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Outline

Outline

• Brief introduction to latent variable models

• Observed variables: binary, ordinal, and continuous

• Modeling: Structural Equation Modeling (SEM)

• Methodology discussed: Pairwise Likelihood (PL)

• Topics that will be discussed:
• Estimation
• Overall goodness-of-fit testing: nested models and overall fit under SRS
• Limited goodness-of-fit tests under SRS and complex sample designs
• Model selection criteria
• Reducing computational complexity
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Outline

Latent variables and measurement

Using statistical models to understand constructs better: a question of
measurement

• Many theories in behavioral and social sciences are formulated in
terms of theoretical constructs that are not directly observed

attitudes, opinions, abilities, motivations, etc.

• The measurement of a construct is achieved through one or more
observable indicators (questionnaire items, tests).

• The purpose of a measurement model is to describe how well the
observed indicators serve as a measurement instrument for the
constructs, also known as latent variables.

• Measurement models often suggest ways in which the observed
measurements can be improved.
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Outline

Latent variables and substantive theories

Using statistical models to understand relationships between constructs
and covariates and to test theories about those relationships.

• Often measurement by multiple indicators may involve more than one
latent variable.

• Subject-matter theories and research questions usually concern
relationships among the latent variables, and perhaps also observed
explanatory variables.

• Latent variables can be used as predictors for distal outcomes or as
dependent variables explained by covariates.

• These are captured by statistical models for those variables:
structural models.
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Motivation

Motivation of our work

• Improve the estimation in cases of intractable integrals and complex
models.

• Provide an inferential framework for model testing and model
selection.

• Improve the computational time and cost.
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Notation

Notation

• y : p−dimensional vector of the observed variables (binary, ordinal,
continuous).

• y⋆: p−dimensional vector of corresponding underlying continuous
variables.

• The connection between yi and y⋆i is

yi = ci ⇐⇒ τ
(yi )
ci−1 < y⋆i < τ

(yi )
ci , (1)

−∞ = τ
(yi )
0 < τ

(yi )
1 < . . . < τ

(yi )
mi−1 < τ

(yi )
mi = +∞.

• c : the c-th response category of variable yi , c = 1, . . . ,mi , τi ,c : the
c-th threshold of variable yi ,

• In practice, y⋆i ∼ N(0, 1)

• yi is continuous: yi = y⋆i .
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Notation

Structural Equation Model

Following Muthén (1984):

y⋆ = ν + Λη + ϵ

η = α+ Bη + Γx+ ζ

η: vector of latent variables, q−dimensional,
x : vector of covariates,
ϵ and ζ : vectors of error terms, and
ν and α : vectors of intercepts.
Standard assumptions:

• η, ϵ, ζ follow multivariate normal distribution,

• Cov (η, ϵ) = Cov (η, ζ) = Cov (ϵ, ζ) = 0,

• I − B is non-singular, I the identity matrix.
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Notation

Structural Equation Model

Based on the model:

µ ≡ E (y⋆|x) = ν + Λ (I − B)−1 (α+ Γx)

Σ ≡ Cov (y⋆|x) = Λ (I − B)−1Ψ
[
(I − B)−1

]′
Λ′ +Θ

Let θ be the parameter vector of the model.

θ′ =
(
vec (Λ)′ , vec (B)′ , vec (Γ)′ , vech (Ψ)′ , vech (Θ)′ ,α′,ν ′, τ ′)

.
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Estimation Methods

Likelihood Function

• Under the model, the probability of a response pattern r is

πr (θ) = π (y1 = c1, . . . , yp = cp;θ) =

∫
. . .

∫
ϕp(y

⋆; Σy⋆)dy
⋆ , (2)

where ϕp(y⋆; Σy⋆) is a p-dimensional normal density with zero mean,
and correlation matrix Σy⋆ .

• The maximization of log-likelihood over the parameter vector θ
requires the evaluation of the p-dimensional integral which cannot be
written in a closed form.

• Maximum likelihood infeasible for large number of observed variables.
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Estimation Methods

Alternative estimation: WLS and Composite Methods

• Three-stage estimation methods (Jöreskog, 1990, 1994; Muthén,
1984): unweighted least squares (ULS), diagonally weighted least
squares (DWLS), and weighted least squares (WLS).

• Composite likelihood estimation (Besag 1974; Lindsay 1988; Cox and
Reid 2004; Varin, Reid and Firth 2011).

