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Spatial and spatio-temporal Data

Geostatistic data Set of locations + observed values

Environmental: pollutant in the air, lake, soils

Meteorological: temperature, rainfalls

Figure 1: PM25(µg/m3) - Daily Average
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Spatial and spatio-temporal Data

Measured in area (regions, boroughs, counties)

Number of crime cases per region

Number of disease cases

Figure 2: Caption: Crime cases in London 2020-2021 - Monthly average
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Spatial and spatio-temporal Data

Spatial point patterns: location and time of events (univariate /
multivariate)

Bovine Tuberculosis in Cornwall - genotypes responsible for causing
the disease
Crime in Rochester - crime categories

Multivariate spatial point patterns are also called ”marked” spatial point
patterns
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Spatial and spatio-temporal Data

Common research questions

Describe spatial patterns of observed (pollutant level, cases,
segregation)

Changes of the pattern over the time

Prediction at locations where samples were not taken

Investigate the effect of covariates while controlling for spatial/time
effect

Different models have been analysed by different methods / perspective

Geo-statistics - Kriging

Areal - random effect models, conditional auto-regressive model

Point patterns - Spatial point processes (Inhomogeneous Poisson, Cox
etc.)
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Research Interest

1 Provide unified framework for analysing various types of spatial and
spatio-temporal data using Gaussian Process

2 Flexible, interpretable and scalable model

3 Proper treatment of spatial and temporal interaction effect
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Bayesian Linear Regression

Consider a regression model for i = 1, . . . n

yi = f (xi ) + ϵi

where yi ∈ R, xi ∈ X and (ϵ1, . . . , ϵn)
⊤ ∼ Nn(0, σIn).

Bayesian Linear Regression

f (xi ) = x⊤i β

with a prior
β = (β1, . . . βp)

⊤ ∼ Np(0,B)
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Bayesian Linear Regression

Interests:

the posterior distribution of the parameters β

p(β|X, y) = p(y|β,X)p(β)∫
p(y|β,X)p(β)dβ

the predictive distribution for given a new data xnew

p(ynew |y,X, xnew ) =
∫

p(ynew |β, xnew )p(β|X, y)dβ
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Regression with Gaussian Process Priors

Idea: Directly put a prior on the function f . Specifically,

f ∼ GP(0, k)

where k : X × X → R is some covariance (kernel) function.
This allows

Flexible relationship with covariates and response

Auto-correlation
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Gaussian Process

Gaussian Process

f (·) is called Gaussian Process(GP), if(
f (x1), ..., f (xn)

)
∼ MVN(f0,K)

where f0 = (f0(x1), ..., f0(xn))
⊤ and K is n × n matrix with (i,j)-th element

k(xi , xj) = cov(f (xi ), f (xj))

A GP is completely specified by its mean function f0 and covariance
function k .
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Covariance Functions / Kernel

A covariance function is a positive definite function satisfying for all
a1, . . . an ∈ R, x1, . . . xn ∈ X

n∑
i ,j=1

aiajk(xi , xj) ≥ 0

It

Measures similarity, can be defined in many types of data (strings,
graphs, functions)

Defines a space of function from X to R (reproducing kernel Hilbert
space)

Example : link
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Regression with Gaussian Process Priors

Revisiting the regression model

yi = f (xi ) + ϵi

with a GP prior f ∼ GP(m, k).
Alternative representation of the prior:

f = (f (x1), ..., f (xn))
⊤ ∼ Nn(m,K)

y = (y1, . . . , yn)
⊤ ∼ Nn(m,K+ σ2In)
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Regression with Gaussian Process Priors

Given a new data xnew , we have

fnew |xnew ∼ N(m(xnew ), k(xnew , xnew )).

and [
y

fnew

]
∼ Nn+1

([
m

mnew

]
,

[
K+ σ2In knew
k⊤new k(xnew , xnew )

])
.

where fnew = f (xnew ) and knew = (k(x1, xnew ), . . . k(xn, xnew ))⊤.
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Regression with Gaussian Process Priors

Predictive distribution is also Gaussian
Using conditional distribution of multivatiate normal

fnew |X, xnew , y ∼ N
(
mnew + k⊤new (K+ σ2In)

−1(y-m),

k(xnew , xnew )− k⊤new (K+ σ2In)
−1knew

)
.

posterior
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Constructing a new kernel from existing ones

Given a positive constant, and valid kernels k1 and k2 on X all of the
below k : X × X → R are valid kernel

Adding a positive constant:

k(x, x′) = α+ k1(x, x
′)

