posterior distribution of the parameters 3

— p(ylB, X)p(B)
PBIXY) = 1o y18. X)p(8)dB

@ the predictive distribution for given a new data X,ew

p()/new|ya X7Xnew) = /p(}’new|/6axnew)p(,6|xay)d/6
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Regression with Gaussian Process Priors

Idea: Directly put a prior on the function f. Specifically,
f ~ GP(0, k)

where k : X x X — R is some covariance (kernel) function.
This allows

o Flexible relationship with covariates and response

@ Auto-correlation
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Gaussian Process

Gaussian Process
f(+) is called Gaussian Process(GP), if

(f(x1), - F(xn)) ~ MVN(fo, K)

where fo = (fo(x1), .., fo(xs)) " and K is n x n matrix with (i,j)-th element
k(xi, xj) = cov(F(x:), f(x;))

v

A GP is completely specified by its mean function fy and covariance
function k.
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Covariance Functions / Kernel

A covariance function is a positive definite function satisfying for all
al,...ap €R,xq,...x, € X

n
Z a,-ajk(x,-,xj) > 0
ij=1

It

@ Measures similarity, can be defined in many types of data (strings,
graphs, functions)

@ Defines a space of function from X to R (reproducing kernel Hilbert
space)

Example :
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Regression with Gaussian Process Priors

Revisiting the regression model

yi = f(xi) + €

with a GP prior f ~ GP(m, k).
Alternative representation of the prior:

f=(f(x1),.... f(xa))T ~ Np(m,K)
y=0U1---,¥n) ~ Nu(m K+52l,)
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Regression with Gaussian Process Priors

Given a new data Xpen, We have

fnew‘xnew ~ N(m(xnew)7 k(xneW7 xnew))-

[ } N [ m ] [K+02|,, K new ]
frew i Mpew ’ k:,rew k(xneW7xnew) ’

where fren = f(Xpew) and kpew = (K(X1, Xnew); - - - k(x,,,x,,ew))T.

and
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Regression with Gaussian Process Priors

Predictive distribution is also Gaussian
Using conditional distribution of multivatiate normal

fneW|X7 Xnew, Y ~ N<mnew + k;l-;—eW(K + UQIH)_I(y_m)7

k(xneW7 Xnew) - k;reW(K + Uzln)ilknew) .
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Constructing a new kernel from existing ones

Given a positive constant, and valid kernels k; and k> on X all of the
below k : X x X — R are valid kernel

@ Adding a positive constant:
k(x,x") = a + ki(x,x")

e Sum:
k(x,x) = ky(x,x") + ko(x,x)

@ Product:
k(x,x") = ki(x,x')ka(x, x")
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Constructing a new kernel from existing ones

sample path of GP with linear + periodic kernel

fix)

¥

-4 -3 -2 -1 o 1 2 3 4
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Constructing a new kernel from existing ones

It is not necessary that k1 and kp are defined on the same set.
E.g. wehave ky : X x X - R and ky : S X § — R then

k((x,s), (X',8')) = 1 + ki(x,x") + ka(s,s') + ki(x, X' ) ka(s,s’)

is a kernel.
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Additive Gaussian Processes

Consider the following regression model for i =1,...n:

yi = f(xi,si)+e€
f(xi,si) = a+ fi(x;) + fs(si) + fis(xi, si)

with a ~ N(0, 1) and zero-mean GP priors on each function

f;< ~ GP(Oa kl)
fs ~ GP(Oa k2)
fis ~ GP(0, kikp)
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Additive Gaussian Processes

Overall function f follows zero-mean GP with kernel defined by
k((x,s), (x',s")) = 1+ ki(x,x) + ka(s,s) + ki(x,x") ka(s, §')
Alternatively, we can write f ~ N,(0, K) where
K=1,1) + K, +Ks+ K, oOK;

where ©® is an element-wise product operator.
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GLM with Gaussian Process Priors

Regression with GP priors can be extended to model various types of
responses including (ordered or un-ordered) categorical and counts.
Given a sample (y;,x;) for i =1,...n, we consider a model

g(E[yi]) = f(xi)

where g(y) is a link function and we put GP prior on f, f ~ GP(0, k).