• Pairwise likelihood estimation for SEM ( Jöreskog and Moustaki 2001;
Katsikatsou, et al. 2012).
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Estimation Methods

Pairwise likelihood estimation

Denote by {A1, · · · ,AK} a set of conditional or marginal events with
associated likelihoods Lk(θ; y).
Following Lindsay (1988) a composite likelihood is the weighted product

Lk(θ; y) =
K∏

k=1

Lk(θ; y)
wk ,

where wk are non-negative weights.

Following Cox & Reid (2004), the composite-loglikelihood could be
modified as follows:

l(θ; y) =
∑
i<j

ln L (θ; (yi , yj))− c
∑
i

ln L (θ; yi ) ,

where c is a constant to be chosen for optimal efficiency.
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Estimation Methods

Pairwise likelihood for SEM

Basic assumption:(
y⋆i
y⋆j

)∣∣∣∣ x ∼ N2

((
µi

µj

)
,

(
σii
σji σjj

))
The pl for N independent observations:

pl (θ; y|x) =
N∑

n=1

∑
i<j

ln L (θ; (yin, yjn)|x) .

The specific form of ln L (θ; (yin, yjn)|x) depends on the type of the
observed variables (binary/ ordinal, continuous).
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Estimation Methods

Pairwise Likelihood Estimation for Binary Responses (1)

• For a pair of variables yi and yj . The basic pairwise log-likelihood
takes the form

∑
i<j

1∑
ci=0

1∑
cj=0

n
(yiyj )
cicj lnπ

(yiyj )
cicj (θ) (3)

where ncicj is the observed frequency of sample units with yi = ci and
yj = cj .

• To accommodate complex sampling, the PL becomes:

pl(θ; y) =
∑
i<j

1∑
ci=0

1∑
cj=0

p
(yiyj )
cicj lnπ

(yiyj )
cicj (θ) , (4)

where pci cj =
∑

h∈s whI (y
(h)
i = ci , y

(h)
j = cj)/

∑
h∈s wh.
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Estimation Methods

Pairwise Likelihood Estimation for Binary Responses (2)

The score function

∇pl(θ; y) =
∑
i<j

1∑
ci=0

1∑
cj=0

p
(yiyj )
cicj (π

(yiyj )
cicj (θ))−1∂π

(yiyj )
cicj (θ)

∂θ
. (5)

Using Taylor expansion, we may write

θ̂PL = θ + H(θ)−1∇pl(θ; y) + op(n
−1/2) (6)

where H(θ) is the sensitivity matrix, H(θ) = E
{
−∇2pl(θ; y)

}
. It follows

that √
n
(
θ̂PL − θ

)
d→ Nt

(
0,H(θ)J−1(θ)H(θ)

)
,

where t is the dimension of θ, and J(θ) is the variability matrix,
J(θ) = Var

{√
n∇pl(θ; y)

}
.
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Estimation Methods

Why PL is proposed?

Maximum likelihood (ML) is not feasible for large models.
It requires the computation of multiple integrals over a multivariate normal
distribution the dimension of which is equal to the number of ordinal
observed variables.
Three stage least squares methods require the estimation of a weight
matrix to obtain correct standard errors and chi-squared test statistics. A
relatively large sample size is required for a reliable estimate.
The construction of model selection criteria of AIC and BIC type is not
possible.
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Estimation Methods

Finite-sample properties of PL estimation

For factor analysis models with ordinal data (Katsikatsou et al., 2012):

• PL estimates and standard errors present a close-to-zero bias and
mean squared error (MSE).

• PL performs very similarly to three-stage least squares methods and
maximum likelihood as implemented in the GLLVM approach.
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Estimation Methods

Model fit

Katsikatsou and Moustaki, 2016.

• Pairwise Likelihood Ratio Test (PLRT) for overall fit

• Pairwise Likelihood Ratio Test for comparing models (e.g. equality
constraints)

• Model selection criteria: PL versions of AIC and BIC

• The PLRT statistic performs in accordance with the asymptotic
results at 5% and 1% significance levels for N = 500, 1000 but not
satisfactorily for N = 200.

• Both adjusted AIC and BIC criteria perform very well with a
minimum rate of success 82.9%.
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Estimation Methods

Software

In the R package lavaan

PL available for fitting and testing factor analysis models or SEMs where

• all observed variables are binary or ordinal, and

• the standard parametrization for the underlying variables is used (zero
means and unit variances)

• Multigroup analysis is also possible.
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Current work

Current work

• Limited information test statistics under SRS and complex designs.
• Methods for reducing the computational complexity of pairwise
estimation

• Employ sampling methodology for selecting pairs (Papageorgiou and
Moustaki, 2019)

• Stochastic optimization
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Limited Information Test Statistics

Fit on the Lower order margins

• Let π̇1 = (P(y1 = 1),P(y2 = 1), . . . ,P(yp = 1))′ be the p × 1 vector
that contains all univariate probabilities of a positive response to an
item.

