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Modelling and Forecasting Interest Rates

Understanding and forecasting the term structure of interest
rates is very important in financial markets.

Central banks - monetary policy, stress testing.

Insurance corporations, pension funds, university endowments,
and other market participants - asset allocation, investment
decisions.

Similarities in terms of modelling with other financial data, such
volatility and options, but with tractable expressions.
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Resolving the ‘puzzle’

The standard modelling framework is provided by Dynamic Term
Structure Models (DTSMs), e.g. Dai and Singleton (2000); Ang
and Piazzesi (2003).

It is possible to estimate DTSMs in a time-series context but
also from cross-sectional data (term structure).

Using only the former results into overly stable long-term
predictions, potentially to due to persistence underestimation,
known as the ‘puzzle’ (Bauer, 2018).

Several attempts in the literature to link both data streams
based on absence of arbitrage.
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Resolving the ‘puzzle’ (cont’d)

Nevertheless, the ‘puzzling’ behaviour remains, unless
restrictions are placed on risk premia, reflecting the change
between the physical and pricing measures.

Restrictions allow more impact from the cross sectional data to
the time series dynamics. This results into higher persistence
and more realistic long term variability, resolving the ‘puzzle’ to
some extent.

From a machine learning viewpoint, this can be cast as a
sparsity problem, i.e. looking to set some of the risk-premia
parameters to zero.
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Our approach

But even in standard models there may be as many as 12 risk
premia parameters corresponding to 212 restriction sets.

To navigate thought this space, we adopt a Bayesian approach
resembling variable selection with spike and slab priors as in
Bauer (2018).

In order to address relevant empirical questions on predictability,
we embed this framework in a sequential setting, allowing to
update estimates and model choices/averaging as new data
become available.
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Dynamic Term Structure Model

The interest rate is an affine function of N state variables Xt ,

rt = δ0 + δ′
1Xt ,

where Xt under the physical measure P is defined as

Xt − Xt−1 = µP + ΦPXt−1 + ΣεPt , εPt ∼ N(0, IN)

Under the essentially-affine specification (Duffee, 2002) of the market
prices of risk, λt = Σ−1 (λ0 + λ1Xt), the pricing measure Q is

Xt − Xt−1 = µQ + ΦQXt−1 + ΣεQt , εQt ∼ N(0, IN)

where µQ = µ − λ0, ΦQ = Φ − λ1.
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Observed yields

Taking expectations wrt Q, the time-t price of n-period bond Pn
t is

Pn
t = exp(An + B ′

nXt),

where An and Bn are functions of (µQ, ΦQ, Σ) and are given from the
Riccati recursions (Ang and Piazzesi, 2003).

For yt being the cross-sectional vector with yn
t = − log Pn

t
n ∀n, we get

yt = An,X + Bn,X Xt .

Proceeding with above data and latent states Xt , identification and
estimation of DTSM is challenging (Ang et al., 2007; Chib and
Ergashev, 2009).
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Canonical setup of Joslin et al. (2011)
Xt is rotated to the first N Principal Components of observed yields
Pt = Wyt . Letting µP

P = µQ
P + λ0P , ΦP

P = ΦQ
P + λ1P , gives

Pt − Pt−1 = µP
P + ΦP

PPt−1 + ΣPεPt

Pt − Pt−1 = µQ
P + ΦQ

PPt−1 + ΣPεQt

yt = AP + BPPt + et

where J − N of J yields in yt are observed with N(0, σ2
e ) errors.

Restrictions on µQ
P , ΦQ

P , δ0, δ1 for identification. The Joint likelihood is

f (Y |θ) =
{∏T

t=0 f Q(yt |Pt , kQ
∞, gQ, ΣP , σ2

e )
}

×{∏T
t=1 f P(Pt |Pt−1, kQ

∞, gQ, λ0P , λ1P , ΣP)
}
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Empirical Questions

Are DTSMs useful for prediction?

Identifying a good set of restrictions on λ0P , λ1P is important
towards resolving the ‘puzzle’ but does it translate to improved
forecasts?

If yes to the above, does this predictive ability translate to
economic benefits for investors?
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Excess Bond Returns

Focus is on forecasting excess bond returns. Letting pn
t = log Pn

t ,
they are defined as

rxn
t,t+h = pn−h

t+h − pn
t − ph

t = −(n − h)yn−h
t+h + nyn

t − hyh
t ,

i.e. the difference between the h-holding period return of the
n-period bond and the h-period yield.

The excess bond return model-based forecast r̃xn
t,t+h, based on the

forecast P̃t+h, is given from

r̃xn
t,t+h = An−h,P − An,P + Ah,P + B ′

n−h,PP̃t+h − (Bn,P − Bh,P)′Pt ,
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Predictability and Economic Value
To see if predictability translates into economic benefits, we consider
a Bayesian investor with power utility preferences

U(Wt+h) = U(wn
t , rxn

t+h) = W 1−γ
t+h

1 − γ

where γ is the coefficient of relative risk aversion and

Wt+h = (1 − wn
t ) exp(r f

t ) + wn
t exp(r f

t + rxn
t,t+h)

where wn
t is the portfolio weight on the risky n-period bond.