Example - Counts and Poisson likelihood

Suppose that the response variable is counts, y; € {0,1,2,...} with
likelihood

yi ~ Poisson(\;)

Our model is
log(E(y;)) = log(Ai) = f(xi)

where f ~ GP(0, k).
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GLM with Gaussian Process Priors

Obtaining predictive distribution p(Ynew|Y, X, Xnew ) is three fold.
@ the posterior distribution of f

__ p(y[f)p(f1X)
[ p(yIf)p(FIX)df

@ the conditional distribution for f(xpew)

p(fX,y)

P(Frew |y X, Xnew) = / P(Frews |, Xnew )P (FIX, y)dF

© the predictive distribution for the response ynew

P(Ynew!|X,Y, Xpew) = / p(y* | F*) p(Ffaew | X, Xnew, ¥) dfpew -
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GLM with Gaussian Process Priors

Due to non-Gaussian likelihood, integrals are no longer analytically
tractable.

© Approximate the posterior p(f|X,y) with multivariate Gaussian
NP(“: V)

o Numerical Approximation: MCMC
o Analytical approximation:

o Laplace Approximation
@ Variational Inference

@ With Gaussian approximation to the posterior, step 2 now has closed
form expression

© Simple Monte Carlo simulation works for step 3
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Hyper-parameter estimation

Estimating parameters in kernel is also challenging.

@ Hierarchical Bayes (Full Bayes): put priors on hyper-parameters

o Naive Bayes: Hyper-parameters are estimated by maximising
(approximated) log marginal likelihood

e Gaussian likelihood
Io1ie-1 2p -1 1 -1 2 n
log p(ylf) = —5Y (K +0o%l,)7" — 5 log |[K™" + o°l,| — > log 2w
o Non-Gaussian likelihood: log-marginal likelihood needs approximation

o LA - marginal likelihood under Laplace approximation
e VB - ELBO itself is lower bound for log-marginal likelihood
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© Spatio-temporal analysis with GP

S.Ishida (LSE) Additive GP June 2022 26 /54



Spatial Models

When location information is available in the form of geographical
coordinate, e.g. s; = (longitude;, latitude;), we have

yi = f(S,’) + €;

where f ~ GP(0, k) and kernel k : R? x R? — R is given by

1
k(s,s') = a® exp (—2—/)2\5 —§?)
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Spatial Models - Areal Data

Location information is more commonly available as areal data
Example:
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Spatial Models - Areal Data

@ Using centroids (one set of coordinates to represent the location of
the area)

@ Using weighted adjacency matrix (W) / Graph Laplacian (L) based
kernel.

o Katz kernel

Kkatz _ Z(aw)k — [l _ aW]_l

with 0 < a < (p(W)) ™" where p(W) is the spectral radius of W.
Regression with katz kernel is similar to conditional auto-regresssive
(CAR) model.

o Heat kernel
oo

Kheat _ exp Z a)m

m=0
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Spatial Models - Areal Data
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Spatio-temporal Models

Consider the following regression model for i =1,...n:
yi=f(si,ti) + €
where s; = (longitude;, latitude;), t; = time; and with a prior
f ~ GP(0, kst).

Commonly in the literature, kst is constructed as
o Additive kernel

kst((s, t), (s', 1)) = ks(s,s') + ke(t, t)

o Multiplicative kernel

kst((s, t), (s', ) = ks(s, s ) ke(t, t')
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Spatio-temporal Models

@ Additive kernel: limited when an interaction effect between space and
time is present.

