Modelling covariance matrices in multivariate dyadic data

Jouni Kuha

LSE Department of Statistics Research Showcase 14.6.2022

The DyLAnIE project

- Methods for Analysis of Longitudinal Dyadic Data with Applications to Intergenerational Exchanges of Family Support
- ▶ Funded by ESRC and EPSRC, 2017–2021
- Investigators:
 - PI: Fiona Steele
 - co-Is and Research Officers: Irini Moustaki, Chris Skinner, Jouni Kuha, Tania Burchardt, Eleni Karagiannaki, Emily Grundy, Nina Zhang, Siliang Zhang

Substantive research questions

- What factors are associated with giving and receiving support between adult individuals and their non-coresident parents?
- What is the level and nature of reciprocity in these exchanges?

- British Household Panel Survey (1991-2009) and its successor UK Houshold Longitudinal Study (UKHLS; 2010-present)
- Data on exchanges of support collected in the Family Network Module (2001, 2006, 2011, 2013, 2015, 2017)

Paper 1 for today's talk

Kuha, J., Zhang, S., and Steele, F. (2021). Latent variable models for multivariate dyadic data with zero inflation: Analysis of intergenerational exchanges of family support. arXiv:2104.11531

Binary indicators of help given and received

Nowadays, do you regularly or frequently do any of the things listed on this card for your parents not living here?

- 1. Giving them lifts in your car (if you have one)
- 2. Shopping for them
- 3. Providing or cooking meals
- 4. Helping with basic personal needs like dressing, eating or bathing
- 5. Washing, ironing or cleaning
- 6. Dealing with personal affairs e.g. paying bills, writing letters
- 7. Decorating, gardening or house repairs
- 8. Financial help

For help received from parents, 4. replaced by Looking after your children.

Focus of Paper 1

Paper 1: Illustrative results

Higher tendency to give help to parents is associated with

- Parent(s) being older and living alone
- Respondent
 - having no siblings or 3 or more siblings
 - having lower household income
 - having no young children at home
 - being single
 - being not employed
- Respondent and parent(s) living near to each other

These and ther findings interpreted in terms of *needs* and *capacities* of givers and receivers of help.

Paper 2 for today's talk

Zhang, S., Kuha, J., and Steele, F. (in progress). Modelling covariance matrices in multivariate dyadic data.

Focus of Paper 2

Modelling (conditional) covariance matrices

Focus on the correlation matrix R(X; B) of latent variables η given covariates X: var(η|X; σ, B) = diag(σ) R(X; B) diag(σ)

Broadly, two possible approaches (Pinheiro and Bates 1996):

- Unconstrained optimization: Model a transformation which ensures that the estimated correlation matrix is positive semidefinite
- Constrained optimization: Model the correlations directly, and somehow constrain the estimates so that the matrix remains positive semidefinite.

We use a constrained approach, with linear models for the correlations

$$\rho_j = \beta'_j X$$

for $j = 1, \ldots, J$, so that $\mathbf{B} = (\beta'_1, \ldots, \beta'_J)'$.

MCMC estimation of the models

- "Two-step" estimation: Parameters of the measurement models for the latent variables are estimated separately and treated as known here.
- MCMC estimation for the rest of the model then has data augmentation structure:
 - Draw (impute) values for the latent variables, treating parameters as known.
 - Draw values for the parameters from their posterior distributions given observed and (imputed) latent variables.

Drawing parameters of models for the correlations

- Goal: Draw an MCMC sample $\mathbf{B}_1, \ldots, \mathbf{B}_M$ such that $\mathbf{R}(\mathbf{X}; \mathbf{B}) \geq 0...$
 - for all **B** in the convex hull of $\mathbf{B}_1, \ldots, \mathbf{B}_M$,
 - ▶ for all X in a specified set, e.g. the convex hull of the observed data X₁,..., X_n.
- This can be achieved through rejection sampling within the MCMC iterations, one scalar element β_{jl} of **B** at a time:
 - draw a proposal value for β_{jl} given everything else
 - check if this implies an acceptable B_m
 - update if yes, reject if no

Illustrative results from tentative analysis

- Data: UKHLS wave 9 (2017/18)
- Fitted correlations given covariates, averaged over sample distributions of other covariates

Covariate	Marginal correlations					
setting	$\mathrm{GP}{\leftrightarrow}\mathrm{RP}$	$\mathrm{GP}{\leftrightarrow}\mathrm{RF}$	$\mathrm{RP}{\leftrightarrow}\mathrm{GF}$	$\mathrm{GF}{\leftrightarrow}\mathrm{RF}$	$\mathrm{GP}{\leftrightarrow}\mathrm{GF}$	$\mathrm{RP} \leftrightarrow \mathrm{RF}$
Overall	0.38	0.16	0.02	-0.06	0.36	0.20
Age						
35 years	0.53	0.14	0.00	-0.07	0.39	0.31
45 years	0.39	0.18	0.03	-0.08	0.37	0.22
55 years	0.20	0.19	0.06	-0.06	0.32	0.08
Gender						
Female	0.31	0.14	-0.03	-0.10	0.32	0.22
Male	0.47	0.17	0.09	0.00	0.40	0.18
Travel time to the nearest parent						
> 1 hr	0.48	0.01	-0.06	-0.22	0.16	0.02
$\leqslant 1~{\rm hr}$	0.34	0.21	0.05	0.00	0.43	0.27
Logarithm of household equivalised income						
25 percentile	0.37	0.15	0.02	-0.06	0.36	0.20
50 percentile	0.38	0.16	0.02	-0.06	0.36	0.20
75 percentile	0.39	0.16	0.03	-0.05	0.36	0.21