Sum:
k(x, x) = k1(x, x

′) + k2(x, x
′)

Product:
k(x, x′) = k1(x, x

′)k2(x, x
′)
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Constructing a new kernel from existing ones
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Constructing a new kernel from existing ones

It is not necessary that k1 and k2 are defined on the same set.
E.g. we have k1 : X × X → R and k2 : S × S → R then

k((x, s), (x′, s′)) = 1 + k1(x, x
′) + k2(s, s

′) + k1(x, x
′)k2(s, s

′)

is a kernel.
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Additive Gaussian Processes

Consider the following regression model for i = 1, . . . n:

yi = f (xi , si ) + ϵi

f (xi , si ) = a+ fx(xi ) + fs(si ) + fxs(xi , si )

with a ∼ N(0, 1) and zero-mean GP priors on each function

fx ∼ GP(0, k1)

fs ∼ GP(0, k2)

fxs ∼ GP(0, k1k2)
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Additive Gaussian Processes

Overall function f follows zero-mean GP with kernel defined by

k((x, s), (x′, s′)) = 1 + k1(x, x
′) + k2(s, s

′) + k1(x, x
′)k2(s, s

′)

Alternatively, we can write f ∼ Nn(0,K) where

K = 1n1
⊤
n +Kx +Ks +Kx ⊙Ks

where ⊙ is an element-wise product operator. .
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GLM with Gaussian Process Priors

Regression with GP priors can be extended to model various types of
responses including (ordered or un-ordered) categorical and counts.
Given a sample (yi , xi ) for i = 1, . . . n , we consider a model

g(E[yi ]) = f (xi )

where g(y) is a link function and we put GP prior on f, f ∼ GP(0, k).

Example - Counts and Poisson likelihood

Suppose that the response variable is counts, yi ∈ {0, 1, 2, . . .} with
likelihood

yi ∼ Poisson(λi )

Our model is
log(E(yi )) = log(λi ) = f (xi )

where f ∼ GP(0, k).
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GLM with Gaussian Process Priors

Obtaining predictive distribution p(ynew |y,X, xnew ) is three fold.

1 the posterior distribution of f

p(f|X, y) = p(y|f)p(f|X)∫
p(y|f)p(f|X)df

2 the conditional distribution for f (xnew )

p(fnew |y,X, xnew ) =
∫

p(fnew |f, xnew )p(f|X, y)df

3 the predictive distribution for the response ynew

p(ynew |X,y, xnew ) =
∫

p(y∗|f ∗)p(fnew |X, xnew , y)dfnew .
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GLM with Gaussian Process Priors

Due to non-Gaussian likelihood, integrals are no longer analytically
tractable.

1 Approximate the posterior p(f|X, y) with multivariate Gaussian
Np(µ,V)

Numerical Approximation: MCMC
Analytical approximation:

Laplace Approximation LA

Variational Inference VI

2 With Gaussian approximation to the posterior, step 2 now has closed
form expression

3 Simple Monte Carlo simulation works for step 3
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Hyper-parameter estimation

Estimating parameters in kernel is also challenging.

Hierarchical Bayes (Full Bayes): put priors on hyper-parameters

Naive Bayes: Hyper-parameters are estimated by maximising
(approximated) log marginal likelihood

Gaussian likelihood .

log p(y|f) = −1

2
y⊤(K−1 + σ2In)

−1 − 1

2
log |K−1 + σ2In| −

n

2
log 2π

Non-Gaussian likelihood: log-marginal likelihood needs approximation

LA - marginal likelihood under Laplace approximation
VB - ELBO itself is lower bound for log-marginal likelihood
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Spatial Models

When location information is available in the form of geographical
coordinate, e.g. si = (longitudei , latitudei ), we have

yi = f (si ) + ϵi

where f ∼ GP(0, k) and kernel k : R2 × R2 → R is given by

k(s, s′) = α2 exp (− 1

2ρ2
|s− s′|2)
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Spatial Models - Areal Data

Location information is more commonly available as areal data
Example:

Figure 3: Mean monthly crime cases (2020-2021) per borough
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Spatial Models - Areal Data

1 Using centroids (one set of coordinates to represent the location of
the area)

2 Using weighted adjacency matrix (W) / Graph Laplacian (L) based
kernel.

Katz kernel

Kkatz =
∞∑

m=0

(αW)k = [I− αW]−1

with 0 ≤ α ≤ (ρ(W))−1 where ρ(W) is the spectral radius of W.
Regression with katz kernel is similar to conditional auto-regresssive
(CAR) model.
Heat kernel

Kheat = exp (−αL) =
∞∑

m=0

(−α)m

m!
Lm
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Spatial Models - Areal Data
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Spatio-temporal Models

Consider the following regression model for i = 1, . . . n:

yi = f (si , ti ) + ϵi

where si = (longitudei , latitudei ), ti = timei and with a prior

f ∼ GP(0, kst).