@ Multiplicative kernel: fail to incorporate main effects

ANOVA decomposition kernel

We have x = (xi,...x4) " € D and kernels k; for | = 1,...d each defined
on Dy,...,Dg4. For D= D; x ... x Dy the ANOVA kernel

kanova : D x D — R can be constructed as a product of univariate
kernels:

d
kanova(x,x') = [T (1 + k(x4 x}))
=1

ANOVA kernel includes a constant term, the d-th order interaction term
and any lower order interaction terms.
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Spatio-temporal Models

ANOVA kernel for Spatio-temporal models

ke((s, 1), (s, 1)) = (14 ks(s,8))(1 + ke(t, 1))
1+ ks(s,s') + ke(t, t') + ks(s, s') ke(t, t')

The function f(sj, t;) can be decomposed as
f(si,ti) = a+ fs(sj) + fe(ti) + for(si, ti).

The priors over a constant a and each function can be specified in the
same manner as the previous example
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Models with covariates

The same idea applies to models with covariates (other than spatial or
temporal information). For example, with additional covariates x; € X', we
can consider a model

yi = f(sj, tix;) + €

with GP prior f ~ GP(0, kstx).
A few possibilities for the structure of the kernel kgy:

ke(x,X') + (1 + ks(s,8")) (1 + ke(t, 1))

(1 + ke (%, X ))(1 + ks(s, ")) (1 + ke(t, t'))
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Interpretation

The downside of flexibility of regression with GP is the difficulty of
interpretability
@ Hyper-parameters:

e does not always have straight-forward interpretation, works more as
tuning parameter / controls for flexibility of GP sample path.

e some cases where parameters in kernel can be understood intuitively -
e.g., period parameters in periodic kernel

@ Combining linear regression and a regression with GP
Consider for x € RP

f(xi.si) = x; B+ fi(si)

where we spcifies the priors as f; ~ GP(0, ks) and 3 ~ N,(0, B).
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Interpretation

Combining linear regression and a regression with GP - continued
We can write our prior on f as GP(0, kxs) where

ke ((x,8), (x',8")) = x"BX' + ks(s,s')

then we have

B =(B7+ X(Ks + 021,) ' XT) HX(Ks +0%1,) " ty)
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Computational Issues

Computational complexity 0(n%) associated with inversion of matrix
(K + 021,) for Gaussian likelihood, or K for non-Gaussian likelihood.

@ Low-rank approximation to K

@ Kronecker algebra - applies to special cases in spatio-temporal data
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Computational Issues

If the data is collected from a set of fixed ns locations over a period of n;
time stamps (repeated measurement / panel data) then nm x nm

Gram /kernel matrix can be expressed as a kronecker product of a ns x ns
matrix and a n; X n; matrix:

K= (Rs) ® (Rt)

where ® is a kronecker product operator, Ks = (1,1, + Ks) and
Kt - (lntl;’rt + Kt)
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Computational Issues

@ Inverting K (for Non-Gaussian Likelihood) using Cholesky
decomposition K™t = L=1TL™!

L=L;®L;

o Inverting a (symmetric) K + o1, (for Gaussian Likelihood) using
eigen decomposition K™* = QAQ"

(K+%1,) = (Qs ® Q) (As ® Ar +0°1,)) " HQ! ® Q)

The middle matrix is diagonal matrix, hence inversion only requires
O(n) operation. Except for kronecker product computation
O((ns x n;)?) = O(n?) matrix multiplication is not required.
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Outline

e Application
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Diggle et al.(2013): 919 cases of BTB outbreak from 1989 to 2002 in
Cornwall, UK.