• Let π̇2 be the
(p
2

)
× 1 vector of bivariate probabilities with elements,

π̇ij = P(yi = 1, yj = 1), j < i .

• Let π2 be the vector that contains both these univariate and bivariate
probabilities with dimension s = p +

(p
2

)
= p(p + 1)/2.

• We also define an s × 2p indicator matrix T2 of rank s such that
π2 = T2π.
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Limited Information Test Statistics

Goodness-of-fit tests, simple hypothesis

• Let us denote with p the 2p × 1 vector of sample proportions
corresponding to the vector of population proportions π. Assuming
i.i.d, it is known that:

√
n(p− π)

d−→ N(0,Σ), (7)

• where Σ = D(π)− ππ′ and n is the sample size.

• Under complex sampling design, the vector p becomes the weighted
vector of proportions p with elements

∑
h∈s whI (y

(h) = yr )/
∑

h∈s wh.

• Under suitable conditions (e.g. Fuller, 2009, sect. 1.3.2) we still have
a central limit theorem, where the covariance matrix Σ need now not
take a multinomial form.
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Limited Information Test Statistics

Limited information goodness-of-fit tests

Reiser (1996, 2008), Bartholomew and Leung (2002), Maydey-Olivares and Joe
(2005, 2006) Cagnone and Mignani (2007).

The test statistics developed are based on marginal distributions rather
than on the whole response pattern.

• Ho : π2 = π2(θ) for some θ versus H1 : π2 ̸= π2(θ) for any θ.

• Construct test statistics based upon the residual vector
ê2 = p2 − π2(θ̂PL) derived from the bivariate marginal distributions
of y.

• We first derive the asymptotic distribution of ê2.
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Limited Information Test Statistics

Limited information goodness-of-fit tests

• Following earlier notation, we can write s × 1 vectors: π2 = T2π and
p2 = T2p. It follows that:

√
n(p2 − π2)

d−→ N(0,Σ2), (8)

where Σ2 = T2ΣT
′
2. Because T2 is of full rank s, Σ2 is also of full

rank s.
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Limited Information Test Statistics

Limited information goodness-of-fit tests

Noting that π2(θ) = T2π(θ), a Taylor series expansion gives:

π2(θ̂PL) = π2(θ) + T2∆(θ̂PL − θ) + op(n
−1/2), (9)

where ∆ = ∂π(θ)

∂θ
Hence, using (6), we have

ê2 = p2 − π2(θ)− T2∆H(θ)−1∇pl(θ; y) + op(n
−1/2). (10)

Finally we need to express ∇pl(θ; y) in terms of p2 − π2(θ)
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Limited Information Test Statistics

Limited information goodness-of-fit tests

Hence, there is a t × s matrix B(θ) such that

∇pl(θ; y) = B(θ)(p2 − π2(θ)) (11)

Hence, from (10)

ê2 = (I − T2∆H(θ)−1B(θ))(p2 − π2(θ)) + op(n
−1/2) (12)

So from (8), we have under H0 that:

√
nê2

d−→ N(0,Ω). (13)

where Ω = (I − T2∆H(θ)−1B(θ))Σ2(I − T2∆H(θ)−1B(θ))′.
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Limited Information Test Statistics

Limited information goodness-of-fit tests

To estimate the asymptotic covariance matrix of ê2, we evaluate ∂π(θ)

∂θ
at

the PL estimate θ̂PL to obtain ∆̂ and set:

Ω̂ = (I − T2∆̂Ĥ(θ̂PL)
−1B(θ̂PL))Σ̂2(I − T2∆̂Ĥ(θ̂PL)

−1B(θ̂PL))
′,

where Σ̂2 = T2Σ̂T
′
2. In the case of iid observations with a multinomial

covariance matrix, we may set Σ̂ = D(p)− pp′.
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Limited Information Test Statistics

Wald Test Statistic

• A Wald test statistic is given by:

L2 = n(p2 − π2(θ̂PL))
′Ω̂+(p2 − π2(θ̂PL)), (14)

• where Ω̂+ is the Moore-Penrose inverse of Ω̂.