Such an investor rebalances the portfolio at each time t by
maximising the expected utility

Et [U(Wt+h)|x1:t ] =
∫

U(wn
t , rxn

t+h)f (rxn
t+h)drxn

t+h,

where f (rxn
t+h) is a predictive distribution.
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Model and Data Setup

Likelihood f (Y0:t |θ), based on Y0:t = (Y0, Y1 . . . , Yt), combined with
a prior π(θ), yields the posterior distribution:

π(θ|Y0:t) = 1
m(Y0:t)

f (Y0:t |θ)π(θ).

Predictive distribution to assess out-of-sample forecasting
performance of the models:

f (Yt+h|Y0:t) =
∫

f (Yt+h|Yt , θ)π(θ|Y0:t)dθ.

Need the above for many t, e.g. all t after some warm-up period.
One option is to use Markov Chain Monte Carlo but it is too costly.
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Iterated Batch Importance Sampling (IBIS)
(Chopin, 2002; Del Moral et al., 2006)

1. Initialize Nθ particles by drawing independently θi ∼ π(θ) with
importance weights ωi = 1, i = 1, . . . , Nθ.

2. For t, . . . , T do for all i :

(a) Calculate the incremental weights

ut(θi) = f (Yt |Y0:t−1, θi) = f
(
Yt |Yt−1, θi)

(b) Update the importance weights ωi to ωiut(θi).
(c) If some degeneracy criterion (e.g. ESS(ω)) is triggered, perform

the following two sub-steps:
(i) Resampling: Sample with replacement Nθ times from the set of

θis according to ωis. The weights are then reset to one.
(ii) Jittering: Replace θis with θ̃is by running MCMC chains with

each θi as input and θ̃i as output.
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IBIS output
The set of θ particles can be used to compute expectations with
respect to the posterior, E [g(θ)|Y0:t ], for all t using the
estimator ∑

i [ωig(θi)]/
∑

i ωi .

The θ particles can be transformed into weighted samples from
the predictive distribution f (Yt+h|Yt) for all t.
A very useful by-product is the ability to compute the model
evidence m(Y0:t) = f (Y0:t), for model choice/averaging via its
estimator

Mt = 1∑Nθ
i=1 ωi

Nθ∑
i=1

ωiut(θi).

The IBIS output can be used to monitor how estimates of
certain parameters evolve as data accumulate.
A more robust alternative to MCMC even in offline problems.
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Priors
Priors on most parameters were set to relatively flat distributions.

For the risk premia parameters λP = (λ0P , λ1P), spike-and-slab priors
were used, aka as Stochastic Search Variable Selection (SSVS)

λP
ij ∼ (1 − γij)N(0, τ

(0)
ij ) + γijN(0, τ

(1)
ij )

where γijs are Bernoulli(π) random variables indicating large (free)
parameters versus small.

τ
(1)
ij s were set to unit information priors, and τ

(0)
ij s were set to very

small values.

Different approach for π, either fixed to a value such as 0.5 or
assigned a Beta prior and estimated by the data.
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MCMC and γs

An MCMC algorithm is still required for the jittering step of the IBIS
(the most costly one).

A Gibbs scheme was used splitting the data in different blocks. For
some parameters (γs, λs, σ2

e ) the full conditionals are available. For
Σ, µQ

P and ΦQ
P , independence samples were used.

Samples from the posterior of γs can be used to decide whether each
element of λP should be restricted to 0.

In our approach γs are part of the IBIS and can therefore facilitate
sequential model choice and averaging.
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Data and Models

The data set contains monthly observations of zero-coupon US
Treasury yields with maturities of 1-year, 2-year, 3-year, 4-year,
5-year, 7-year, and 10-year
The period considered is from 1990 to 2016. No predictions are
evaluated until 2007 (warm-up period), but this is done for each
month afterwards.
PCA weights are computed based on data up to 2007 and kept
fixed afterwards.
In terms of models, three different SSVS algorithms were used,
based on two different prior specifications on π and a third
scheme where only two λs were allowed to be non-zero.
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Some IBIS Output
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Economic Value
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Discussion - Extensions

The development of the sequential version of the SSVS scheme
allowed us to establish the predictive ability of DTSMs in cases
of extreme risk premia restrictions.

Interested to study the method in more challenging settings in
terms for model uncertainty.

On another project we worked on including a latent unspanned
factor representing market environment information.

Another working projects aims to incroporate unspanned macros
as covariates using multiple output Gaussian processes.
Potentially interested to check deep Gaussian processes.
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