@ Location(2 dimensional spatial coordinates) and year of outbreak

@ A mycrobacterium bovis genotype which was responsible for the
outbreak

Genotypes Frequency

9 404
12 109
15 166
20 104

total 873

Table 1: Frequency by Genotype
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Model Comparison

Table 2: 5-fold CV classification error for GP models

Model kernel Error
Spatial SE 0.1408
Spatial Matérn(1.5) 0.183
Spatial Matérn(2.5) 0.177
Spatio-temporal SE+ SE 0.1351
Spatio-temporal SE*SE 0.4339
Spatio-temporal  (1+SE)(14+SE) 0.1203
Covariates SE+ SE 0.2130
Covariates (14+SE)(1+SE) 0.2005
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Outline

© Discussion
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Discussion / Future Work

Advantages of the proposed method:
o flexible
e scalable - using kronecker algebra
e proper treatment of spatial and temporal interaction effect

Needs further investigation

@ More efficient computation (estimation,approximation of kernel
matrix)

@ Providing tools for easy implementation

@ Extension to more types of data - e.g., multivariate response, intensity
estimation for univariate spatial /spatio-temporal point patterns

@ comparison with related methods (e.g., i-prior)
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Kernel Examples

@ squared exponential (S.E.)

2
k(x,x") = exp (—%p:”)

@ periodic
s 02 7| Ix—x]|
2sin?( - )

k(x,x') =exp | —
(x.x) -
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Kernel Examples

flx)

y=

Sample path of GP with periodic kernel

S.Ishida (LSE)

flx)

y=

Additive GP

Sample path of GP with squared exponential kernel
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Posterior

Distribution of posterior and prior data.

>~ 0 === true
- 20005t
—_— lpos
-2
® (X ¥ltran
=
-6 -4 -2 o 2 4 L]
X

5 different realizations from posterior
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Laplace Approximation

Goal: to approximate posterior p(fly, X) with g(f) 2 N,(w, V)
The mean vector u is the mode of log-posterior given by

1 1
W(f) = —§fTK_1f— 5 log K| - g log 27 + log p(y|f).

And the covariance matrix V is the inverse of negative Hessian evaluated
at the mode. More specifically, we have

VU(f) = Vlogp(ylf) — K~'f
VVV(f) = VVliogp(ylf) —K!

The posterior mode can be found by for example, Newton-Raphson
Method.
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Variational Inference

Variational Inference aims to find maximizer of Evidence Lower Bound

(ELBO)

q(fl¢)
p(f)

where ¢ = (i, V) represents variational parameters.

The first term has closed form expression

q(fl9)
p(f)

while second term does not in general. Further approximation needed

£(8) = ~Bq log U | 1 B, log o1

1
-E, [Iog ] =5 log [|VK_1\ —tr|VK™ Y —m K™ tm + n]
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ELBO

The name evidence (log marginal likelihood) lower bound comes from the
fact that

logp(y) = log / by (yIf)p(F)df
B p(y[f)p()

= '°g/ a(flo
p(y[)p

= / 8 ()

=~ [ "f)(";” alfl0)dr+ [ 108 p(yINal)ar

q(flo)
p(f)

Jensen's inequality applies as logarithm is concave.

q(flo)df
f)

\_//'\\_//'\

q(fl¢)df

= —Rfgllog ]+ Ef~q[log p(y|f)]
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Gaussian Process for Categorical Response

For C class categorical response y we have C class latent function for each
observation,

fi = (FO(x),..., FOx) T

Model ©
exp F19(x;)
p(y ’ ) Zgzl exp f-(c/)(x’)

2l

e Prior: f(© ~ GP(0, k(<)),

1
2 2
) = A2exp (5o x - x?)

o C latent processes are uncorrelated
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Gaussian Process for Categorical Response

o Given training points X = (xg,...,x,) | prior over f = (f{,...,f])T has
a form f|X ~ MVN(0, K) where

KO o ... 0

0 K® 0

K= _
0 0 K('C)

K(<) is a n x n matrix with i, j -th element equals k°(x;,x;)

@ Re-coding response variable:

y = (y1(1)7...,y,(,l),...,yl(C),...,yr(yC))T

where y,-(c) =I(y; = ¢)
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Figure 4: Conditional Probability (LGCP model): genotype 9, 12, 15 and 20
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Figure 6: Conditional Probability (GP model): genotype 9, 12, 15 and 20
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