• Under H0, L2 is asymptotically distributed as χ2 with d.f. equal to
the rank of Ω̂+, which is between s − t and s.
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Limited Information Test Statistics

Pearson Chi-square Test Statistic

• Pearson test statistic, let D2 be the s × s matrix D2 = diag(π2(θ))
and let D̂2 = diag(π2(θ̂PL)). Then the Pearson test statistic is given
by

X 2
P = nê′2D̂

−1
2 ê2 = n(p2 − π2(θ̂PL))

′D̂−1
2 (p2 − π2(θ̂PL)). (15)

• The limiting distribution of
√
nD̂−0.5

2 ê2 under the hypothesis that the
model is correct is given by N(0,D2

−0.5ΩD2
−0.5).

• Hence X 2
P has the limiting distribution of

∑
δiWi , where the δi are

eigenvalues of D2
−0.5ΩD2

−0.5 and the Wi are independent chi-square
random variables, each with one degree of freedom.

• These eigenvalues can be estimated by the eigenvalues of
D̂−0.5
2 Ω̂D̂−0.5

2 .

• A first and a second order Rao-Scott type test can be obtained.
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Limited Information Test Statistics

Simulation results, SRS

Empirical Type I error probabilities for the Wald tests and FSMAdj
Pearson tests, N = 1000.

Simulation Wald Wald FSMAdj Pearson FSMAdj Pearson
Study 5% 1% 5% 1%

1F 5Items 0.053 0.009 0.050 0.012
1F 8Items 0.055 0.011 0.051 0.010
1F 10Items 0.059 0.038 0.078 0.022
2F 10Items 0.059 0.017 0.059 0.016
3F 15Items 0.023 0.011 0.072 0.023
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Limited Information Test Statistics

Estimation of the covariance matrix under complex
sampling: stratified multistage sampling

•

Σ = limvar{
√
n(p− π)}

= limvar{
√
n(

∑
h∈s why

(h)∑
h∈s wh

− π)}

where limvar denotes the asymptotic covariance matrix.

• Using a usual linearization argument for a ratio:

Σ = limvar{
√
n

∑
h∈s wh(y

(h) − π)

E (
∑

h∈s wh)
}. (16)
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Limited Information Test Statistics

Current research

• Study the performance of the Wald and Pearson chi-square test
statistics under different simulation senaria under SRS and complex
survey designs in terms of Type I error and power.

• Implement the tests in real data sets.
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Stochastic Optimization

Why use Stochastic Optimization? (Yunxiao Chen,
Guiseppe Alfonzeti, Ruggero Bellio)

Pros and cons of pairwise likelihood:

+ It substitutes large-dimensional integration problems with bivariate
ones.

- Its computational cost grows with the number of pairs, O(p2).

Using stochastic optimization:

• Resampling a new small subset of the data at each iteration

• Low computational cost per iteration and low memory storage

• In our case pℓ(θ; y) depends on the data only trough the bivariate
frequencies nijsi sj , such that sampling units across iterations does not
reduce complexity.

• Reducing the number of pairs is proposed here.
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Stochastic Optimization

Overview of Stochastic Optimization

• Define a stochastic approximation to pℓ(θ, y) via

f (θ; y,w) ∝
∑
i<j

wijℓij(θ);

• The quantities wij are random binary weights such that

wij
iid∼ Bernoulli(γ);

• The hyperparameter γ ∈ (0, 1] controls the trade-off between the
accuracy of the approximation and its computational complexity.

• The complexity of f (θ; y,w) grows with O(γp2). It follows that, if γ
is set at the same order of p−1, the complexity of the approximation
grows only linearly in p.
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Stochastic Optimization

Stochastic Optimization - The algorithm

The generic t-th iteration is performed alternating:

1 Stochastic step:
• Sample a new set of weights w(t);

2 Approximation step:
• Build a cheap approximation of

∇f (θt−1; y,w
(t)) =

1

γ

∑
i<j

w
(t)
ij ∇ℓij(θt−1; y);

Note that, if γ = 1, we retrieve ∇f (θt−1; y,w(t)) = ∇pℓ(θt−1). If
γ ̸= 1 we still have Ew [∇f (θt−1; y ,w(t))] = ∇pℓ(θt−1).

3 Update step:
• Update θt via θt = ProjΘ

(
θt−1 + ηt∇f (θt−1; y,w(t))

)
, where ProjΘ (.)

is a projection operator which ensures ρy
∗

ij to be valid correlations. The

stepsize used is ηt = t−.5+ϵ, with ϵ a small positive constant such that∑∞
t=1 ηt = ∞ and

∑∞
t=1 η

2
t < ∞, as in Zhang and Chen (2020).
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