Commonly in the literature, kst is constructed as

Additive kernel

kst((s, t), (s
′, t ′)) = ks(s, s

′) + kt(t, t
′)

Multiplicative kernel

kst((s, t), (s
′, t ′)) = ks(s, s

′)kt(t, t
′)
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Spatio-temporal Models

Additive kernel: limited when an interaction effect between space and
time is present.

Multiplicative kernel: fail to incorporate main effects

ANOVA decomposition kernel

We have x = (x1, ...xd)
⊤ ∈ D and kernels kl for l = 1, . . . d each defined

on D1, . . . ,Dd . For D = D1 × . . .× Dd the ANOVA kernel
kANOVA : D × D → R can be constructed as a product of univariate
kernels:

kANOVA(x, x
′) =

d∏
l=1

(
1 + kl(xd , x

′
d)
)

ANOVA kernel includes a constant term, the d-th order interaction term
and any lower order interaction terms.
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Spatio-temporal Models

ANOVA kernel for Spatio-temporal models

kst((s, t), (s
′, t ′)) = (1 + ks(s, s

′))(1 + kt(t, t
′))

= 1 + ks(s, s
′) + kt(t, t

′) + ks(s, s
′)kt(t, t

′)

The function f (si , ti ) can be decomposed as

f (si , ti ) = a+ fs(si ) + ft(ti ) + fst(si , ti ).

The priors over a constant a and each function can be specified in the
same manner as the previous example here .
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Models with covariates

The same idea applies to models with covariates (other than spatial or
temporal information). For example, with additional covariates xi ∈ X , we
can consider a model

yi = f (si , tixi ) + ϵi

with GP prior f ∼ GP(0, kstx).
A few possibilities for the structure of the kernel kstx :

kx(x, x
′) + (1 + ks(s, s

′))(1 + kt(t, t
′))

(1 + kx(x, x
′))(1 + ks(s, s

′))(1 + kt(t, t
′))
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Interpretation

The downside of flexibility of regression with GP is the difficulty of
interpretability

Hyper-parameters:

does not always have straight-forward interpretation, works more as
tuning parameter / controls for flexibility of GP sample path.
some cases where parameters in kernel can be understood intuitively -
e.g., period parameters in periodic kernel

Combining linear regression and a regression with GP
Consider for x ∈ Rp

f (xi , si ) = x⊤i β + fs(si )

where we spcifies the priors as fs ∼ GP(0, ks) and β ∼ Np(0,B).
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Interpretation

Combining linear regression and a regression with GP - continued
We can write our prior on f as GP(0, kxs) where

kxs((x, s), (x
′, s′)) = x⊤Bx′ + ks(s, s

′)

then we have

β̄ = (B−1 + X(Ks + σ2In)
−1X⊤)−1(X(Ks + σ2In)

−1y)
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Computational Issues

Computational complexity 0(n3) associated with inversion of matrix
(K+ σ2In) for Gaussian likelihood, or K for non-Gaussian likelihood.

Low-rank approximation to K

Kronecker algebra - applies to special cases in spatio-temporal data
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Computational Issues

If the data is collected from a set of fixed ns locations over a period of nt
time stamps (repeated measurement / panel data) then nm × nm
Gram/kernel matrix can be expressed as a kronecker product of a ns × ns
matrix and a nt × nt matrix:

K = (K̃s)⊗ (K̃t)

where ⊗ is a kronecker product operator, K̃s = (1ns1
⊤
ns + Ks) and

K̃t = (1nt1
⊤
nt + Kt).
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Computational Issues

Inverting K (for Non-Gaussian Likelihood) using Cholesky
decomposition K−1 = L−1⊤L−1

L = Ls ⊗ Lt

Inverting a (symmetric) K+ σ2In (for Gaussian Likelihood) using
eigen decomposition K−1 = QΛQ⊤

(K+ σ2In)
−1 = (Qs ⊗Qt)(Λs ⊗Λt + σ2In))

−1(Q⊤
s ⊗Q⊤

t )

The middle matrix is diagonal matrix, hence inversion only requires
O(n) operation. Except for kronecker product computation
O((ns × nt)

2) = O(n2) matrix multiplication is not required. example
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Dataset

Diggle et al .(2013): 919 cases of BTB outbreak from 1989 to 2002 in
Cornwall, UK.

Location(2 dimensional spatial coordinates) and year of outbreak

A mycrobacterium bovis genotype which was responsible for the
outbreak

Genotypes Frequency

9 494
12 109
15 166
20 104

total 873

Table 1: Frequency by Genotype
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Model Comparison

Table 2: 5-fold CV classification error for GP models

Model kernel Error

Spatial SE 0.1408
Spatial Matérn(1.5) 0.183
Spatial Matérn(2.5) 0.177
Spatio-temporal SE+ SE 0.1351
Spatio-temporal SE*SE 0.4339
Spatio-temporal (1+SE)(1+SE) 0.1203

Covariates SE+ SE 0.2130
Covariates (1+SE)(1+SE) 0.2005
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Discussion / Future Work

Advantages of the proposed method:

flexible
scalable - using kronecker algebra
proper treatment of spatial and temporal interaction effect

Needs further investigation

More efficient computation (estimation,approximation of kernel
matrix)

Providing tools for easy implementation

Extension to more types of data - e.g., multivariate response, intensity
estimation for univariate spatial/spatio-temporal point patterns

comparison with related methods (e.g., i-prior)
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Kernel Examples

squared exponential (S.E.)

k(x, x′) = exp

(
−||x− x||2

2ρ2

)
periodic

k(x, x′) = exp

−
2 sin2(π||x−x′||

p )

ρ2
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Kernel Examples

back
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Posterior

back
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Laplace Approximation

Goal: to approximate posterior p(f|y, X) with q(f)
D
=Nn(µ,V)

The mean vector µ is the mode of log-posterior given by

Ψ(f) = −1

2
f⊤K−1f− 1

2
log |K| − n

2
log 2π + log p(y|f).

And the covariance matrix V is the inverse of negative Hessian evaluated
at the mode. More specifically, we have

∇Ψ(f) = ∇ log p(y|f)−K−1f

∇∇Ψ(f) = ∇∇ log p(y|f)−K−1

The posterior mode can be found by for example, Newton-Raphson
Method. back
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Variational Inference

Variational Inference aims to find maximizer of Evidence Lower Bound
(ELBO)

L(ϕ) := −Eq

[
log

q(f|ϕ)
p(f)

]
+ Eq [log p(y|f)] .

where ϕ = (µ,V) represents variational parameters.
The first term has closed form expression

−Eq

[
log

q(f|ϕ)
p(f)

]
=

1

2
log
[
|VK−1| − tr |VK−1| −m⊤K−1m+ n

]
while second term does not in general. Further approximation needed

back
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ELBO

The name evidence (log marginal likelihood) lower bound comes from the
fact that

log p(y) = log

∫
py (y|f)p(f)df

= log

∫
p(y|f)p(f)
q(f|ϕ)

q(f|ϕ)df

≥
∫

log
p(y|f)p(f)
q(f|ϕ)

q(f|ϕ)df

= −
∫

log
q(f|ϕ)
p(f)

q(f|ϕ)df+
∫

log p(y|f)q(f|ϕ)df

= −Ef∼q[log
q(f|ϕ)
p(f)

] + Ef∼q[log p(y|f)]

Jensen’s inequality applies as logarithm is concave.
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Gaussian Process for Categorical Response

For C class categorical response y we have C class latent function for each
observation,

fi = (f (1)(xi ), ..., f
(C)(xi ))

⊤

Model

π
(c)
i = p(yi = c |xi ) =

exp f (c)(xi )∑C
c ′=1 exp f

(c ′)(xi )
.

Prior: f (c) ∼ GP(0, k(c)),

k(c)(x, x′) = λ2
c exp

(
− 1

2ρ2c
∥x− x′∥2

)
C latent processes are uncorrelated
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Gaussian Process for Categorical Response

Given training points X = (x1, ..., xn)⊤ prior over f = (f⊤1 , ..., f
⊤
n )

⊤ has
a form f|X ∼ MVN(0,K) where

K =


K(1) 0 . . . 0
0 K(2) . . . 0
...

. . .
...

0 0 . . . K(C)

 .

K(c) is a n × n matrix with i , j -th element equals kc(xi , xj)

Re-coding response variable:

y = (y
(1)
1 , . . . , y

(1)
n , . . . , y

(C)
1 , . . . , y

(C)
n )⊤

where y
(c)
i = I (yi = c)
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Figure 4: Conditional Probability (LGCP model): genotype 9, 12, 15 and 20
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Figure 6: Conditional Probability (GP model): genotype 9, 12, 15 and 20
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